مقالات / Publications
مقالات منتشر شده:
[1] W. Liu, S. Zhang, F. Kong, Z. Shen, C. Chen, X. Pan, C. Zhao, J. Zhang, R. Ghadari, M. Bao, C. Zhu, C. Wu, Synergistic resonant molecular passivator of various defects for high-performance perovskite solar cells, Mater. Today Energy 40 (2024). https://doi.org/10.1016/j.mtener.2024.101511.
[2] M. Darparesh, R. Ghadari, Analyzing the impact of substitution on the temperature-sensitive release of doxorubicin in an imine-based covalent organic framework using molecular dynamics, Comput. Mater. Sci. 237 (2024). https://doi.org/10.1016/j.commatsci.2024.112882.
[3] J. Chen, R. Ghadari, X. Zhang, M. Han, X. Liu, Y. Zhou, J. Chen, B. Li, H. Quan, Y. Ding, M. Cai, S. Dai, Expansion strategy of carbazole connecting unit in linear hole transport materials for perovskite solar cells, Dye. Pigment. 222 (2024). https://doi.org/10.1016/j.dyepig.2023.111913.
[4] S. Jahanbani, R. Ghadari, Theoretical study of optoelectronic performance of hole-transporting material quinoxaline-based with architecture (D-A-D) in perovskite solar cells: A DFT method, J. Mol. Liq. 398 (2024). https://doi.org/10.1016/j.molliq.2024.124296.
[5] W. Chen, Z. Zhang, M. Wang, X. Chen, H. Li, R. Ghadari, Z. Li, F. Guo, Y. Wang, C. Shi, Conformation Tailoring of Diphenylfluorene-Cored Isomers as Hole-Transport Materials for Perovskite Solar Cells, Sol. RRL 8 (2024). https://doi.org/10.1002/solr.202300954.
[6] S. Neghabi, R. Ghadari, Enhanced efficiency of the azo dye-sensitized solar cell via the cooperation of graphene oxide and graphene oxide/polypyrrole: Experimental and computational studies, Electrochim. Acta 479 (2024). https://doi.org/10.1016/j.electacta.2024.143865.
[7] M. Han, X. Zhang, X. Liu, R. Ghadari, N. Wu, H. Quan, B. Li, W. Du, S. Dai, Substitution Position Effects on Spiro[Fluorene-9,9′-Xanthene]-Diphenylamine Hole-Transporting Materials for Perovskite Solar Cells, Sol. RRL 8 (2024). https://doi.org/10.1002/solr.202300824.
[8] W. Liu, Y. Peng, F. Kong, R. Ghadari, C. Zhao, J. Zhang, Two birds with one stone: dopant-free squaraine hole-transporting material for perovskite solar cell, Mater. Today Energy 37 (2023). https://doi.org/10.1016/j.mtener.2023.101411.
[9] X. Liu, B. Ding, M. Han, Z. Yang, J. Chen, P. Shi, X. Xue, R. Ghadari, X. Zhang, R. Wang, K. Brooks, L. Tao, S. Kinge, S. Dai, J. Sheng, P.J. Dyson, M.K. Nazeeruddin, Y. Ding, Extending the π-Conjugated System in Spiro-Type Hole Transport Material Enhances the Efficiency and Stability of Perovskite Solar Modules, Angew. Chemie - Int. Ed. 62 (2023). https://doi.org/10.1002/anie.202304350.
[10] Z. Hezarkhani, P.-S. Saei, A. Sabri, F. Kong, R. Ghadari, Metal and nitrogen co-doped carbon dots in the sensitized solar cells, Appl. Organomet. Chem. 37 (2023). https://doi.org/10.1002/aoc.7034.
[11] R. Ghadari, A. Sabri, Nitrogen and chlorine co-doped carbon dots to enhance the efficiency of dye-sensitized solar cells, Diam. Relat. Mater. 136 (2023). https://doi.org/10.1016/j.diamond.2023.110046.
