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Forecasting daily streamflow values: assessing heuristic

models

Sepideh Karimi, Jalal Shiri, Ozgur Kisi and Tongren Xu
ABSTRACT
Predicting streamflow values accurately is vitally important for hydrology studies. Two heuristic

models, namely, gene expression programming (GEP) and support vector machine (SVM) are used

and assessed utilizing data from four stations in China. The k-fold testing for local and external data

management scenarios are tested extensively. Results indicate that models with inputs of current

and one previous day’s streamflow records provided the best accuracy. Both the GEP and SVM

models can predict accurate streamflow values with respect to the observed records. GEP

performed better than the SVM in all k-fold testing stages with lower skewness and standard

deviation values for streamflow records. The test accuracy demonstrated high variations for the local

and external k-fold case which proved the necessity of k-fold testing or data scanning procedure in

daily streamflow prediction. Daily streamflow of downstream stations was also estimated using the

data of upstream stations (external k-fold). The best results were obtained by the models trained

using the data from the nearest upstream station. In some cases, the accuracy of the external

models was found to be comparable to local models. This suggested the use of external models in

streamflow prediction in the case of data scarcity.
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INTRODUCTION
Predicting streamflow values accurately is one of the impor-

tant issues in water resources system planning, design,

operation, and management. It is also an important task

for identifying hydrologic drought periods (Chemeda

Edossa & Singh Babel ), flood control (Sarlak ),

optimizing hydrologic system or planning for future expan-

sions or reductions (Kisi ), determining instream

environmental flow (Tennant ), and modeling river

flow–groundwater flow interactions (Gunduz & Aral )

as well as mitigating the negative consequences of extreme

flow events and economic use of rivers (Benninga )

and modeling suspended sediment load in rivers (Kisi

et al. ).

Traditionally, autoregressive moving average (ARMA)

models have been employed for water resources time-
series modeling including streamflow forecasting (Maier &

Dandy ). The major drawback of univariate time-series

approaches in streamflow forecasting is the incorporation

of the past flow magnitudes as well as assuming a linear

relation between the input-target variables (Kisi ).

Alternatively, the use of heuristic data-driven models for

streamflow forecasting has been reported by numerous

studies. Many studies have confirmed the superiority of

data-driven models over traditional ARMA or autoregressive

integrated moving average (ARIMA) techniques in forecast-

ing streamflow magnitudes (e.g., Nayak et al. ; Wang

et al. ; Yarar ). In this context, Wang et al. (),

Kisi (, ), Kagoda et al. (), Humphrey et al.

(), and Uysal et al. () employed artificial neural net-

work (ANN) models for forecasting streamflow. Guven
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() applied linear genetic programming (GP) for time-

series modeling of daily flow rates.Wu&Chau () applied

different heuristic data-driven approaches for modeling

monthly streamflow time series and found that a moving

average ANN presented the most accurate results. Shiri &

Kisi () introduced a wavelet-neuro-fuzzy model to fore-

cast streamflow values and found that when the periodicity

component was introduced as an input parameter, the

models gave the most accurate results. Guo et al. ()

employed the support vector machine (SVM) in forecasting

monthly streamflow values and found that SVM produced

more accurate results than ANNs. Kisi et al. () compared

different heuristic models in simulating surface runoff magni-

tudes and found the gene expression programming (GEP)

approach to be the most accurate method. Liu et al. ()

applied a wavelet-SVM model for daily and monthly stream-

flow forecasting. Sharma et al. () compared a neuro-fuzzy

model with a physically based watershed model for stream-

flow forecasting and concluded that the neuro-fuzzy model

was equally comparable to the physical model, especially

when rain gauge stations were not adequate. Karimi et al.

() introduced a wavelet-GEP approach for forecasting

streamflow. Badrzadeh et al. () applied a wavelet-ANFIS

method for predicting intermittent streamflow values.

However, all the mentioned studies have used a single

data set assignment approach for introducing the input–

output matrixes to the models, where a part of available

data is used for training the models, and then the models

are tested using the rest of available patterns. This is a

common data management scenario in hydrologic time

series predictions, where the models are trained and tested

using data of the same station (local or at station scenario).

