| نویسندگان | K. B. Lorestani- P. Sahandi- S. Yassemi |
|---|---|
| نشریه | Canad. Math. Bull. |
| شماره صفحات | 598-602 |
| شماره مجلد | 50 |
| نوع مقاله | Full Paper |
| تاریخ انتشار | 2007 |
| رتبه نشریه | ISI |
| نوع نشریه | چاپی |
| کشور محل چاپ | کانادا |
| نمایه نشریه | JCR |
چکیده مقاله
Let $R$ be a commutative Noetherian ring, $\fa$ an ideal
of $R$ and $M$ a finitely generated $R$-module. Let $t$ be a
non-negative integer. It is known that if the local cohomology
module $\H^i_\fa(M)$ is finitely generated for all $i<t$ then
$\Hom_R(R/\fa, \H^t_\fa(M))$ is finitely generated. In this paper it
is shown that if $\H^i_\fa(M)$ is Artinian for all $i<t$ then
$\Hom_R(R/\fa, \H^t_\fa(M))$ need not be Artinian but it has a
finitely generated submodule $N$ such that
$\Hom_R(R/\fa,\H^t_\fa(M))/N$ is Artinian.
tags: local cohomology module, Artinian module, Reflexive module