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Inequalities for accretive-dissipative block matrices involving
convex and concave functions

Mohammad Reza Jabbarzadeh and Venus Kaleibary

Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran

ABSTRACT
We present some unitarily invariant norm and Schatten p-norm
inequalities relevant to accretive-dissipative matrices involving con-
vex and concave functions. In particular, we show that if T = (

Tij
)
2×2

is an accretive-dissipative block matrix with Tij ∈ Mn(C), i, j = 1, 2,
and f is an increasing convex function on [0,∞) with f (0) = 0, then

2

∥∥∥∥f
( |T|

2

)∥∥∥∥
u

≤ ∥∥f (√2 |T11|)
∥∥
u + ∥∥f (√2 |T22|)

∥∥
u,

for every unitarily invariant norm ‖ · ‖u. We also extract several
inequalities for accretive-dissipative n × n operator matrices. The
obtained inequalities extend some known results.
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1. Introduction

LetMn(C) denote the algebra of all n × n complex matrices. The matrix T ∈ M2n(C) can
be represented as an 2 × 2 block matrix, i.e. T =

[
T11 T12
T21 T22

]
, with Tjk ∈ Mn(C), j, k = 1, 2.

On the other hand, every T ∈ M2n(C) can be written uniquely as

T = A + iB, (1)

whereA = (T + T∗)/2 andB = (T − T∗)/2i areHermitianmatrices. This is theCartesian
decomposition of T, and A and B are called the real and imaginary parts of T, respectively.
In this paper, the decomposition (1) is represented as[

T11 T12
T21 T22

]
=
[
A11 A12
A∗
12 A22

]
+ i
[
B11 B12
B∗
12 B22

]
, (2)

where Tjk,Bjk,Ajk ∈ Mn(C), j, k = 1, 2.
For a matrix T ∈ Mn(C), we always denote the eigenvalues of |T| = (T∗T)1/2 by

s1(T) ≥ s2(T) ≥ · · · ≥ sn(T) and put {sj(T)} as a vector of eigenvalues of |T|. These are
called the singular values of T. For 1 ≤ p < ∞, the Schatten p-norm of T is defined
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by ‖T‖p = (
∑n

j=1 s
p
j (T))1/p. The Schatten p-norms are important examples of unitar-

ily invariant norms ‖ · ‖u, i.e. norms satisfying ‖T‖u = ‖UTV‖u for all unitaries U,V ∈
Mn(C).

AmatrixT ∈ Mn(C) is called accretive-dissipative if in its Cartesian decomposition (1),
the matrices A and B are positive. In recent years, considerable attention has been given to
the accretive-dissipative operators or matrices [8,11,13].

Recently, Lin and Zhou [14] considered the accretive-dissipative block matrix (2) and
established several norm inequalities between the whole block matrix and its diagonal
blocks.

After that, Gumus et al. [8] investigated another type of inequalities involving accretive-
dissipative operators (2) interfering with some matrix functions. They showed [8,
Theorem 2.5] if f is an increasing convex function on [0,∞) such that f (0) = 0, then∥∥f (|T12|2

)+ f
(|T∗

21|2
)∥∥

u ≤ ∥∥f (|T|2)∥∥u. (3)

In this paper, we are interested in some inequalities for accretive-dissipative blockmatrices
that involve matrix functions. In Section 2, we present an inequality between the norm
of T to its diagonal blocks providing an upper bound for the inequality (3). The obtained
result extends themain theorem in [14] to all convex functions, simultaneously. Section 3 is
devoted to studying Schatten p-norm inequalities, including sums of accretive-dissipative
matrices and convex functions. Among other inequalities, we prove that if T and S are
accretive-dissipativematrices and f is an increasing convex function on [0,∞)with f (0) =
0, then for every α ∈ [0, 1] and p ≥ 1,

∥∥f (|αT + (1 − α)S|) ∥∥pp ≤ 2p−1
(∥∥αf (√2 |T|)∥∥pp + ∥∥(1 − α)f (

√
2 |S|)∥∥pp) .

We also provide some corresponding inequalities related to concave functions. In the spe-
cial case f (t) = t and α = 1

2 , the results reduce to an inequality presented by Kittaneh and
Sakkijha [11, Theorem 2.7] as follows:

2−(p/2)(∥∥T∥∥pp + ∥∥S∥∥pp) ≤ ‖T + S‖pp ≤ 2(3p/2)−1(∥∥T∥∥pp + ∥∥S∥∥pp). (4)

In the last two sections, we deal with a class of functions on [0,∞) which preserve weak
log-majorization. In Section 4, we first present some majorizations for this class of func-
tions comparing diagonal and off-diagonal blocks of T. Eventually, an application of the
results in Section 4 leads to an elegant unitarily invariant norm inequality for n × n opera-
tor matrices. The obtained results extend some Schatten p-norm inequalities in [11] to all
unitarily invariant norms.

We note the statements in Section 4 and 5 are held not only for matrices but also for
operators on any infinite-dimensional Hilbert spaces H. Also, throughout the paper, all
functions are assumed to be continuous.