Apart from not performing a whole accuracy assessment of

the within-station (local) patterns, another important draw-

back of this procedure is the lack of generalizability of the

obtained models, i.e., the models are not assessed outside

the training station (Marti et al. ; Shiri et al. a,

b, c). Hence, it would be worth attempting to

assess the external generalizability of the applied models.

The present research aimed at evaluating local (within-

station) and external (cross-station) data management scen-

arios for predicting streamflow rates using GEP and SVM

techniques through k-fold testing. Despite the limited appli-

cations of k-fold testing approach in hydrological modeling,
this is the first application of this approach in local and

external simulation of streamflow values in the literature.

The developed external models can be used for predicting

the streamflow records without the need of local patterns.
MATERIALS AND METHODS

Study area and used data

The Heihe River is the second largest inland river of the

People’s Republic of China (P.R.C.). It originates from

southwest of Qilian Mountain, and runs through three pro-

vinces, namely, Qinghai, Gansu, and Inner Mongolia. The

total length of the Heihe River is 821 km, and the catch-

ment area is 1.0 × 104 km2 (Figure 1). Four stations,

namely, S213 Bridge, Railway Bridge, Gaoya, and Ping-

chuan were established along the middle reach of the

Heihe River to monitor the daily variations of streamflow

(Liu et al. ). The site locations can be found in Figure 1.

The daily streamflow data of the four stations collected

from 1979 to 2014 (35 years) are used to construct and

test the GEP and SVM models. Table 1 summarizes the

statistical indices of the applied data set. The streamflow

records of Gaoya station present the highest skewness

while the others also have considerably high skewness

coefficients indicating that the utilized streamflow data

do not have a normal (Gaussian) distribution. Data of Rail-

way Bridge and Pingchuan stations show the highest and

lowest variations, respectively. The four stations located

along the Heihe River, with distinct streamflow records,

make it possible to test the local (within-station) and exter-

nal (cross-station) performances of the two heuristic

models.

Gene expression programming

As a generalization of genetic algorithms (Goldberg ),

GP (Koza ) is especially appropriate where inter-

relationships among relevant variables are poorly under-

stood; a theoretical examination is constrained by

assumptions and there is a great deal of data in PC readable

frames requiring tedious processing. GP-based models uti-

lize a ‘parse tree’ structure in the search for their solutions



Table 1 | Statistical parameters of the applied river flow data

Station name
Min Max Mean SD

CV Skewm3/s m3/s m3/s m3/s

S213 Bridge 0.01 361.03 26.24 41.24 1.57 2.80

Railway Bridge 0.03 329.14 18.70 33.34 1.78 3.20

Gaoya 2.26 838.34 34.01 43.17 1.26 7.36

Pingchuan 5.03 274.17 27.84 16.83 0.61 2.62

Note: The min, max, mean, SD, CV, Skew stand for the minimum, maximum, mean, stan-

dard deviation, coefficient of variation, and skewness coefficient of the streamflow data.

Figure 1 | The study area: (left) the Heihe River basin and (right) the site locations.
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(Banzhaf et al. ). GP is able to derive a set of explicit

expressions which rule the subject phenomenon, to describe

the inter-relationships between the input-target parameters

by using different operators.

GEP is similar to GP, in the way that it selects the best

governing formulations based on fitness values and presents

genetic variety utilizing a unique or various genetic oper-

ators (Ferreira ). The most critical advantages of GEP

are (Ferreira ): (i) the chromosomes are basic elements:

linear, compact, relatively small, simple to manipulate
genetically (replicate, mutate, recombine, and so on); (ii)

the expression trees are solely the statement of their particu-

lar chromosomes; they are elements upon which selection

acts, and as indicated by fitness, they are chosen to recreate

with adjustment.

