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Abstract Evapotranspiration estimation is of crucial impor-
tance in arid and hyper-arid regions, which suffer from water
shortage, increasing dryness and heat. A modeling study is
reported here to cross-station assessment between hyper-arid
and humid conditions. The derived equations estimate ET0
values based on temperature-, radiation-, and mass transfer-
based configurations. Using data from two meteorological sta-
tions in a hyper-arid region of Iran and two meteorological
stations in a humid region of Spain, different local and cross-
station approaches are applied for developing and validating the
derived equations. The comparison of the gene expression pro-
gramming (GEP)-based-derived equations with corresponding
empirical-semi empirical ET0 estimation equations reveals the
superiority of new formulas in comparisonwith the correspond-
ing empirical equations. Therefore, the derived models can be
successfully applied in these hyper-arid and humid regions as
well as similar climatic contexts especially in data-lack situa-
tions. The results also show that when relying on proper input
configurations, cross-station might be a promising alternative
for locally trained models for the stations with data scarcity.

1 Introduction

Evapotranspiration (ET) estimation is a key issue in hydrolo-
gy, water resources management and planning, irrigation
scheduling, ecological modeling and environmental studies,
as well as for water allocating, especially in arid and semi-
arid regions which suffer from non-uniform spatial-temporal
distribution of total precipitation. The knowledge of differ-
ences between ET and precipitation (P) is important because
it indicates whether the station (catchment) is water loosing or
water gaining. This has particular importance in arid and
hyper-arid environments and would provide useful decision-
making guidelines (Domingo et al. 2001). Alike to many
points in the world, water resources are limited in Iran, espe-
cially in hyper-arid regions with non-uniform spatial and tem-
poral distribution of precipitation throughout the year. The
total annual precipitation in Iran is about 413 billion m3, from
which a total 280 billion m3 losses through evapotranspira-
tion. Consequently, total renewable yearly water amount is
less than 2000 m3 for arid and hyper arid regions. Nonetheless,
total water resource balance is sometimes negative leading to
over-withdrawal of water in these regions. Limited total renew-
able water resources, increasing trend of population, dispropor-
tion of water consumption scheme, lower efficiencies of irriga-
tion systems, and lack of a proper cope between the supplied
water and its demand, make it necessary to accurately reset the
demand amounts in these regions. So, accurate information
about ET values in these regions is of crucial importance inwater
resources planning and management.

The term reference ET (ET0) was introduced by the United
Nations Food and Agriculture Organization (FAO) for com-
puting crop evapotranspiration (Doorenbos and Pruitt 1977)
and represents the evapotranspiration from a hypothesized
reference crop (height 0.12 m, surface resistance 70 s/m and
albedo 0.23) (Allen et al. 1998). So far, numerous attempts
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have been made to estimate ET0 from measured meteorolog-
ical parameters because experimental measurements cannot
commonly be performed, due to absence of the required ex-
perimental equipment. The selection of one method usually
depends on the amount of available inputs in practice. Years
ago, the Penman-Monteith equation was adopted by the FAO
[FAO56-PM] as the reference standard model for estimating
ET0 and evaluating other ET0 equations (Allen et al. 1998).
Despite being validated using a large variety of meteorologi-
cal data worldwide, it presents the crucial drawback of de-
pending from a large number of meteorological inputs for its
application, which is especially dramatic in regions with a
limited network of meteorological stations. Therefore, the de-
velopment of alternative accurate enough models relying on
fewer inputs is of great importance, especially in arid and
semiarid regions with limited water and weather data
availability.

In recent years, successful applications of data-driven heu-
ristic approaches, among other artificial neural networks
(ANNs), neuro-fuzzy inference systems (ANFIS), and gene
expression programming (GEP), for ET0 estimation have been
performed worldwide. A complete review of such applica-
tions is beyond the scope of the present paper. In contrast to
ANNs and ANFIS, GEP models can be translated into rela-
tively simple expressions to be used by an end user.