[12] Y. Wang, N. Wu, X. Zhang, X. Liu, M. Han, R. Ghadari, F. Guo, Y. Ding, M. Cai, S. Dai, Effects of Heteroatom and Extending the Conjugation on Linear Hole-Transporting Materials for Perovskite Solar Cells, ACS Appl. Energy Mater. 5 (2022) 10553–10561. https://doi.org/10.1021/acsaem.2c01267.
[13] M. Han, X. Zhang, S. Liu, C. Chi, Z. Zhou, N. Wu, R. Ghadari, Y. Wang, X. Liu, Y. Ding, M. Cai, Z. Qu, S. Dai, Effect of the substitution position and extending the conjugation in naphthalene-triphenylamine hole transport materials for perovskite solar cells, Synth. Met. 284 (2022). https://doi.org/10.1016/j.synthmet.2021.116990.
[14] T. Wei, Y. Peng, L. Mo, S. Chen, R. Ghadari, Z. Li, L. Hu, Modulated bonding interaction in propanediol electrolytes toward stable aqueous zinc-ion batteries, Sci. China Mater. 65 (2022) 1156–1164. https://doi.org/10.1007/s40843-021-1841-5.
[15] N. Wu, X. Zhang, X. Liu, Y. Wang, M. Han, R. Ghadari, Y. Wu, Y. Ding, M. Cai, S. Dai, Efficient furan-bridged dibenzofulvene-triphenylamine hole transporting materials for perovskite solar cells, Mater. Adv. 4 (2022) 515–522. https://doi.org/10.1039/d2ma00908k.
[16] Y. Sun, Y. Peng, C. Zhao, J. Zhang, R. Ghadari, L. Hu, F. Kong, The strategy for high-efficiency hole conductors by engineering short-range intramolecular interactions, Dye. Pigment. 197 (2022). https://doi.org/10.1016/j.dyepig.2021.109889.
[17] Y. Peng, F. Kong, S. Chen, C. Zhao, J. Zhang, X. Zhang, R. Ghadari, W. Liu, L. Hu, Constructing hole transporting highway for high-efficiency perovskite solar cells, Synth. Met. 291 (2022). https://doi.org/10.1016/j.synthmet.2022.117174.
[18] C. Zhao, F. Kong, S. Chen, Y. Peng, J. Zhang, R. Ghadari, W. Liu, Dopant-free hole conductor with hybrid multisite passivation for perovskite solar cells, Mater. Lett. 326 (2022). https://doi.org/10.1016/j.matlet.2022.132931.
[19] Y. Liang, N. Wu, X. Zhang, R. Ghadari, X. Liu, F. Guo, S. Dai, Isomeric D-π-D Dopant-Free Hole Transport Materials: Effect of the Substitution Position and Heteroatom on the Performance of Perovskite Solar Cells, ChemistrySelect 7 (2022). https://doi.org/10.1002/slct.202201696.
[20] Y. Sun, C. Zhao, J. Zhang, Y. Peng, R. Ghadari, L. Hu, F. Kong, Multifunctional organic semiconductor for dopant-free perovskite solar cells, Synth. Met. 285 (2022). https://doi.org/10.1016/j.synthmet.2022.117027.
[21] Y. Liang, J. Chen, X. Zhang, M. Han, R. Ghadari, N. Wu, Y. Wang, Y. Zhou, X. Liu, S. Dai, Dibenzo heterocyclic-terminated spiro-type hole transporting materials for perovskite solar cells, J. Mater. Chem. C 10 (2022) 10988–10994. https://doi.org/10.1039/d2tc02564g.
[22] M. Han, Y. Liang, J. Chen, X. Zhang, R. Ghadari, X. Liu, N. Wu, Y. Wang, Y. Zhou, Y. Ding, M. Cai, H. Chen, S. Dai, A N-Ethylcarbazole-Terminated Spiro-Type Hole-Transporting Material for Efficient and Stable Perovskite Solar Cells, ChemSusChem 15 (2022). https://doi.org/10.1002/cssc.202201485.