The GEP procedure starts with the random generation

of the chromosomes of a certain number of individuals or

programs (the initial population). The chromosomes are

then expressed and the fitness of each program is assessed

against a set of fitness cases (training set). The programs

are then chosen based on their fitness to reproduce with

modification, leaving progeny with new traits (Ferreira

). Here, absolute error-based root relative squared

error (RRSE) fitness function was used, as advised by Kisi

et al. (). The second step is selecting the terminal and

function sets. Here, the terminal set includes the streamflow

records (with different lag times) and the function set con-

sists of basic arithmetic operators along with other

functions: þ,� , × , ÷ , ffi
3
p , ffip , ln , ex, x2, x3, sin x, cos x,

Arctgx, linked with the addition linking function. The



Table 2 | General description of the applied GEP models

Number of chromosomes 30 one point recombination rate 0.3

Head size 8 two point recombination rate 0.3

Number of genes 3 gene recombination rate 0.1

Linking function addition gene transposition rate 0.1

Fitness function error type RRSE insertion sequence transposition rate 0.1

Mutation rate 0.044 root insertion sequence transposition 0.1

Inversion rate 0.1 penalizing tool parsimony pressure

Chromosomes the chromosomes of GEP are usually composed of more than one gene of equal length. Each
gene codes for a sub-expression tree and the sub-expression trees interact with one another
forming a more complex multi-subunit expression tree.

Head size determines the complexity of each term in the model

Mutation provides the evolution of good solutions for the studied models to virtually all problems

Inversion inversion is restricted to the heads of genes

One point recombination the parent chromosomes are paired and split up at exactly the same point

Two point recombination two parent chromosomes are paired and two points are randomly chosen as crossover points

Gene recombination entire genes are exchanged between two parent chromosomes, forming two daughter
chromosomes containing genes from both parents

Gene transposition an entire gene works as a transposon and transposes itself to the beginning of the chromosome

IS transposition short fragments of the genome with a function or terminal in the first position that transpose to
the heads of gene except the root

RIS transposition short fragments with a function in the first position that transpose to the start position of genes
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genetic operators (Table 2) are used based on the results pro-

vided in previous studies (e.g., Kisi et al. , ). By using

GEP, the parsimony pressure tool was utilized to design the

parsimonious solutions. Further details on GEP application

for hydrological time series modeling can be found in, for

example, Kisi et al. ().

Support vector machine

SVMs are supervised learning models with related learn-

ing algorithms that analyze data and recognize patterns,

and can be utilized for classification and regression analy-

sis. While the original problem might be expressed in a

finite dimensional space, the sets to discriminate are not

linearly separable in that space. Consequently, it was

suggested that the original finite-dimensional space be

mapped into a much higher-dimensional space, probably

making the partition less demanding in that space.

There are four principal advantages of SVM. First, it has

a regularization parameter, which makes the user con-

sider about avoiding over-fitting. Second, it utilizes the
kernel trick, so one can construct an expert knowledge

about the issue through designing the kernel. Third, an

SVM is determined by a convex optimization problem

(no local minima) for which there are accurate methods

(e.g., SMO). Finally, it is estimated to a bound on the

test error rate, and there is a substantial body of theory

behind it which recommends it ought to be a good idea

(Vapnik ).

The regression-SVM type 1 was applied here since its

superiority to other types has been demonstrated in the lit-

erature (Shiri et al. c). Using a trial and error process,

SVM constants are selected as 8 (capacity) and 0.14 (epsi-

lon). Linear, sigmoid, polynomial, and radial basis kernel

functions were compared and it was found that the radial

basis kernel (Gamma¼ 0.125) gives the most accurate

results. The SVM model is very sensitive to the Gamma par-

ameter. This parameter indicates how far a single training

example’s influence reaches; low values mean ‘far’ and

high values mean ‘close’. The maximum number of iter-

ations was found to be 1,500 (iteratively) and the models

were stopped at error magnitudes of 0.005.
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Study flowchart and data splitting