Using the principles of genetic algorithms and genetic pro-
gramming, GEP was developed by Ferreira (2001). The prob-
lems are encoded in linear chromosomes of fixed length as a
computer program. GEP performs the symbolic regression
using most of the genetic operators of genetic algorithm
(GA). However, there are some differences between GEP
and GA. Any mathematical expression defined as symbolic
strings of fixed-length (chromosomes) in GA is represented to
be nonlinear entities of different size and shapes (parse trees).
But in GEP, it is encoded as simple strings of fixed-length
which are subsequently expressed as expression trees of dif-
ferent size and shape (e.g., Muñoz 2005).

Among others, Parasuraman et al. (2007), Guven et al.
(2008), Shiri et al. (2012), (2013a, 2014a, b) evaluated GP/
GEP models for estimating ET0 using meteorological inputs
in different climatic contexts. Such studies have focused on
local or regional ET0 estimation using a single data set assign-
ment. However, the cross-station assessment of GEP and other
data-driven approaches is still very limited or even pending in
ET0 estimation. The development of new models relying on
limited input, excluding variables like relative humidity, might
be justified, looking for specific input-output pattern mapping
under this climatic scenario. Further, the consideration of ex-
ogenous patterns from secondary ancillary stations for im-
proving the performance of locally trained models has been
assessed using ANNs and ANFIS, e.g., Kisi et al. (2012),
where they developed generalized ANFIS model for pan
evaporation modeling; Landeras et al. (2008), where they

developed regional ANN models for simulating ET0 in a hu-
mid climate of Sapin; Martí and Gasque (2010) and Martí
et al. (2010, 2011), where they used exogenous data for ET0

simulations; and Shiri et al. (2013b), where a generalized
ANFIS model was developed and evaluated to estimate ET0
using data from distant stations. However, no GEP-based
models have been applied in this regard. The present study
aims at assessing some well-known ET0 estimation models
(three temperature-based models: Hargreaves-Samani, adjust-
ed Hargreaves-Samani, Schendel; four radiation-based
models: Priestley-Taylor, Makkink, Turc, Irmak; five mass
transfer-based models: Dalton, Trabert, Meyer, WMO,
Mahringer) based on limited inputs in hyper-arid and humid
environments of Iran and Spain, respectively, including the
development of the corresponding GEP-based models, i.e.,
fed with the same inputs. Further, the study also includes a
cross-station scenario, assessing the performance differences
of GEP models taking advantage of ancillary data from other
stations.

2 Materials and methods

2.1 Study area and dataset

Data from four meteorological stations, namely Bam and
Zahedan (located in the central and south-western Iran) and
Derio and Igorre (located in the Basque Country, Northern
Spain) were used in this study. Figure 1 shows the geograph-
ical positions of the stations. Daily maximum, minimum, and
average air temperature (Tmax, Tmin, and Tmean, respectively);
solar radiation (RS); wind speed (WS); and relative humidity
(RH) comprising a period of 9 years were used to estimate ET0.
Two numerical indicators, namely the aridity index (IA)
(UNEP 1992), and the Currey continentality index (CICU)
were calculated to better characterize the weather stations
(see Table 1). In Table 1, it can be seen that the climatic
characteristics of all stations attending to ET0 are fluctuating
during the study period. Nonetheless, the total annual precip-
itation and ET0 values of Bam station corresponding to the
year 2005 are clearly different from the average annual pre-
cipitation of the whole study period (320.1 vs. 61.7 mm for
precipitation and 2218.79 vs. 1782.7 mm for ET0). This could
be based on the distance to the sea. In the case of Bam, this
distance is lower, and as result of this, instead of being a
hyper-arid site, it could present during some years more pre-
cipitation (2005) (anomalous year). However, such sharp var-
iations are not observed for CICU values, which involve mild
variations of temperature differences during the study period.
The distance to the sea and altitude in Zahedan are also high.
This might explain the lower Tmin values (wider thermal
ranges) in Zahedan in comparison to Bam. ET0 indexes, i.e.,
maximum value, standard deviation and skewness coefficient
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Persian Gulf

Fig. 1 Geographical positions of the studied stations

Table 1 Temporal variations of the climatologic characteristics of the studied stations during the study period (2000–2008)