2. Unitarily invariant norm inequalities

In what follows, capital letters A, B, C means n × n matrices or bounded linear operators
on an n-dimensional complex Hilbert spaceH. In addition, all partitioned matrices are in
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M2n(C)withmatrix entries inMn(C).We start this section with the following definition of
majorization. For thematricesA,B, the weak log-majorization {sj(A)} ≺wlog {sj(B)}means

k∏
j=1

sj(A) ≤
k∏

j=1
sj(B), k = 1, 2, . . . , n.

There is a close relation between the (log-)majorization and the unitarily invariant norm
inequalities that will be constructive in our proofs. In the following, we state some related
lemmas and use them frequently.

Lemma 2.1 ([3, Theorem 1.1]): Let A,B be positive matrices. Then

sj(A + B) ≤ √
2 sj(A + iB), j = 1, 2, . . . , n. (5)

Lemma 2.2 ([9, Theorem 6.23]): Let A,B be positive and f be an increasing convex function
on [0,∞). If {sj(A)} ≺wlog {sj(B)}, then ‖f (A)‖u ≤ ‖f (B)‖u for every unitarily invariant
norm ‖ · ‖u.

Lemma 2.3: Let A,B be positive and f be an increasing convex function on [0,∞). Then for
every unitarily invariant norm ‖ · ‖u and r > 0,∥∥f (|A + iB|r)∥∥u ≤ ∥∥f ((A + B)r

)∥∥
u ≤ ∥∥f (2r/2 |A + iB|r)∥∥u.

Proof: It is shown in [16] if A, B are positive, then

{sj(A + iB)} ≺wlog {sj(A + B)}, j = 1, 2, . . . , n. (6)

Also, by Lemma 2.1 we have

{sj(A + B)} ≺wlog {√2sj(A + iB)}, j = 1, 2, . . . , n. (7)

Combining (6) and (7), taking rth power on all sides and using the spectral mapping
theorem gives

{sj(|A + iB|r)} ≺wlog {sj((A + B)r)} ≺wlog {2r/2sj(|A + iB|r)}.

Now the desired inequality deduces from Lemma 2.2. �

Part (a) and (c) of the following Lemma has been given in [5]. Parts (b) and (d) can be
found in [12] and [7], respectively.

Lemma 2.4: Let A,B ∈ B(H) be positive. Then for every unitarily invariant norm ‖ · ‖u,

(a) ‖f ((A + B)/2)‖u ≤ ‖(f (A) + f (B))/2‖u for every nonnegative convex function f on
[0,∞).

(b) ‖f (A) + f (B)‖u ≤ ‖f (A + B)‖u for every nonnegative convex function f on [0,∞)with
f (0) = 0.
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(c) ‖(f (A) + f (B))/2‖u ≤ ‖f ((A + B)/2)‖u for every nonnegative concave function f on
[0,∞).

(d) ‖f (A + B)‖u ≤ ‖f (A) + f (B)‖u for every nonnegative concave function f on [0,∞).

The last needed result is a remarkable matrix decomposition introduced by Bourin and
Lee in [5] as follows.

Lemma 2.5: For every positive block matrix in M2n(C), we have the decomposition

[
A C
C∗ B

]
= U

[
A 0
0 0

]
U∗ + V

[
0 0
0 B

]
V∗

for some unitaries U,V ∈ M2n(C).

Now we are ready to state the first main result of this section.

Theorem 2.6: Let T ∈ M2n(C) be accretive-dissipative partitioned as in (2) and f be an
increasing convex function on [0,∞) with f (0) = 0. Then

2
∥∥∥∥f
( |T|

2

)∥∥∥∥
u

≤ ∥∥f (√2 |T11|)
∥∥
u + ∥∥f (√2 |T22|)

∥∥
u, (8)

for every unitarily invariant norm ‖ · ‖u.

Proof: By applying Lemma 2.3 for r = 1, we have

∥∥∥∥f
( |T|

2

)∥∥∥∥
u

=
∥∥∥∥∥f
( |A + iB|

2

)∥∥∥∥
u

≤
∥∥∥∥f
(
A + B
2

)∥∥∥∥∥
u

. (9)

On the other hand, since

A + B
2

= 1
2

[
A11 + B11 A12 + B12
A∗
12 + B∗

12 A22 + B22

]

is a positive block matrix, according to Lemma 2.5 there are unitaries U and V such that

A + B
2

= 1
2

(
U
[
A11 + B11 0

0 0

]
U∗ + V

[
0 0
0 A22 + B22

]
V∗
)
.

Now letting

M = U
[
A11 + B11 0

0 0

]
U∗ andN = V

[
0 0
0 A22 + B22

]
V∗,
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we can write∥∥∥∥f
(
A + B
2

)∥∥∥∥
u

=
∥∥∥∥f
(
M + N

2

)∥∥∥∥
u

≤
∥∥∥∥ f (M) + f (N)

2

∥∥∥∥
u

(by Lemma 2.4, (a))

≤ 1
2
(‖f (M)‖u + ‖f (N)‖u

)
= 1

2

(∥∥∥∥U
[
f (A11 + B11) 0

0 f (0)

]
U∗
∥∥∥∥
u

+
∥∥∥∥V
[
f (0) 0
0 f (A22 + B22)

]
V∗
∥∥∥∥
u

)

= 1
2

(∥∥f (A11 + B11)
∥∥
u + ∥∥f (A22 + B22)

∥∥
u

)

≤ 1
2

(∥∥f (√2 |A11 + iB11|)
∥∥
u + ∥∥f (√2 |A22 + iB22|)

∥∥
u

)
(by Lemma 2.2)

= 1
2

(∥∥f (√2 |T11|)
∥∥
u + ∥∥f (√2 |T22|)

∥∥
u

)
.