The first step with defining the models’ structures would be

identifying the most relevant input parameters. In the
Figure 2 | PACF of streamflow data in the studied stations (from upstream to downstream).
present study, auto correlation technique was employed to

identify the suitable lags of streamflow time series at the

studied stations. Figure 2 shows the partial auto correlation

function (PACF) diagrams of the streamflow data at each
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station for the study period. As indicated, the first three time

lags have significant correlations in all stations except for

Gaoya station. Therefore, three-time lags were utilized for

modeling the one-day ahead streamflow values in all four

stations. Thus, given that the Qtþ1 shows the streamflow

values at the next immediate day (as models’ target), the fol-

lowing input configurations were defined and evaluated

using GEP- and SVM-based models:

Input configuration I: Qt (GEP1, SVM1 models)

Input configuration II: Qt, Qt�1 (GEP2, SVM2 models)

Input configuration III: Qt, Qt�1, Qt�2 (GEP3, SVM3

models)

Here, the assessment of the GEP and SVM models’ per-

formance has been carried out considering spatial as well as

local k-fold testing approaches (Shiri et al. a). Accord-

ingly, a local k-fold testing was carried out over each

station, using one-year patterns as minimum temporary test

phase. Thus, a temporary k-fold testing was employed, leav-

ing in every stage an alternate year for testing, until an

entire scan of the series of each station was satisfied. This

procedure was repeated for all stations, so a total 840

train–test processes (4 stations × 2 models × 3 input configur-

ations × 35 years¼ 840) were carried out in local k-fold

testing. Although a shorter time period (less than one year)

might be assumable in local k-fold testing, this would involve

a great deal of operational time and computational costs, as

discussed by Marti et al. () and Shiri et al. (b).

Additionally, a spatial (external) k-fold testing approach

was also carried out using the best input configuration

obtained through local modeling. In each step of this

approach, the whole patterns (all available data) from

upstream station(s) (see Figure 1) were utilized for training,

and themodels were tested using all data series of the remain-

ing downstream stations. Therefore, in Pingchuan station,

GEP and SVM models were at first trained using Gaoya

station data, then trained by Railway Bridge station data,

then trained by S213 Bridge station data, and finally trained

using all patterns from the three mentioned train (upstream)

stations. Similar processes were also repeated for Gaoya

station (using Railway Bridge, S213 Bridge and pooled pat-

terns). In the case of Railway Bridge, as it has only a unique

upstream station, S213 Bridge patterns were used to train
the models. As this study considers four stations and only

one input configuration for spatial analysis, the spatial

approach consists of eight train–test processes per model.

Performance criteria

Three statistical indices, namely, the Scatter Index (SI), the

Variance Accounted For (VAF), and the Nash and Sutcliffe

coefficient (NS), were used for assessing the models

performance:

SI ¼ RMSE

Qo
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=n

Pn
i¼1 (Qio �Qie)

2
q

Qo
(1)

VAF ¼ 1� Var(Qio �Qie)
Var(Qio)

� �
× 100 (2)

NS ¼ 1�
Pn

i¼1 (Qio �Qie)
2

Pn
i¼1 (Qio �Qo)

2 (3)

where Qio and Qie are the observed and simulated stream-

flow values, respectively, and Qo stands for the mean

observed streamflow. n is the number of data patterns. The

perfect values of SI, VAF, and NS are 0, 1, and 1, respect-

ively. The root mean square error (RMSE) describes the

average extent of errors by giving more weight to large

errors. However, it is a site-specific index and would be

affected by the magnitudes of the target variables at different

stations. Thus, its dimensionless form (called SI) can give a

good insight for comparing the performances of various

models in different sites as the effect of the observed

values’ magnitude has been ignored through incorporating

the mean values of observations in SI equation. A NS

(Nash & Sutcliffe ) coefficient value of 0 (NS¼ 0)

shows that the model simulations are as accurate as the

mean of the observed data, while its negative values describe

that the residual variance is larger than the original data var-

iance. The VAF is generally used to verify the correctness of

a model, by comparing the variances of the real output with

the estimated output.