P (mm) ET0 (mm) IA* CICU P (mm) ET0 (mm) IA* CICU

Iran
Bam Zahedan

2000 47.7 1520.45 0.031 3.031 40.7 1729.10 0.023 3.012
2001 21.1 1576.60 0.013 3.558 18.3 1758.44 0.010 3.308
2002 24 1575.34 0.015 3.096 34.2 1737.04 0.019 3.179
2003 24.3 1700.66 0.014 3.484 31.6 1674.27 0.018 3.447
2004 45.9 1699.89 0.027 3.059 64.9 1727.55 0.037 2.791
2005 320.1 2218.79 0.144 3.151 103.5 1638.36 0.063 2.970
2006 24 1903.24 0.019 3.419 41.1 1722.13 0.023 3.438
2007 33.9 1890.80 0.017 3.253 93.7 1638.85 0.057 3.105
2008 14.7 1958.63 0.007 3.844 101 1709.38 0.059 3.456
Total period 61.7 1782.70 0.031 3.840 58.7 1703.90 0.034 3.53
Spain

Derio Igorre
2000 1232.0 785.61 1.568 1.354 1612.3 745.82 2.161 1.526
2001 1223.2 754.21 1.621 1.259 1625.4 732.56 2.218 1.478
2002 1218.0 748.51 1.627 1.208 1611.4 722.12 2.231 1.321
2003 1210.3 816.60 1.482 1.930 1514.5 804.80 1.881 2.096
2004 1142.8 779.65 1.465 1.631 1410.6 781.75 1.804 1.699
2005 1294.1 820.84 1.576 1.689 1427.5 823.72 1.732 1.803
2006 1017.5 819.64 1.241 1.858 842.8 801.12 1.052 1.777
2007 1171.3 761.34 1.538 1.605 1371.5 710.19 1.931 1.829
2008 1486.6 785.96 1.891 1.429 1577.4 744.02 2.120 1.438
Total period 1221.75 785.81 1.556 2.073 1443.71 762.90 1.903 2.206

IA ¼ P
ET0

CICU ¼ Mi−mi

1þ θ
3

P total annual precipitation (mm), ET0 total annual ET0 (mm), IA aridity index, CICU Curey continentality index, Mi maximum monthly average
temperature (°C), mi minimum monthly average temperature (°C), θ station latitude (degrees)

*According to the BWorld Atlas of Desertification^ (UNEP 1992, 1997), dry lands have an aridity index of less than 0.65 and precipitation of less than
600 mm per year. Regions with IA less than 0.05 are categorized as hyper-arid regions
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(not presented here) in Bam are slightly higher in comparison
to Zahedan, which could be related to the low RH (minimum
value) and highWS (maximum value and standard deviation)
values. So, the advection pikes in Bammight increase ET0 and
make more difficult to find out the model ET0 response pat-
terns. Attending to the humid stations, such sharp variations
are observed for the precipitation values of Igorre Station,
which presents, during some years, less precipitation (2006).

2.2 Input selection

Three categories of ET0 estimation models, namely tempera-
ture-, radiation-, and mass transfer-based models were ap-
plied. As stated in Section 1, the input combinations were
defined based on available known models relying on limited
inputs, aiming at looking for specific GEP input-output rela-
tionships in the studied climatic context. Accordingly, the se-
lected input combinations were based on the following
existing approaches:

1. Temperature-based models. The Hargreaves-Samani (HS)
model (Hargreaves and Samani 1985) is recommended by
Allen et al. (1998) if only air temperature records are avail-
able. Although some researches recommend HS applica-
tion for periods longer than 1 month (e.g., Shuttleworth
1993) the applicability of this model has been validated
for daily time scales, too (e.g., Hargreaves and Allen
2003). There are various adaptations of the HS model in
the literature for different climatic contexts, but in the pres-
ent study, the original form of HS model (referred to as
HS1) as well as the adjusted form of Trajkovic (2007)
(HS2) will be used in the analysis (see Table 2 for expres-
sions). Further, the Schendel model (Schendel 1967) was
applied along with HS1 and HS2.

