نویسندگان | P. Sahandi- S. Yassemi |
---|---|
نشریه | Algebra Colloq |
شماره صفحات | 463-470 |
شماره مجلد | 15 |
نوع مقاله | Full Paper |
تاریخ انتشار | 2008 |
رتبه نشریه | ISI |
نوع نشریه | چاپی |
کشور محل چاپ | چین |
نمایه نشریه | JCR |
چکیده مقاله
Let $\varphi: (R,\fm)\to (S,\fn)$ be a flat local homomorphism of
rings. It is proved that
\begin{itemize}
\item[(a)] If $\dim S/{\fm}S>0$, then $S$ is a filter ring if and only if $R$ and $k(\fp)\otimes
_{R_{\fp}} S_{\fq}$ are Cohen-Macaulay for all $\fq\in \Spec
(S)\backslash \{\fn\}$ and $\fp=\fq\cap R$, and $S/{\fp}S$ is
catenary and equidimensional for all minimal prime ideal $\fp$ of
$R$.
\item[(b)] If $\dim S/{\fm}S=0$, then $S$ is a filter ring if and only if $R$ is a filter ring and
$k(\fp)\otimes _{R_{\fp}} S_{\fq}$ is Cohen-Macaulay for all $\fq\in
\Spec (S)\backslash \{\fn\}$ and $\fp=\fq\cap R$, and $S/{\fp}S$ is
catenary and equidimensional for all minimal prime ideal $\fp$ of
$R$.
tags: Filter ring, flat base change, unmixed ideal, homological dimension