The statistical indices of the local k-fold testing refer to

the complete period in each station, i.e., the simulations of

each test stage (year) were pooled chronologically together
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and the statistical indices were calculated for the complete

study period. Regarding the spatial k-fold testing, the criteria

correspond to the performance of the complete study period

at each station.
RESULTS AND DISCUSSION

Table 3 sums up the statistical indices of each input configur-

ation averaging the results of the studied stations. Instead of

averaging the statistical indicator calculating an average of

35 years, a global prediction vector of the complete period

was made, and this vector was utilized for calculating the

indicators of each station. From Table 3, it is seen that the

predictions of those models relying on input configuration

II (i.e., considering Qt, Qt�1 as input parameters) are more

accurate than the rest. Hence, input configuration II was

selected to perform the external k-fold testing from upstream

to downstream stations. Table 3 shows that the local

approach provides the best predictions, since it is trained

using the streamflow time series of the same stations utilized

for testing (using different years for training and testing).

However, its generalization ability is limited to similar con-

ditions of the training (and testing) location.

Analyzing the temporal GEP and SVM models relying

on input configuration II (comprises the Qt, Qt�1 par-

ameters as inputs) confirms their considerable superiority

to the other input configurations. SI values have decreased

by 19% and 7% for GEP and SVM models, respectively

(compared to input configuration I), and by 14% and 4%

for GEP and SVM models (compared to input configur-

ation III), respectively. Predictions relying on input

configuration I (GEP1 and SVM1) provide considerably
Table 3 | Global average performance parameters of the local GEP and SVM models

Models

GEP SVM

SI VAF NS SI VAF NS

Input configuration I 0.507 0.788 0.788 0.724 0.751 0.630

Input configuration II 0.350 0.841 0.842 0.378 0.846 0.804

Input configuration III 0.479 0.815 0.816 0.701 0.796 0.723

External models 0.441 0.878 0.887 0.491 0.861 0.859

Note: The indices belong to the averaged statistics of the applied input configurations in

the studied locations. External models were fed with input configuration II.
less accurate simulations than those of input configurations

II and III. Additionally, considering the NS and VAF

values, the superiority of the GEP2 and SVM2 models is

confirmed. Figure 3 illustrates the SI values of the temporal

GEP and SVM models split up per test station. These

values were obtained through building a global prediction

matrix of the complete period (35 years) at each station.

Again, it is seen that the GEP2 and SVM2 models give

the most accurate results at each station, so the external

models were fed with input configuration I. The highest

accuracy and the lowest variability among three models’

results correspond to Pingchuan station followed by S213

Bridge station while Gaoya station has the worst accuracy

and the highest variability. These results confirm the stat-

istics given in Table 1, where Gaoya station has the

highest skewness coefficient and standard deviation

values followed by the Railway Bridge station. On the

other hand, Pingchuan station presents the lowest skew-

ness and standard deviation values followed by the S213

Bridge station, as can be seen from Table 1. Nevertheless,

SI values of the models relying on input configuration II

show the lowest variability among stations. Finally, GEP-

based predictions also outperform the SVM-based models

in all studied cases. Although presenting near VAF

values, GEP2 increases the accuracy of SVM2 by 7.4%

and 5% with respect to SI and NS, respectively. The

reason of the superior accuracy of GEP compared to

SVM may be the fact that the GEP method uses evolution-

ary genetic algorithm in the calibration process and this

may provide an advantage in catching local minimum.

The performance oscillations among studied sites dictate

the need for assessing the applied models’ performances

through k-fold testing.
Figure 3 | SI values of temporal GEP and SVM-based predictions split up per test station.
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Figure 4 represents the temporal (split per test year) SI

variations of the GEP models in the studied sites. As indi-

cated in Figure 4, GEP2 outperforms GEP1 and GEP3 in
Figure 4 | Temporal GEP models’ SI variations per test year: (a) S213 Bridge station, (b) Railw
all sites and throughout the studied period with some

minor exceptions. This difference is seen more clearly for

Gaoya station compared to the other stations. However,
ay Bridge station, (c) Gaoya station, (d) Pingchuan station.