[23] X. Zhang, X. Liu, N. Wu, R. Ghadari, M. Han, Y. Wang, Y. Ding, M. Cai, Z. Qu, S. Dai, Heteroatom engineering on spiro-type hole transporting materials for perovskite solar cells, J. Energy Chem. 67 (2022) 19–26. https://doi.org/10.1016/j.jechem.2021.09.046.
[24] Y. Niu, Y. Peng, X. Zhang, Y. Ren, R. Ghadari, J. Zhu, G. Tulloch, H. Zhang, P. Falaras, L. Hu, Resonant Molecular Modification for Energy Level Alignment in Perovskite Solar Cells, ACS Energy Lett. (2022) 3104–3111. https://doi.org/10.1021/acsenergylett.2c01537.
[25] Z. Zhou, X. Zhang, Y. Liang, R. Ghadari, C. Liu, X. Liu, Z. Zhang, S. Ma, Y. Ding, M. Cai, S. Dai, Hole transporting material with passivating group (C[tbnd]N) for perovskite solar cells with improved stability, Dye. Pigment. 187 (2021). https://doi.org/10.1016/j.dyepig.2020.109129.
[26] Z. Zhou, X. Zhang, R. Ghadari, X. Liu, W. Wang, Y. Ding, M. Cai, J.H. Pan, S. Dai, Heteroatom effect on linear-shaped dopant-free hole transporting materials for perovskite solar cells, Sol. Energy 221 (2021) 323–331. https://doi.org/10.1016/j.solener.2021.04.034.
[27] W. Chen, H. Zhang, J. Sun, R. Ghadari, Z. Zhang, F. Pan, K. Lv, X. Sun, F. Guo, C. Shi, Molecular tailor-making of zinc phthalocyanines as dopant-free hole-transporting materials for efficient and stable perovskite solar cells, J. Power Sources 505 (2021). https://doi.org/10.1016/j.jpowsour.2021.230095.
[28] R. Ghadari, S. Ghanbari, Y. Mohammadzadeh, A computational study on the interactions between a layered imine-based COF structure and selected anticancer drugs, J. Mol. Model. 27 (2021). https://doi.org/10.1007/s00894-021-04668-6.
[29] X. Zhang, X. Liu, R. Ghadari, M. Li, Z. Zhou, Y. Ding, M. Cai, S. Dai, Tetraphenylethylene-Arylamine Derivatives as Hole Transporting Materials for Perovskite Solar Cells, ACS Appl. Mater. Interfaces 13 (2021) 12322–12330. https://doi.org/10.1021/acsami.1c01606.
[30] R. Ghadari, E. Mohsenzadeh, Effect of COF Presence on DNA Molecular Interactions: A QM/MM and MD Simulations Study, ChemistrySelect 6 (2021) 9541–9551. https://doi.org/10.1002/slct.202102157.
[31] S. Ma, X. Zhang, X. Liu, R. Ghadari, M. Cai, Y. Ding, M. Mateen, S. Dai, Pyridine-triphenylamine hole transport material for inverted perovskite solar cells, J. Energy Chem. 54 (2021) 395–402. https://doi.org/10.1016/j.jechem.2020.06.002.
[32] R. Ghadari, A. Sabri, P.-S. Saei, F. Kong, Y. Mohammadzadeh, E. Guzel, Plasmon-enhanced dye-sensitized solar cells through porphyrin-silver nanoparticle hybrid structures: Experimental and computational studies, J. Power Sources 511 (2021). https://doi.org/10.1016/j.jpowsour.2021.230407.
[33] Z. Zhou, X. Zhang, R. Ghadari, X. Liu, W. Wang, Y. Ding, M. Cai, J. Hong Pan, S. Dai, C[tbnd]N-based carbazole-arylamine hole transporting materials for perovskite solar cells: Substitution position matters, J. Energy Chem. 62 (2021) 563–571. https://doi.org/10.1016/j.jechem.2021.04.021.
