| نویسندگان | Parviz Sahandi |
|---|---|
| نشریه | Communications in Algebra |
| ارائه به نام دانشگاه | دانشگاه تبریز |
| شماره صفحات | 673-683 |
| شماره مجلد | 38 |
| نوع مقاله | Full Paper |
| تاریخ انتشار | 2010 |
| رتبه نشریه | ISI |
| نوع نشریه | چاپی |
| کشور محل چاپ | ایالات متحدهٔ امریکا |
| نمایه نشریه | JCR |
چکیده مقاله
Let $D$ be an integral domain and $\star$ a semistar operation stable and of finite type on it.
In this paper, we are concerned with the study of the semistar
(Krull) dimension theory of polynomial rings over $D$. We
introduce and investigate the notions of $\star$-universally
catenarian and $\star$-stably strong S-domains and prove that,
every $\star$-locally finite dimensional Pr\"{u}fer
$\star$-multiplication domain is $\star$-universally catenarian,
and this implies $\star$-stably strong S-domain. We also give new
characterizations of $\star$-quasi-Pr\"{u}fer domains introduced
recently by Chang and Fontana, in terms of these notions.
tags: Semistar operation, star operation, Krull dimension, strong S-domain, Jaffard domain, universally catenarian, catenary