نویسندگان | Mehdi Razavifar - Jafar Qajar |
---|---|
نشریه | Ultrasonics |
شماره صفحات | 106655 |
شماره سریال | 120 |
ضریب تاثیر (IF) | 4.2 |
نوع مقاله | Full Paper |
تاریخ انتشار | 2022/3/1 |
رتبه نشریه | ISI |
نوع نشریه | الکترونیکی |
کشور محل چاپ | هلند |
نمایه نشریه | https://www.sciencedirect.com/journal/ultrasonics |
چکیده مقاله
In this work, the effects of ultrasonic irradiation assisted by α-Fe2O3 nanoparticles (NPs) on the evolution of viscosity and thermal properties of crude oil are evaluated. A viscous crude oil with a high amount of asphaltene (∼20% by mass) was used for ultrasonication over different exposure times and nanoparticle concentrations. The viscosity of the oil before and after ultrasonic irradiation was measured with and without nanoparticles. Experimental results indicated that the viscosity of irradiated oil containing nanoparticles at optimum conditions was lower than the viscosity of nanoparticle-free irradiated oil. The thermal behavior of the irradiated crude oil mixed with nanoparticles at optimum conditions was examined using the TGA/DTA methods. The results showed a non-complementary effect of ultrasonic irradiation and nanoparticles on the weight loss and the amount of residual oil at both the end of the pyrolysis and oxidation stages, representing that addition of the α-Fe2O3 NPs to the crude oil and the ultrasonication of the crude oil work in the opposite direction. Based on the TG/DTA data, the kinetic parameters of the pyrolysis and oxidation reactions were estimated. It was found that the simultaneous use of ultrasonic irradiation and nanoparticles sharply decreased the activation energy of the oxidation reactions, but had almost no effect on the activation energy of the pyrolysis reactions. The results of this paper provide an insight into the effectiveness of in-situ combustion enhanced oil recovery, which depends on viscosity reduction and the rate at which heat is generated.