Table 4 | Correlation matrix of streamflow data

S213 Bridge Railway Bridge Gaoya Pingchuan

S213 Bridge 1.000 0.972 0.589 0.219

Railway Bridge 0.972 1.000 0.589 0.223

Gaoya 0.589 0.589 1.000 0.424

Pingchuan 0.219 0.223 0.424 1.000

Table 5 | Statistical indices of the external modeling

Train stations

GEP SVM

SI VAF NS SI VAF NS

Test station: Pingchuan

Gaoya 0.458 0.896 0.896 0.490 0.858 0.858

Railway Bridge 0.342 0.952 0.952 0.409 0.946 0.932

S213 Bridge 0.521 0.810 0.881 0.568 0.787 0.787

All upstream
stationsa

0.422 0.929 0.927 0.456 0.900 0.900

Test station: Gaoya

Railway Bridge 0.523 0.898 0.890 0.600 0.801 0.801

S213 Bridge 0.418 0.914 0.914 0.468 0.885 0.885

All upstream
stations

0.423 0.901 0.478 0.880 0.875

Test station: Railway Bridge

S213 Bridge 0.385 0.798 0.788 0.413 0.888 0.888

aAll upstream stations’ indicate the models fed with all data from upstream stations of the

test site, pooled together.
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there are considerable differences between models’ accu-

racy. For instance, considering the test years 1979 and

1980, all three models present the same accuracy in term

of SI values in S213 and Pingchuan station, while notable

differences in SI values are seen in the models’ performance

for Railway Bridge station and Gaoya station at the same

test years. However, in the test year 2000, GEP2 gives the

highest accuracy in all stations except Pingchuan station,

where GEP2 had less accuracy in comparison to the other

applied models. Analyzing the SI differences of three input

configurations (ΔSI ¼ SImax � SImin) shows considerable

variations in all stations. Considering GEP2, ΔSI is 0.561,

0.489, 0.458, and 0.228 for S213 Bridge, Railway Bridge,

Gaoya, and Pingchuan stations, respectively. Lower vari-

ations in Pingchuan station might be linked to the lowest

skewness, standard deviation, and variation coefficient of

streamflow time series in this station, among others. Analyz-

ing the SVM performance variations (not presented here)

showed similar statements.

Such variations in the performance of the appliedmodels

during the study period at each sitemight be linked to the vari-

ations of streamflow records considered in train–test stages.

Thus, if the test year shows an abnormal trend with respect

to the training patterns, e.g., comprising outliers, the derived

GEP/SVM model might provide lower accuracy; for

example, the test years of 1989, 1990, 1993, 2002, and 2003

for S213 Bridge station, the test years of 1991, 1992, 1996,

2002, 2007, and 2008 for Railway Bridge station, the test

years of 1989, 1992, 1996, 2007, 2011, and 2012 for Gaoya

station, and the test years of 1981, 1989, 1990, 1993, and

2003 for Pingchuan station. These fluctuations in the

models’ performance indicators clearly show the necessity

of using a temporal k-fold testing for assessing the models’

performance accuracy instead of using traditional data man-

agement scenarios (where a part of data is used for training,

then the models are tested using the remaining part of the

data), which may produce misleading results as they use a

single data set assignment procedure.

The cross-correlation matrix of streamflow data among

the studied stations is given in Table 4. The highest corre-

lation is between the S213 Bridge and Railway Bridge

stations. The reason for this may be the fact that these two

stations are near to each other and there is no tributary

between them. Gaoya station has the same correlation
with the S213 Bridge and Railway Bridge stations which

show similar characteristics. Pingchuan station has low cor-

relations with the other stations because it is located

downstream of the basin and it has a higher drainage area

than those of the others.