[34] E. Mohsenzadeh, H. Namazi, R. Ghadari, The Design of Temperature and pH-Responsive Drug Delivery System Based on Cellulose and Aminated Cellulose by Computational and Experimental Methods, J. Comput. Biophys. Chem. 20 (2021) 189–200. https://doi.org/10.1142/S2737416520420077.
[35] X. Zhang, Z. Zhou, S. Ma, G. Wu, X. Liu, M. Mateen, R. Ghadari, Y. Wu, Y. Ding, M. Cai, S. Dai, Fused tetraphenylethylene-triphenylamine as an efficient hole transporting material in perovskite solar cells, Chem. Commun. 56 (2020) 3159–3162. https://doi.org/10.1039/c9cc09901h.
[36] R. Ghadari, A. Sabri, P.-S. Saei, F.-T. Kong, H.M. Marques, Phthalocyanine-silver nanoparticle structures for plasmon-enhanced dye-sensitized solar cells, Sol. Energy 198 (2020) 283–294. https://doi.org/10.1016/j.solener.2020.01.053.
[37] R. Ghadari, P.-S. Saei, A. Sabri, Z. Ghasemi, F. Kong, Enhanced phthalocyanine-sensitized solar cell efficiency via cooperation of nitrogen-doped carbon dots, J. Clean. Prod. 268 (2020). https://doi.org/10.1016/j.jclepro.2020.122236.
[38] Z. Zhou, X. Zhang, S. Ma, C. Liu, X. Liu, R. Ghadari, M. Mateen, Y. Yang, Y. Ding, M. Cai, S. Dai, Comparative Study of Linear and Starburst Ethane-Based Hole-Transporting Materials for Perovskite Solar Cells, J. Phys. Chem. C 124 (2020) 2886–2894. https://doi.org/10.1021/acs.jpcc.9b11759.
[39] W. Chen, H. Zhang, H. Zheng, H. Li, F. Guo, G. Ni, M. Ma, C. Shi, R. Ghadari, L. Hu, Two-dimensional triphenylene cored hole-transporting materials for efficient perovskite solar cells, Chem. Commun. 56 (2020) 1879–1882. https://doi.org/10.1039/c9cc08248d.
[40] X. Zhou, F. Kong, Y. Sun, Y. Huang, X. Zhang, R. Ghadari, Benzothiadiazole-based hole transport materials for high-efficiency dopant-free perovskite solar cells: Molecular planarity effect, J. Energy Chem. 44 (2020) 115–120. https://doi.org/10.1016/j.jechem.2019.09.020.
[41] S. Ma, X. Liu, X. Zhang, R. Ghadari, Y. Ding, M. Cai, S. Dai, Introducing ammonium salt into hole transporting materials for perovskite solar cells, Chem. Commun. 56 (2020) 14471–14474. https://doi.org/10.1039/d0cc04485g.
[42] X. Zhou, F. Kong, Y. Sun, Y. Huang, X. Zhang, R. Ghadari, Dopant-free benzothiadiazole bridged hole transport materials for highly stable and efficient perovskite solar cells, Dye. Pigment. 173 (2020). https://doi.org/10.1016/j.dyepig.2019.107954.
[43] M. Hezarkhani, R. Ghadari, Exploration of the Binding Properties of the Azo Dye Pollutants with Nitrogen-Doped Graphene Oxide by Computational Modeling for Wastewater Treatment Improvement, ChemistrySelect 4 (2019) 5968–5978. https://doi.org/10.1002/slct.201900159.
[44] R. Ghadari, A. Kashefi, Amino Acid Functionalized Single−Wall Carbon Nanotubes in Thermoresponsive Drug Delivery Systems: A Computational Study, ChemistrySelect 4 (2019) 1516–1524. https://doi.org/10.1002/slct.201803120.
[45] S.A. Hosseini-Yazdi, P. Samadzadeh-Aghdam, R. Ghadari, Computational DFT study on nickel symmetric bis(thiosemicarbazone) complexes: Electronic absorption and redox potentials, Polyhedron 160 (2019) 35–41. https://doi.org/10.1016/j.poly.2018.12.019.