Combining this inequality with the inequality (9), we have
∥∥∥∥f
( |T|

2

)∥∥∥∥
u

≤
∥∥∥∥f
(
A + B
2

)∥∥∥∥
u

≤ 1
2

(∥∥f (√2 |T11|)
∥∥
u + ∥∥f (√2 |T22|)

∥∥
u

)
,

as desired. �

In the following, we will see that Theorem 2.6 can be considered as an upper bound
of (3) as well.

Corollary 2.7: Let T ∈ M2n(C) be accretive-dissipative partitioned as in (2) and f be an
increasing convex function [0,∞) with f (0) = 0. Then for every unitarily invariant norm
‖ · ‖u and p ≥ 1,

∥∥∥∥f
(( |T|

2

)p)∥∥∥∥
u

≤ 1
2

(∥∥f ((√2 |T11|
)p)∥∥

u + ∥∥f ((√2 |T22|
)p)∥∥

u

)
.

In particular
∥∥∥∥f
( |T|2

4

)∥∥∥∥
u

≤ 1
2

(∥∥f (2 |T11|2
)∥∥

u + ∥∥f (2 |T22|2
)∥∥

u

)
.

Proof: The results are obtained by applying Theorem 2.6 to the convex function f (tp),
p ≥ 1. �
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Corollary 2.8: Let T ∈ M2n(C) be accretive-dissipative partitioned as in (2). Then

∥∥e|T|2/4 − I2n
∥∥
u ≤ 1

2

(∥∥e2 |T11|2 − In
∥∥
u + ∥∥e2 |T22|2 − In

∥∥
u

)
,

for every unitarily invariant norm ‖ · ‖u.

Proof: Applying Corollary 2.7 to the increasing convex function f (t) = et − 1 gives the
result. �

Remark 2.1: Replacing the accretive-dissipative operator T with 2T in the above inequal-
ities, one can get the reverses of Theorem 2.5, Corollary 2.6 and Corollary 2.7 in [8],
immediately.

Remark 2.2: Lin and Zhou [14, Theorem 3.11] presented an interesting inequality for the
accretive-dissipative block matrix (2) as follows:

‖T‖u ≤ √
2
(∥∥T11

∥∥
u + ∥∥T22

∥∥
u
)
. (10)

A significant extension of (10) to all increasing convex functions is provided in
Theorem 2.6. In fact, by letting f (t) = tr, r ≥ 1 we have

‖|T|r‖u ≤ 2(3r/2)−1) (∥∥|T11|r
∥∥
u + ∥∥|T22|r

∥∥
u
)
,

which coincides with the inequality (10) in the case r = 1.

3. Schatten p-norm inequalities

In this section, we will present some new Schatten p-norm inequalities related to sums of
two accretive-dissipative matrices that include convex and concave functions and extend
some known results. We first start with the inequalities on concave functions.

Lemma3.1 ([4, Corollary 2.2]): Let T = A + iB be a decomposition into real and imaginary
parts, and let f be a nonnegative concave function on [0,∞). Then for all unitarily invariant
norms ‖ · ‖u,

‖f (|T|)‖u ≤ ‖f (|A|) + f (|B|)‖u.
Lemma 3.2: Let A,B be positive matrices and f be a nonnegative increasing concave function
on [0,∞). Then for every unitarily invariant norm ‖ · ‖u,

1
2

‖f (2|A + iB|)‖u ≤ ‖f (A + B)‖u ≤ ‖f (√2 |A + iB|)‖u.

Proof: Using Lemma 3.1 and part (c) of Lemma 2.4, respectively

‖f (|A + iB|)‖u ≤ ‖f (A) + f (B)‖u ≤ 2
∥∥∥∥f
(
A + B
2

)∥∥∥∥
u
. (11)

Replacing A and B by 2A and 2B, we have the first alleged inequality. The second one
deduces from Lemma 2.1 and the equality f (sj(A)) = sj(f (A)) for nonnegative increasing
functions on [0,∞). �
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Lemma 3.3 ([15, p. 14]): Let A,B be positive matrices. Then for every p ≥ 1,

‖A‖pp + ‖B‖pp ≤ ‖A + B‖pp ≤ 2p−1(‖A‖pp + ‖B‖pp). (12)

The following is our first main result in this section.

Theorem 3.4: Let T, S ∈ Mn(C) be accretive-dissipative and f be a nonnegative increasing
concave function on [0,∞). Then for every p ≥ 1,

1
4p

(∥∥f (√2|T|)∥∥pp + ∥∥f (√2|S|)∥∥pp
)

≤
∥∥∥∥f
( |T + S|

2

)∥∥∥∥
p

p
.

