| نویسندگان | Mohammad Hossein Jafari & Ali Reza Madadi |
|---|---|
| نشریه | Bulletin of the Korean Mathematical Society |
| ارائه به نام دانشگاه | دانشگاه تبریز |
| شماره صفحات | 1615-1623 |
| شماره مجلد | 51 |
| نوع مقاله | Full Paper |
| تاریخ انتشار | 2014 |
| رتبه نشریه | ISI |
| نوع نشریه | چاپی |
| کشور محل چاپ | کرهٔ جنوبی |
چکیده مقاله
Let G ≤ Sn and Χ be any nonzero complex valued function on G. We first study the irreducibility of the generalized matrix polynomial d_G^Χ (X), where X = (x_ij ) is an n-by-n matrix whose entries are n^2 commuting independent indeterminates over C. In particular, we show that if Χ is an irreducible character of G, then d_G^Χ (X) is an irreducible polynomial, where either G = S_n or G = A_n and n neq 2. We then give a necessary and sufficient condition for the equality of two generalized matrix functions on the set of the so-called Χ-singular (Χ-nonsingular) matrices.