[46] W. Chen, H. Yang, F. Guo, C. Shi, X. Sun, Y. Wang, R. Ghadari, L. Hu, Simply designed nonspiro fluorene-based hole-transporting materials for high performance perovskite solar cells, Synth. Met. 250 (2019) 42–48. https://doi.org/10.1016/j.synthmet.2019.02.011.
[47] R. Ghadari, A. Sabri, In silico study on core-shell pseudodendrimeric glycoside structures in drug delivery related usages, Polyhedron 160 (2019) 10–19. https://doi.org/10.1016/j.poly.2018.12.013.
[48] W. Chen, T. Liu, X. Sun, F. Guo, Y. Wang, C. Shi, R. Ghadari, F. Kong, Facile synthesis of simple arylamine-substituted naphthalene derivatives as hole-transporting materials for efficient and stable perovskite solar cells, J. Power Sources 425 (2019) 87–93. https://doi.org/10.1016/j.jpowsour.2019.03.050.
[49] S.E. Hooshmand, R. Ghadari, R. Mohammadian, A. Shaabani, H.R. Khavasi, Rhodanine-Furan Bis-Heterocyclic Frameworks Synthesis via Green One-Pot Sequential Six-Component Reactions: A Synthetic and Computational Study, ChemistrySelect 4 (2019) 11893–11898. https://doi.org/10.1002/slct.201903361.
[50] H. Mousazadeh, K.D. Safa, R. Ghadari, Synthesis, spectroscopic characterization, and DFT studies of 1,2,3-triazole-based organosilicon compounds, J. Mol. Struct. 1167 (2018) 200–208. https://doi.org/10.1016/j.molstruc.2018.03.072.
[51] R. Yekta, G. Dehghan, S. Rashtbari, R. Ghadari, A.A. Moosavi-Movahedi, The inhibitory effect of farnesiferol C against catalase; Kinetics, interaction mechanism and molecular docking simulation, Int. J. Biol. Macromol. 113 (2018) 1258–1265. https://doi.org/10.1016/j.ijbiomac.2018.03.053.
[52] R. Ghadari, H. Namazi, M. Aghazadeh, Synthesis of graphene oxide supported copper–cobalt ferrite material functionalized by arginine amino acid as a new high–performance catalyst, Appl. Organomet. Chem. 32 (2018). https://doi.org/10.1002/aoc.3965.
[53] R. Ghadari, Y. Mohammadzadeh, MD simulation studies on the effect of the temperature and protonation state on the imide-linked amino acid-based dendrimers, Comput. Mater. Sci. 151 (2018) 124–131. https://doi.org/10.1016/j.commatsci.2018.05.011.
[54] S.A. Hosseini-Yazdi, P. Samadzadeh-Aghdam, R. Ghadari, Synthesis and experimental/theoretical evaluations on redox potentials and electronic absorption spectra for copper symmetric bis(thiosemicarbazone) complexes, Polyhedron 151 (2018) 221–232. https://doi.org/10.1016/j.poly.2018.05.034.
[55] Y. Huang, W.-C. Chen, R. Ghadari, X.-P. Liu, X.-Q. Fang, T. Yu, F.-T. Kong, Highly efficient ruthenium complexes with acetyl electron-acceptor unit for dye sensitized solar cells, J. Power Sources 396 (2018) 559–565. https://doi.org/10.1016/j.jpowsour.2018.06.069.
[56] R. Ghadari, Y. Mohammadzadeh, A Computational Study on the Blocking Ability of Selected Commercially Available Anticancer Drugs and Their Hypothetic Derivatives on the CCR5, Assay Drug Dev. Technol. 16 (2018) 266–277. https://doi.org/10.1089/adt.2017.836.
[57] Y. Huang, W.-C. Chen, X.-X. Zhang, R. Ghadari, X.-Q. Fang, T. Yu, F.-T. Kong, Ruthenium complexes as sensitizers with phenyl-based bipyridine anchoring ligands for efficient dye-sensitized solar cells, J. Mater. Chem. C 6 (2018) 9445–9452. https://doi.org/10.1039/c8tc03288b.