Proof: At first, let X, Y be two positive matrices. By applying the right-hand side of
Lemma 3.2 for 1/2

√
2X and 1/2

√
2Y , we have

∥∥∥∥f
(
X + Y
2
√
2

)∥∥∥∥
u

≤
∥∥∥∥f
(√

2
∣∣∣∣ 1
2
√
2
X + i

1
2
√
2
Y
∣∣∣∣
)∥∥∥∥

u
=
∥∥∥∥f
( |X + iY|

2

)∥∥∥∥
u
. (13)

Also, applying the left-hand side of Lemma 3.2 for matrices 1/
√
2X and 1/

√
2Y gives

1
2

∥∥∥∥f
(
2
|X + iY|√

2

)∥∥∥∥
u

≤
∥∥∥∥f
(
X + Y√

2

)∥∥∥∥
u
. (14)

Now, considering the Cartesian decompositions T = A+ iB and S = C+ iD we can write

∥∥∥∥f
( |T + S|

2

)∥∥∥∥
p

p
=
∥∥∥∥f
( |A + C + i(B + D)|

2

)∥∥∥∥
p

p

≥
∥∥∥∥f
(
A + C + B + D

2
√
2

)∥∥∥∥
p

p
(by (13))

≥
∥∥∥∥∥∥
f (A+B√

2
) + f (C+D√

2
)

2

∥∥∥∥∥∥
p

p

(by Lemma 2.4, (c))

= 1
2p

∥∥∥∥f
(
A + B√

2

)
+ f
(
C + D√

2

)∥∥∥∥
p

p

≥ 1
2p

(∥∥∥∥f
(
A + B√

2

)∥∥∥∥
p

p
+
∥∥∥∥f
(
C + D√

2

)∥∥∥∥
p

p

)
(by Lemma 3.3)

≥ 1
2p

(
1
2p

∥∥∥∥f
(
2|A + iB|√

2

)∥∥∥∥
p

p
+ 1

2p

∥∥∥∥f
(
2|C + iB|√

2

)∥∥∥∥
p

p

)
(by (14))

= 1
4p

(∥∥f (√2 |T|)∥∥pp + ∥∥f (√2 |S|)∥∥pp
)
. �
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Remark 3.1: By letting f (t) = t in Theorem 3.4, it reduces to the left-hand side of
inequality (4) as follows:

1
4p

(∥∥√2|T|∥∥pp + ∥∥√2|S|∥∥pp
)

≤
∥∥∥∥ |T + S|

2

∥∥∥∥
p

p
,

and thereupon

2−(p/2)(∥∥T∥∥pp + ∥∥S∥∥pp) ≤ ‖T + S‖pp .

Thanks to the following lemma, we give the counterpart of Theorem 3.4 for all convex
functions and α ∈ [0, 1] in the next theorem.

Lemma 3.5 ([1, Corollary 2.6]): Let A,B be positive matrices and f be a convex function on
[0,∞). Then for every unitarily invariant norm ‖ · ‖u and α ∈ [0, 1],

‖f (αA + (1 − α)B)‖u ≤ ‖αf (A) + (1 − α)f (B)‖u.

Theorem 3.6: Let T, S ∈ Mn(C) be accretive-dissipative and f be an increasing convex
function on [0,∞). Then for every α ∈ [0, 1] and p ≥ 1,

∥∥f (|αT + (1 − α)S|) ∥∥pp ≤ 2p−1
(∥∥αf (√2 |T|)∥∥pp + ∥∥(1 − α)f

(√
2 |S|)∥∥pp

)
.

Proof: Considering the Cartesian decompositions T = A+ iB and S = C+ iD, we have∥∥f (|αT + (1 − α)S|) ∥∥pp
= ∥∥f (|α(A + iB) + (1 − α)(C + iD)|) ∥∥pp
= ∥∥f (|αA + (1 − α)C + i(αB + (1 − α)D)|) ∥∥pp
≤ ∥∥f (αA + (1 − α)C + αB + (1 − α)D)

∥∥p
p (by Lemma 2.3)

= ∥∥f (α(A + B) + (1 − α)(C + D))
∥∥p
p

≤ ∥∥αf (A + B) + (1 − α)f (C + D)
∥∥p
p (by Lemma 3.5)

≤ 2p−1
(∥∥αf (A + B)

∥∥p
p + ∥∥(1 − α)f (C + D)

∥∥p
p

)
(by Lemma 3.3)

≤ 2p−1
(∥∥αf (√2 (A + iB)

)∥∥p
p + ∥∥(1 − α)f

(√
2 (C + iD)

)∥∥p
p

)
(by Lemma 2.3)

= 2p−1
(∥∥αf (√2 |T|)∥∥pp + ∥∥(1 − α)f

(√
2 |S|)∥∥pp

)
,

as desired. �

By applying Theorem 3.6, the following subadditive inequality for accretive-dissipative
operators is achieved.
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Corollary 3.7: Let T, S ∈ Mn(C) be accretive-dissipative and f be an increasing convex
function on [0,∞). Then for every p ≥ 1,∥∥f (|αT + (1 − α)S|) ∥∥pp ≤ 2p−1 ∥∥αf (√2 |T|)+ (1 − α)f

(√
2 |S|)∥∥pp.