Table 5 represents the statistical indices of the external

models at each test station. In the case of Pingchuan station,

using the streamflow patterns of Gaoya station, which is its

nearest station with the highest correlation between two

sites (r¼ 0.424), provides the most accurate results. Compar-

ing the GEP and local SVM models, the external GEP

model (fed with Gaoya data) is comparable to local SVM

model (Table 3) with a SI difference of around 0.098,

which confirms the ability of the external GEP model in pre-

dicting streamflow patterns of the target site using data from

upstream stations (exogenous data). From Table 5, it is also
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seen that using data from Railway Bridge (r¼ 0.223) and

S213 Bridge (r¼ 0.219) stations is less accurate than the

first case, while pooling all patterns of the upstream stations

(i.e., Gaoya, Railway Bridge, and S213 Bridge) improves

their performance accuracy. The accuracy improvements

of GEP models using pooled data were 7.8% and 19% (SI

reduction) for the models trained by Railway Bridge and

S213 Bridge data, respectively. For the same cases, these

improvements in SVM models were 6.9% and 28%, respect-

ively. This performance improvement is probably due to the

inclusion of Gaoya station data in the pooled training pat-

terns. It can be said that only data of Gaoya station (the

nearest upstream station) should be used in estimating Ping-

chuan station because adding data of other upstream

stations worsens the models’ accuracy.

Regarding the Gaoya test station, similar to the previous

case, the GEP and SVM models trained using the nearest

station (Railway Bridge station; r¼ 0.589) provide the best

results. Utilizing pooled patterns of the upstream stations

(Railway Bridge and S213 Bridge stations) improves the pre-

dictions when compared to the models fed with S213 Bridge

(r¼ 0.589) data. Comparing Tables 3–5 for the models fed

with Railway Bridge station, it is seen that the external

models give comparable results to local models with SI

differences of about 0.010 and 0.024 for the GEP and

SVM models, respectively. The performance accuracy

order of the external models follows the magnitudes of the

skewness coefficient (measure of the probability distribution

asymmetry) of streamflow records. Among three stations,

Pingchuan station (lowest skewness) provides the most

accurate external results, followed by Railway Bridge and

Gaoya (highest skewness). Higher skewness values make

the extrapolation of the external models difficult.

Summarizing, it can be stated that external streamflow

models can be a good surrogate for local ones when local

data are absent or unreliable. Nonetheless, when using exter-

nal data for building streamflow prediction models, it is

necessary to use the data from the nearest station (or the

station with the highest correlation with the target station),

when there is no sink/source between two successive stations.

In the case of missing any low-distance or high-correlation

station, using pooled data from all upstream stations would

be a good solution for developing predictionmodels of stream-

flow records, when local data at test station are scarce.
The results obtained in the present paper confirm the

necessity of using a complete data scanning procedure in

building heuristic-based prediction models of streamflow

and using a single data assignment would be misleading as

the model accuracy would fluctuate throughout the study

period and among the studied sites. This confirms previous

statements given in the literature regarding other hydrologi-

cal parameters (e.g., Shiri et al. b).
CONCLUSIONS

The study has investigated the accuracy of GEP and SVM

methods in forecasting streamflow by employing local and

external data management scenarios and k-fold testing.

Daily data collected from four stations, S213 Bridge, Railway

Bridge,Gaoya, and Pingchuan,HeiheRiver, Chinawere used

in the applications. Three different input configurations

determined based on correlation analysis were used to build

the GEP and SVM models for prediction of one-day ahead

streamflow. Local k-fold testing was applied at each station

using both methods and the models comprising inputs of cur-

rent and one previous day’s streamflowdata provided the best

accuracy. According to the local k-fold testing results, the

highest accuracy was obtained for Pingchuan station while

the Gaoya station has the worst accuracy. GEP-based

model performed better than the SVM-based models in all

k-fold testing cases. The high variation of test results for

each case indicated the necessity of k-fold testing in daily

streamflow forecasting. Spatial (external) k-fold testing was

also employed by setting upstream stations as inputs to the

applied models and the downstream station as target. The

models trained using the nearest upstream station provided

the most accurate results. Comparing the external and local

models showed that the external GEP model might be com-

parable to the local SVM model. External models can be

successfully used in streamflow prediction when local data

are unavailable or unreliable.
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