2. Radiation-based models. Four common radiation-based
models, namely the Priestley-Taylor (PT) (1972), the
Makkink (1957), the Turc (1961), and the Irmak (Irmak
et al. 2003) models were used here. The PT model is the
most widely used radiation-based ET0 model as a revised
form of the Penman model (1948). Makkink (1957) de-
veloped a model to estimate ET0 for grassed lands under
cool climatic conditions of the Netherlands. The Turc
model is a simplification of the Makkink model and re-
quires air temperature, solar radiation, and relative humid-
ity as input variables. The Irmak model is a multi-
regression-based equation, which has been calibrated
and tested through Florida’s data.

3. Mass transfer-basedmodels. Using the Dalton’s law, mass
transfer-based models utilize the eddy motion transfer of
water vapor from the evaporative surface into the sur-
rounding atmosphere. These models are easier to use
and generally demand air temperature, relative humidity,
and wind speed measurements as inputs (Singh and Xu

1997). In the present study, the Dalton (1802), Trabert
(1896), Meyer (1926), WMO (1966), and Mahringer
(1970) models were considered.

The corresponding mathematical expressions of these
models as well as the necessary meteorological inputs for their
application are given in Table 2. These input combinations
were used to feed the corresponding GEP-based models,
too. Moreover, FAO56-PM ET0 values were considered as
targets for calibrating the applied models, which is an accept-
ed and very common practice, given the absence of experi-
mental measurements. Figure 2 illustrates the applied input
configurations.

2.3 Gene expression programming

The application of the GEP procedure involves the following
steps.

1. Determining the fitness function: the root mean square
error (RMSE) fitness function is applied here according
to Shiri et al. (2012).

2. Choosing the set of terminals T and the set of functions F:
Here, the terminal set includes the meteorological vari-
ables. The appropriate functions for modeling ET0 are

þ;−;�;� ffiffi;3
p ;

ffip
; ln; ex; x2; x3; sinx; cosx;Arctgx

n o

(Shiri et al. 2012).
3. Selecting the length of head (h) and genes per chromo-

some: Here, h = 8 and three genes per chromosome were
employed according to Ferreira (2001).

4. Choosing of the linking function: Here, addition linking
functions were applied according to Shiri et al. (2012).

5. Choosing the genetic operators: The parameters used per
run are those used by Shiri et al. (2012).

2.4 Study flowchart

Two methodological approaches were considered in this study
for assessing the model performance: (a) local approach and (b)
cross-station approach. In approach (a), the aforementioned
models were applied individually per station using the com-
plete local dataset (9-year daily parameters). The application
of GEP-based models requires splitting the dataset into three
subsets (training, testing, and validation). In approach (a), these
subsets were defined chronologically. Accordingly, data from
January 2000 to December 2004 (1827 patterns) were used for
developing (training) the GEPmodels. Then, data from January
2005 to December 2006 (730 patterns) were used for testing the
GEP models, and finally, the data from January 2007 to
December 2008 (731 patterns) were reserved for an
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Table 2 Mathematical
expressions of applied ET0

estimation equations

ET0 models Meteorological inputs Expression

Standard ET0 model
FAO56-PM Tmean, RS, WS, RH

ET0 ¼ 0:408Δ Rn−Gð Þþγ 900
Tmeanþ273WS eS−eað Þ

Δþγ 1þ0:34WSð Þ
Temperature-based ET0 estimation models
Hargreaves-Samani (HS1) Tmean, Tmax, Tmin, [Ra]

ET0 ¼ 0:0023Ra
λ Tmean þ 17:8ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tmax−Tmin
p

HS2 Tmean, Tmax, Tmin, [Ra]
ET0 ¼ 0:0023Ra

λ Tmean þ 17:8ð Þ Tmax−Tminð Þ0:424
Schendel Tmean, RH

ET0 ¼ 16Tmean
RH

Radiation-based ET0 estimation models
Irmak Tmean, RS ET0 = 0.149RS + 0.079Tmean − 0.611
Priestley-Taylor Tmean, RS