Particularly ∥∥∥∥f
( |T + S|

2

)∥∥∥∥
p

p
≤ 1

2

(∥∥f (√2 |T|)∥∥pp + ∥∥f (√2 |T|)∥∥pp
)

≤ 2p−1

∥∥∥∥∥ f
(√

2 |T|)+ f
(√

2 |S|)
2

∥∥∥∥∥
p

p

.

Proof: The results are obtained by applying Theorem 3.6 and the left-hand side of the
inequality (12). �

Remark 3.2: The right-hand side of [11, Theorem 2.7] follows as a special case of
Theorem 3.6 with f (t) = t and α = 1

2 .

Finally, one can reach an extension of Lemma 3.3 to all operator convex functions, with
a similar proof sketch, as follows:

Corollary 3.8: Let A,B ∈ Mn(C) be positive and f be a nonnegative increasing convex
function on [0,∞). Then for every α ∈ [0, 1] and p ≥ 1,∥∥f (αA + (1 − α)B)

∥∥p
p ≤ αp‖f (A)‖pp + (1 − α)p‖f (B)‖pp.

4. Majorizations for special class of functions

In [8], it has been shown some unitarily invariant norm inequalities involving accretive-
dissipative block matrices and a class of nonnegative increasing functions on [0,∞)

which preserve weak log-majorization, i.e. the functions satisfying the following condition:
if
∏k

j=1 xj ≤ ∏k
j=1 yj, k = 1, 2, . . ., then

∏k
j=1 f (xj) ≤ ∏k

j=1 f (yj) for every real numbers
x1 ≥ x2 ≥ · · · ≥ 0 and y1 ≥ y2 ≥ · · · ≥ 0. The simple example of such functions is f (t) =
tp, p ≥ 0. For more examples, see [8]. In the next, for the sake of convenience, we show this
class of functions with C and present several majorizations related to them. It is worthwhile
to mention that a function f (t) preserves weak-log majorization if and only if log(f (et)) is
a convex, nondecreasing function on the real line. Equivalently, the class C is the class of
functions f (t) which are nondecreasing and geometrically convex, f (√xy) ≤ √

f (x)f (y)
for all x, y > 0. See [6].

Forthcoming results are stated for all bounded linear operators on a complex Hilbert
spaceH.

Lemma 4.1: Let Pi,Qi be positive operators and let Ci be contractive, i = 1, 2, . . . ,m. Then,
for every submultiplicative f ∈ C, r>0 and k = 1, 2, . . .,

k∏
j=1

sj
(
f
(∣∣∣∣

m∑
i=1

PiCiQi

∣∣∣∣
r))

≤
k∏

j=1
f
(
sj
(( m∑

i=1
P2i

)r/2))
· f
(
sj
(( m∑

i=1
Q2
i

)r

/2
))

. (15)
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Proof: For every r>0, it is inferred from [19, Lemma 2] and The Spectral mapping
Theorem that

k∏
j=1

sj
(∣∣∣∣

m∑
i=1

PiCiQi

∣∣∣∣
r)

≤
k∏

j=1
sj
(( m∑

i=1
P2i

)r/2)
· sj
(( m∑

i=1
Q2
i

)r

/2
)
. (16)

Consequently, for f ∈ C we have

k∏
j=1

sj
(
f
(∣∣∣∣

m∑
i=1

PiCiQi

∣∣∣∣
r))

=
k∏

j=1
f
(
sj
(∣∣∣∣

m∑
i=1

PiCiQi

∣∣∣∣
r))

≤
k∏

j=1
f

(
sj
(( m∑

i=1
P2i

)r/2)
· sj
(( m∑

i=1
Q2
i

)r/2))
(by (16))

≤
k∏

j=1
f

(
sj
(( m∑

i=1
P2i

)r/2))
· f
(
sj
(( m∑

i=1
Q2
i

)r/2))
,

in which the last inequality follows from submultiplicativity of f. �

Proposition 4.2: Let T be an accretive-dissipative operator partitioned as in (2) and f ∈ C
be a submultiplicative function. Then for every r>0 and j = 1, 2, . . . ,

{
sj
(
f
(|T12|r

))} ≺wlog

{
sj
(
f
(
2r/4 |T11|r/2

))
sj
(
f
(
2r/4 |T22|r/2

))}
(17)

and {
sj
(
f
(|T21|r

))} ≺wlog

{
sj
(
f
(
2r/4 |T11|r/2

))
sj
(
f
(
2r/4 |T22|r/2

))}
. (18)

Proof: Since in the Cartesian decomposition T = A+ iB, the operators A and B are
positive, by [17, Lemma 1. 21] there exist two contractionsW1 andW2 such that

A12 = A1/2
11 W1A

1/2
22 , B12 = B1/211 W2B

1/2
22 .