[58] X. Liu, F. Kong, R. Ghadari, S. Jin, W. Chen, T. Yu, T. Hayat, A. Alsaedi, F. Guo, Z. Tan, J. Chen, S. Dai, Thiophene–Arylamine Hole-Transporting Materials in Perovskite Solar Cells: Substitution Position Effect, Energy Technol. 5 (2017) 1788–1794. https://doi.org/10.1002/ente.201700304.
[59] R. Ghadari, H. Namazi, M. Aghazadeh, Nickel-substituted cobalt ferrite nanoparticles supported on arginine-modified graphene oxide nanosheets: Synthesis and catalytic activity, Appl. Organomet. Chem. 31 (2017). https://doi.org/10.1002/aoc.3859.
[60] R. Ghadari, Nitrogen doped nanographene structures; Study on the adsorption of nucleobases, nucleotides, and their triphosphate derivatives using mixed docking, MD, and QM/MM approaches, J. Chem. Phys. 146 (2017). https://doi.org/10.1063/1.4974088.
[61] X. Liu, F. Kong, R. Ghadari, S. Jin, T. Yu, W. Chen, G. Liu, Z. Tan, J. Chen, S. Dai, Anthracene-arylamine hole transporting materials for perovskite solar cells, Chem. Commun. 53 (2017) 9558–9561. https://doi.org/10.1039/c7cc03444j.
[62] F. Mofidi Najjar, F. Taghavi, R. Ghadari, N. Sheibani, A.A. Moosavi-Movahedi, Destructive effect of non-enzymatic glycation on catalase and remediation via curcumin, Arch. Biochem. Biophys. 630 (2017) 81–90. https://doi.org/10.1016/j.abb.2017.06.018.
[63] W.-C. Chen, F.-T. Kong, R. Ghadari, Z.-Q. Li, X.-P. Liu, T. Yu, Y. Huang, Y. Huang, T. Hayat, S.-Y. Dai, Insight into Electron-Donating Ancillary Ligands in Ruthenium Terpyridyl Complexes Configuration on Performances of Dye-Sensitized Solar Cells, J. Phys. Chem. C 121 (2017) 8752–8759. https://doi.org/10.1021/acs.jpcc.7b01381.
[64] R. Ghadari, The role of human CYP2C8 in the metabolizing of montelukast-like compounds: a computational study, Res. Chem. Intermed. 43 (2017) 4781–4794. https://doi.org/10.1007/s11164-017-2911-x.
[65] W.-C. Chen, F.-T. Kong, R. Ghadari, Z.-Q. Li, F.-L. Guo, X.-P. Liu, Y. Huang, T. Yu, T. Hayat, S.-Y. Dai, Unravelling the structural-electronic impact of arylamine electron-donating antennas on the performances of efficient ruthenium sensitizers for dye-sensitized solar cells, J. Power Sources 346 (2017) 71–79. https://doi.org/10.1016/j.jpowsour.2017.02.026.
[66] F.S. Alavi, R. Ghadari, M. Zahedi, Exploration of the binding properties of the human serum albumin sites with neurology drugs by docking and molecular dynamics simulation, J. Iran. Chem. Soc. 14 (2017) 19–35. https://doi.org/10.1007/s13738-016-0954-3.
[67] F. Mofidi Najjar, R. Ghadari, R. Yousefi, N. Safari, V. Sheikhhasani, N. Sheibani, A.A. Moosavi-Movahedi, Studies to reveal the nature of interactions between catalase and curcumin using computational methods and optical techniques, Int. J. Biol. Macromol. 95 (2017) 550–556. https://doi.org/10.1016/j.ijbiomac.2016.11.050.
[68] R. Teimuri-Mofrad, K. Rahimpour, R. Ghadari, Design, synthesis and characterization of ferrocene based V-shaped chromophores with modified nonlinear effect, J. Organomet. Chem. 846 (2017) 397–406. https://doi.org/10.1016/j.jorganchem.2017.07.023.
