| نویسندگان | M. R. Jabbarzadeh - V. Kaleibary |
|---|---|
| نشریه | Linear Multilinear Algebra |
| شماره صفحات | 395–410 |
| شماره مجلد | 70 |
| نوع مقاله | Original Research |
| تاریخ انتشار | 2022 |
| رتبه نشریه | ISI |
| نوع نشریه | چاپی |
| کشور محل چاپ | آنگیل |
چکیده مقاله
We present some unitarily invariant norm and Schatten p-norm
inequalities relevant to accretive-dissipative matrices involving convex
and concave functions. In particular, we show that if T =
is an accretive-dissipative block matrix with Tij ∈ Mn(C), i, j = 1, 2,
and f is an increasing convex function on [0,∞) with f (0) = 0, then
2for every unitarily invariant norm · u. We also extract several
inequalities for accretive-dissipative n × n operator matrices. The
obtained inequalities extend some known results.