Now, for k = 1, 2, . . .

k∏
j=1

sj
(
f
(|T12|r

)) =
k∏

j=1
sj
(
f
(|A12 + iB12|r

))

=
k∏

j=1
sj
(
f
(∣∣A1/2

11 W1A
1/2
22 + B1/211 (iW2)B

1/2
22
∣∣r))
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≤
k∏

j=1

[
sj
(
f
(
(A11 + B11)r/2

))][
sj
(
f
(
(A22 + B22)r/2

))]
(by (15))

=
k∏

j=1

[
f
(
sj
(
(A11 + B11)r/2

))][
f
(
sj
(
(A22 + B22)r/2

))]

≤
k∏

j=1

[
f
(
sj
(
2r/4|A11 + iB11|r/2

))][
f
(
sj
(
2r/4|A22 + iB22|r/2

))]

(by (5) and monotony of f)

=
k∏

j=1
f
(
sj
(
2r/4|T11|r/2

))
f
(
sj
(
2r/4|T22|r/2

))

=
k∏

j=1
sj
(
f
(
2r/4|T11|r/2

))
sj
(
f
(
2r/4|T22|r/2

))
.

This proves the first desired inequality. The second one is obtained in a similar way
considering the fact A21 = A∗

12 and B21 = B∗
12. �

Remark 4.1: Since sj(|X∗|) = sj(|X|) for everyX ∈ B(H), one can substitute each of oper-
ators |Tij| with |T∗

ij |, i, j = 1, 2 in the above inequalities. This state also holds for all the
following consequences.

Lemma 4.3 ([2, p. 54]): Let x = (x1, x2, . . .), y = (y1, y2, . . .) and α = (α1,α2, . . .) be
sequences of real numbers with the components arranged in decreasing order. Moreover, we
assume the components of α are nonnegative. If

∑k
j=1 xj ≤ ∑k

j=1 yj for all k = 1, 2, . . ., then∑k
j=1 αjxj ≤ ∑k

j=1 αjyj for all k = 1, 2, . . ..

Theorem 4.4: Let T be an accretive-dissipative operator partitioned as in (2) and f ∈ C be
a submultiplicative function. Then for all positive numbers r, s, t with (1/s) + (1/t) = 1 and
unitarily invariant norms ‖ · ‖u,

max
{∥∥f (|T12|r

)∥∥
u,
∥∥f (|T21|r

)∥∥
u
} ≤ ∥∥f s(2r/4 |T11|r/2

)∥∥1/s
u · ∥∥f t(2r/4 |T22|r/2

)∥∥1/t
u , (19)

and thereupon

∥∥f (|T12|r
)∥∥

u + ∥∥f (|T21|r
)∥∥

u ≤ 2
∥∥f s(2r/4 |T11|r/2

)∥∥1/s
u · ∥∥f t(2r/4 |T22|r/2

)∥∥1/t
u .

Proof: Since weak log-majorization implies weak majorization, from the inequality (17)
we have

k∑
j=1

sj
(
f
(|T21|r

)) ≤
k∑

j=1
sj
(
f
(
2r/4 |T11|r/2

))
sj
(
f
(
2r/4 |T22|r/2

))
, k = 1, 2, . . . . (20)
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Let α = (α1,α2, . . .) be a sequence with decreasing nonnegative entries. Define ‖X‖α =∑k
j=1 αjsj(X) for X ∈ B(H). Compute
∥∥f (|T12|r

)∥∥
α

=
k∑

j=1
αjsj
(
f
(|T12|r

))

≤
k∑

j=1
αjsj
(
f
(
2r/4 |T11|r/2

))
sj
(
f
(
2r/4 |T22|r/2

))
(by (20) and Lemma 4.3)

=
k∑

j=1
α
1/s
j sj

(
f
(
2r/4 |T11|r/2

)) · α
1/t
j sj

(
f
(
2r/4 |T22|r/2

))

≤
⎛
⎝ k∑

j=1
αjssj

(
f
(
2r/4 |T11|r/2

))⎞⎠
1/s⎛
⎝ k∑

j=1
αjstj

(
f
(
2r/4 |T22|r/2

))⎞⎠
1/t

(by Hölder′s inequality)

=
⎛
⎝ k∑

j=1
αjsj
(
f s
(
2r/4 |T11|r/2

))⎞⎠
1/s⎛
⎝ k∑

j=1
αjsj
(
f t
(
2r/4 |T22|r/2

))⎞⎠
1/t

(by the S.M. Theorem)

= ∥∥f s(2r/4 |T11|r/2
)∥∥1/s

α
· ∥∥f t(2r/4 |T22|r/2

)∥∥1/t
α

.

As α is arbitrarily chosen, by [10, Corollary 3.5.9] we deduce∥∥f (|T12|r
)∥∥

u ≤ ∥∥f s(2r/4 |T11|r/2
)∥∥1/s

u · ∥∥f t(2r/4 |T22|r/2
)∥∥1/t

u ,

for any unitarily invariant norm ‖ · ‖u. Repeating the same argument and using the
inequality (18), one gets∥∥f (|T21|r

)∥∥
u ≤ ∥∥f s(2r/4 |T11|r/2

)∥∥1/s
u · ∥∥f t(2r/4 |T22|r/2

)∥∥1/t
u .