[69] R. Teimuri-Mofrad, K. Rahimpour, R. Ghadari, S. Ahmadi-Kandjani, Ferrocene based nonlinear optical chromophores: synthesis, characterization and study of optical properties, J. Mol. Liq. 244 (2017) 322–329. https://doi.org/10.1016/j.molliq.2017.09.002.
[70] R. Ghadari, A. Kashefi, A computational study on the usability of amino acid-functionalised nitrogen-doped graphene oxides as temperature-responsive drug delivery systems, Int. J. Hyperth. 33 (2017) 785–795. https://doi.org/10.1080/02656736.2017.1308020.
[71] R. Teimuri-Mofrad, K. Rahimpour, R. Ghadari, Synthesis, characterization, and electronic properties of novel Fc-DCM conjugated system; Experimental and computational studies, J. Organomet. Chem. 811 (2016) 14–19. https://doi.org/10.1016/j.jorganchem.2016.03.007.
[72] R. Ghadari, A study on the interactions of amino acids with nitrogen doped graphene; Docking, MD simulation, and QM/MM studies, Phys. Chem. Chem. Phys. 18 (2016) 4352–4361. https://doi.org/10.1039/c5cp06734k.
[73] R. Majdan-Cegincara, R. Ghadari, R. Hosseinzadeh-Khanmiri, A computational study on the Stability of dapdiamide D conformers, Phys. Chem. Res. 4 (2016) 567–581. https://doi.org/10.22036/pcr.2016.15736.
[74] R. Ghadari, In silico study to evaluate the governing criteria in the BF3 catalyzed Diels-Alder reaction, Comput. Theor. Chem. 1091 (2016) 176–185. https://doi.org/10.1016/j.comptc.2016.07.021.
[75] R. Ghadari, F.S. Alavi, M. Zahedi, Evaluation of the effect of the chiral centers of Taxol on binding to β-tubulin: A docking and molecular dynamics simulation study, Comput. Biol. Chem. 56 (2015) 33–40. https://doi.org/10.1016/j.compbiolchem.2015.02.018.
[76] A. Shaabani, R. Ghadari, M. Arabieh, Synthesis of a new library of pyrano-phenazine derivatives via a novel three-component protocol, Helv. Chim. Acta 97 (2014) 228–236. https://doi.org/10.1002/hlca.201300006.
[77] R. Ghadari, M. Zahedi, A computational study on the mechanism and the transition states of the cyclization of 1-trifluoromethyl-1,3-dicarbonyl compounds with azides to form 1,2,3-triazoles, Comput. Theor. Chem. 1043 (2014) 64–70. https://doi.org/10.1016/j.comptc.2014.06.002.
[78] H. Mofakham, R. Ghadari, A. Shaabani, M. Pedarpour, S. Ghasemi, “on-water” organic synthesis: L-proline catalyzed synthesis of pyrimidine-2,4-dione-, benzo[g]- and dihydropyrano[2,3-g]chromene derivatives in aqueous media, J. Iran. Chem. Soc. 10 (2013) 307–317. https://doi.org/10.1007/s13738-012-0160-x.
[79] R. Ghadari, F. Hajishaabanha, M. Aghaei, A. Shaabani, S.W. Ng, A facile three- and four-component procedure toward the synthesis of functionalized pyrano- and benzo[f]quinoxaline derivatives, Mol. Divers. 16 (2012) 453–461. https://doi.org/10.1007/s11030-012-9379-9.
[80] R. Ghadari, M. Arabieh, M. Zahedi, A. Shaabani, An in silico study on the ring-size effect in ring enlargement Bellus-Claisen rearrangement, Comput. Theor. Chem. 981 (2012) 25–30. https://doi.org/10.1016/j.comptc.2011.11.025.