�

Remark 4.2: It has been proved in [8, Theorem 3.7] if T is an accretive-dissipative matrix
partitioned as in (2) and f ∈ C is a submultiplicative convex function with f (0) = 0, then
for all positive numbers s, t with (1/s) + (1/t) = 1 and unitarily invariant norms ‖ · ‖u,∥∥f (|T12|2

)+ f
(|T∗

21|2
)∥∥

u ≤ ∥∥f s(2 |T11|
)∥∥1/s

u · ∥∥f t(2 |T22|
)∥∥1/t

u . (21)

A corresponding inequality [8, Theorem 3.8] for a submultiplicative concave function f ∈
C with f (0) = 0 has been shown as follows:∥∥f (|T12|2

)+ f
(|T∗

21|2
)∥∥

u ≤ 4
∥∥f s(|T11|

)∥∥1/s
u · ∥∥f t(|T22|

)∥∥1/t
u . (22)
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Here, we are going to compare the above inequalities with the obtained one in Theorem4.4.
Considering Remark 4.1 and letting r = 2 in Theorem 4.4, we have∥∥f (|T21|2)

∥∥
u + ∥∥f (|T∗

21|2)
∥∥
u ≤ 2

∥∥f s(√2 |T11|
)∥∥1/s

u · ∥∥f t(√2 |T22|
)∥∥1/t

u . (23)

This provides a new relation between the diagonal blocks and off diagonal blocks of T
involving a submultiplicative function f ∈ C, with no constraint of convexity or concavity
on f. It also refines the appeared constants in (21) and (22) simultaneously, as follows:

(a) Let f be a concave function. Then for every number a ≥ 1 we have f (az) ≤ af (z) and
so ∥∥f (|T21|2) + f (|T∗

21|2)
∥∥
u ≤ ∥∥f (|T21|2)

∥∥
u + ∥∥f (|T∗

21|2)
∥∥
u

≤ 2
∥∥f s(√2 |T11|

)∥∥1/s
u · ∥∥f t(√2 |T22|

)∥∥1/t
u (by 23)

≤ 4
∥∥f s(|T11|

)∥∥1/s
u · ∥∥f t(|T22|

)∥∥1/t
u .

This says in the case f is concave function, the inequality (23) is always more optimal
than (22).

(b) Let f be the convex function f (t) = tr, r ≥ 1. Rewriting the inequalities (21) and (23)
respectively, we have∥∥|T12|2r + |T∗

21|2r
∥∥
u ≤ 22r

∥∥|T11|rs
∥∥1/s
u · ∥∥|T22|rt

∥∥1/t
u (24)

and ∥∥|T12|2r‖u + ∥∥|T∗
21|2r

∥∥
u ≤ 2r+1 ∥∥|T11|rs

∥∥1/s
u · ∥∥|T22|rt

∥∥1/t
u . (25)

Since r ≥ 1, then 2r+1 ≤ 22r and hence the second inequality is a sharper one.

Remark 4.3: Lin and Zhou [14] showed that if T be an accretive-dissipative operator
partitioned as in (2), then for any unitarily invariant norm ‖ · ‖u,

max{‖T12‖2u, ‖T21‖2u} ≤ 4‖T11‖u‖T22‖u.
Zhang [19] optimized the factor 4 to 2. Also, it has been obtained in [18] independently.
Our result in Theorem 4.4 is a considerable extension of Zhang’s refinement to some
functions f ∈ C.

5. An application for n × n operator matrices

In the next, we are going to present an elegant application ofTheorem4.4 forn × noperator
matrices. LetH := ⊕n

i=1H and T ∈ B(H) be accretive-dissipative represented in

T =

⎡
⎢⎢⎢⎢⎢⎢⎣

T11 T12 · · · T1n
T21 T22 · · · T2n
· · · · · ·
· · · · · ·
· · · · · ·

Tn1 Tn2 · · · Tnn

⎤
⎥⎥⎥⎥⎥⎥⎦
, (26)
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in which Ti,j ∈ B(H), i, j = 1, 2, . . . , n. We provide a norm inequality between the positive
powers of the operators |Tij| as follows.

Theorem 5.1: Let T ∈ B(H) be accretive-dissipative partitioned as in (26) and f ∈ C be a
submultiplicative function. Then for all positive numbers r, s, t with (1/s) + (1/t) = 1 and
unitarily invariant norms ‖ · ‖u,
∑
i�=j

∥∥f (|Tij|r
)∥∥

u ≤ 2
n∑

i=1

(
(n − i)

s
∥∥f s(2r/4 |Tii|r/2

)∥∥
u + (i − 1)

t
∥∥f t(2r/4 |Tii|r/2

)∥∥
u

)
,

(27)
for i, j = 1, 2, . . . , n. Furthermore

∏
i�=j

∥∥f (|Tij|r
)∥∥

u ≤
n∏
i=1

∥∥f s(2r/4 |Tii|r/2
)∥∥((n−i))/s

u

∥∥f t(2r/4 |Tii|r/2
)∥∥((i−1))/t

u .

Proof: Let T̃ =
[
ccTii Tij
Tji Tjj

]
be a principle submatrix of T. Since T is accretive-dissipative, it

follows that T̃ is accretive-dissipative as well. Now, by applying Theorem 4.4 to the operator
T̃ and using the well-known AM-GM inequality, we have∥∥f (|Tij|r

)∥∥
u ≤ ∥∥f s(2r/4 |Tii|r/2

)∥∥1/s
u · ∥∥f t(2r/4 |Tjj|r/2

)∥∥1/t
u

≤ 1
s
∥∥f s(2r/4 |Tii|r/2

)∥∥
u + 1

t
∥∥f t(2r/4 |Tjj|r/2

)∥∥
u,

for i, j = 1, 2. Similarly,

∥∥f (|Tji|r
)∥∥

u ≤ 1
s
∥∥f s(2r/4 |Tii|r/2

)∥∥
u + 1

t
∥∥f t(2r/4 |Tjj|r/2

)∥∥
u.

Consequently,

∥∥f (|Tij|r
)∥∥

u + ∥∥f (|Tji|r
)∥∥

u ≤ 2
(
1
s
∥∥f s(2r/4 |Tii|r/2

)∥∥
u + 1

t
∥∥f t(2r/4 |Tjj|r/2

)∥∥
u

)
. (28)

Here, for the sake of convenience and clarity, we first assume T is an accretive-dissipative
3 × 3 operator matrices as follows:

T =
⎡
⎣T11 T12 T13
T21 T22 T23
T31 T32 T33

⎤
⎦ .

By applying the inequality (28) for the submatrices
[
T11 T12
T21 T22

]
,
[
T11 T13
T31 T33

]
and

[
T22 T23
T32 T33

]
respectively, we have the following inequalities:

∥∥f (|T12|r
)∥∥

u + ∥∥f (|T21|r
)∥∥

u ≤ 2
(
1
s
∥∥f s(2r/4 |T11|r/2

)∥∥
u + 1

t
∥∥f t(2r/4 |T22|r/2

)∥∥
u

)
,

∥∥f (|T13|r
)∥∥

u + ∥∥f (|T31|r
)∥∥

u ≤ 2
(
1
s
∥∥f s(2r/4 |T11|r/2

)∥∥
u + 1

t
∥∥f t(2r/4 |T33|r/2

)∥∥
u

)
,
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and
∥∥f (|T23|r

)∥∥
u + ∥∥f (|T32|r

)∥∥
u ≤ 2

(
1
s
∥∥f s(2r/4 |T22|r/2

)∥∥
u + 1

t
∥∥f t(2r/4 |T33|r/2

)∥∥
u

)
.

Now adding up these inequalities gives∑
i�=j

∥∥f (|Tij|r
)∥∥

u

≤ 4
s
∥∥f s(2r/4 |T11|r/2

)∥∥
u + 2

s
∥∥f s(2r/4 |T22|r/2

)∥∥
u + 2

t
∥∥f t(2r/4 |T22|r/2

)∥∥
u

+ 4
t
∥∥f t(2r/4 |T33|r/2

)∥∥
u,

for i, j = 1, 2, 3, satisfying in the first claimed inequality with n = 3. Similarly, for a n × n
operator matrix T writing the inequality (28) for all 2 × 2 submatrices of T in the form T̃,
and adding them up yields∑

i�=j

∥∥f (|Tij|r
)∥∥

u

≤ 2
(

(n − 1)
s

∥∥f s(2r/4 |T11|r/2
)∥∥

u + (n − 2)
s

∥∥f s(2r/4 |T22|r/2
)∥∥

u + · · ·

+ 1
s
∥∥f s(2r/4 |T(n−1)(n−1)|r/2

)∥∥
u

+ 1
t
∥∥f t(2r/4 |T22|r/2

)∥∥
u + 2

t
∥∥f t(2r/4 |T33|r/2

)∥∥
u + · · ·

+ (n − 1)
t

∥∥f t(2r/4 |Tnn|r/2
)∥∥

u

)
.

Hence

∑
i�=j

∥∥f (|Tij|r
)∥∥

u ≤ 2
n∑

i=1

(
(n − i)

s
∥∥f s(2r/4 |Tii|r/2

)∥∥
u + (i − 1)

t
∥∥f t(2r/4 |Tii|r/2

)∥∥
u

)
,

for i, j = 1, 2, . . . , n, as desired. The multiplicative inequality is obtained by using the
inequality ∥∥f (|Tij|r

)∥∥
u ≤ ∥∥f s(2r/4 |Tii|r/2

)∥∥1/s
u · ∥∥f t(2r/4 |Tjj|r/2

)∥∥1/t
u

for all 2 × 2 submatrices of T in the form T̃, in a similar way. �

Remark 5.1: Putting f (t) = t and s = t = 2 in Theorem 5.1, we immediately obtain

∑
i�=j

∥∥|Tij|r
∥∥
u ≤ (n − 1)2r/2

n∑
i=1

∥∥|Tii|r
∥∥
u, r > 0

∏
i�=j

∥∥|Tij|r
∥∥
u ≤ 2r(n−1)/2

n∏
i=1

∥∥|Tii|r
∥∥((n−1))/2
u , r > 0.
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The first inequality provides a nice improvement of Shatten p-norm results in [11,
Theorem 2.4] to all unitarily invariant norms. In addition, a simple comparison shows
that the constant 2r/2 is a better one for all r>0. We emphasize the results in this section
are based on the inequality (19) and so letting r = 1 and taking p-powers of that inequality
leads to [11, Theorem 2.4].
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