[81] R. Ghadari, F. Hajishaabanha, M. Mahyari, A. Shaabani, H.R. Khavasi, An unexpected route toward the synthesis of spiro-benzo[b]acridine-furan derivatives, Tetrahedron Lett. 53 (2012) 4018–4021. https://doi.org/10.1016/j.tetlet.2012.05.107.
[82] R. Ghadari, A. Shaabani, A density functional theory approach toward substituent effect in Meerwein-Eschenmoser-Claisen rearrangement, J. Mol. Model. 18 (2012) 319–328. https://doi.org/10.1007/s00894-011-1080-x.
[83] R. Ghadari, M. Arabieh, A. Shaabani, M. Zahedi, Investigation of origin of stereo-selectivity of BF 3·Et 2O-promoted allylboration of aldehydes in the presence of (R)-pinanediol by computational method, Comput. Theor. Chem. 999 (2012) 28–33. https://doi.org/10.1016/j.comptc.2012.08.007.
[84] A. Shaabani, R. Ghadari, A.H. Rezayan, Synthesis of functionalized coumarins, Iran. J. Chem. Chem. Eng. 30 (2011) 19–22. https://www--scopus--com.ezaccess.ir/inward/record.uri?eid=2-s2.0-84861154994&partnerID=40&md5=8d4bdee9bac872cd389325874c9d165b.
[85] A. Shaabani, A. Sarvary, S. Ghasemi, A.H. Rezayan, R. Ghadari, S.W. Ng, An environmentally benign approach for the synthesis of bifunctional sulfonamide-amide compounds via isocyanide-based multicomponent reactions, Green Chem. 13 (2011) 582–585. https://doi.org/10.1039/c0gc00442a.
[86] A. Shaabani, M. Mohammadpour Amini, S. Ghasemi, R. Ghadari, A.H. Rezayan, Y. Fazaeli, S. Feizi, Pyridine-functionalized MCM-41 as an efficient and recoverable catalyst for the synthesis of pyran annulated heterocyclic systems, Chem. Pharm. Bull. 58 (2010) 270–272. https://doi.org/10.1248/cpb.58.270.
[87] A. Shaabani, R. Ghadari, Direct sulfonation of methane to methanesulfonic acid, Ind. Eng. Chem. Res. 49 (2010) 7685–7686. https://doi.org/10.1021/ie9015733.
[88] A. Shaabani, A. Sarvary, S. Keshipour, A.H. Rezayan, R. Ghadari, Unexpected Knoevenagel self-condensation reaction of tetronic acid: synthesis of a new class of organic heterocyclic salts, Tetrahedron 66 (2010) 1911–1914. https://doi.org/10.1016/j.tet.2010.01.009.
[89] R. Ghadari, A. Shaabani, Investigation of substituent effect on the Johnson-Claisen rearrangement: A DFT approach, J. Mol. Struct. THEOCHEM 961 (2010) 83–87. https://doi.org/10.1016/j.theochem.2010.09.004.
[90] A. Shaabani, R. Ghadari, S. Ghasemi, M. Pedarpour, A.H. Rezavan, A. Sarvary, S.W. Ng, Novel one-pot three- and pseudo-five-component reactions: Synthesis of functionalized benzo [g]- and dihydropyrano[2,3-g]chromene derivatives, J. Comb. Chem. 11 (2009) 956–959. https://doi.org/10.1021/cc900101w.
[91] A. Shaabani, R. Ghadari, A. Sarvary, A.H. Rezayan, Synthesis of highly functionalized bis(4H-chromene) and 4H-benzo[g]chromene derivatives via an isocyanide-based pseudo-five-component reaction, J. Org. Chem. 74 (2009) 4372–4374. https://doi.org/10.1021/jo9005427.
[92] A. Shaabani, R. Ghadari, A. Rahmati, A.H. Rezayan, Coumarin synthesis via knoevenagel condensation reaction in 1,1,3,3-N,N,N’,N’- tetramethylguanidinium trifluoroacetate ionic liquid, J. Iran. Chem. Soc. 6 (2009) 710–714. https://doi.org/10.1007/BF03246160.