ET0 ¼ α
λ

Δ
Δþγ Rn−Gð Þ

Makkink Tmean, RS
ET0 ¼ 0:61 Δ

Δþγ
RS
λ −0:12

Turc Tmean, RS, RH
ET0 ¼ aT0:013 Tmean

Tmeanþ15
23:8856RSþ50

λ

RH ≥50→aT ¼ 1

RH≺50→aT ¼ 1þ 50−RH

70
Mass transfer-based ET0 estimation models
Dalton ea, eS, WS ET0 = (0.3648 + 0.07223WS)(eS − ea)
Trabert ea, eS, WS

ET0 ¼ 0:3075:
ffiffiffiffiffiffiffi
WS

p
eS−eað Þ

Meyer ea, eS, WS ET0 = (0.375 + 0.0502WS)(eS − ea)
WMO ea, eS, WS ET0 = (0.1298 + 0.0934WS)(eS − ea)
Mahringer ea, eS, WS

ET0 ¼ 0:15072:
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3:6WS

p
eS−eað Þ

In these equations, ET0 reference evapotranspiration (mm/day), Δ slope of the saturation vapor pressure function
(kPa/o C), γ psychometric constant (kPa/°C), Rn net radiation (MJ/m2 /day),G soil heat flux density (MJ/m2 /day),
Tmean mean air temperature (°C), WS average 24 h wind speed at 2 m height (m/s), eS saturation vapor pressure
(kPa), ea. actual vapor pressure,α 1.26, λ latent heat of the evaporation (MJ/Kg), Ra extraterrestrial radiation (mm/
day), RS daily solar radiation (MJ/m2 /day), RH relative humidity (%), Tmax maximum air temperature (°C), Tmin
minimum air temperature (°C)

GEP- input configurations

Temperature-

based

Radiation-

based

Mass transfer-

based

. Tmax, Tmin, Tmean, Ra (GEP1)

. Tmean, RH (GEP2)

. Tmean, RS (GEP3)

. Tmean, RS, RH (GEP4)
. ea, es, WS (GEP5)

Fig. 2 Illustration of applied input configurations
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independent validation of the GEP models. Cross-validating
reduces the over-fitting risk and helps the user to efficiently
assess the models’ ability (Pour Ali Baba et al. 2013). In ap-
proach (b), two different applications were examined: (b1) ex-
ternal assessment of the GEP models and (b2) application with
ancillary data. In approach (b1), the GEP model was trained
using the complete dataset of one station and tested using the
complete dataset of the second station. In approach (b2), the
meteorological patterns from one station were used as inputs
for estimating ET0 at the second station. Figure 3 represents a
schematic flowchart of the study. The different approaches
mentioned above ((a), (b1), and (b2)) are represented in this
figure. This flowchart is for arid stations. In the case of humid
stations, the approach is the same.

3 Results and discussions

3.1 Local derivation of ET0 equations

The comparison of the monthly ET0 values estimated with the
conventional models in the arid and humid stations (not

presented here) shows that in case of temperature-based
models, HS1 provides the most accurate results for the arid
stations (Figs. 4 and 5). Comparing its performance with other
temperature-based models, HS1 can estimate the ET0 trend
better than HS2 and Schendel models throughout the
12 months (dry as well as wet seasons). Also, three statistical
parameters were used for assessing the models’ performance,
namely, the coefficient of determination (r2), the root mean
square error (RMSE), and the coefficient of residual mass
(CRM) (Legates and McCabe 1999). The results presented
in Table 3 confirm this statement. So, HS1 might be ranked
as the most accurate temperature-based model in arid stations.
On a RMSE basis, the HS1 performance in Bam and Zahedan
is similar (ΔRMSE = 0.05 mm/day), while HS2 and Schendel
models show a different performance in both stations.
Although the RMSE differences might be linked to the aver-
age ET0 order of magnitude at each station, the CRM values
(which are a weighted ET0 differences) are quite different in
both stations, suggesting a higher underestimation in
Zahedan, especially for the Schendel model. This may be
attributed to higher temperature range differences and lower
mean wind speed values in Zahedan (Landeras et al. 2009). In
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the case of humid stations, however, the HS2 model presents
most accurate results as can be seen from Fig. 5 and Table 3.
Comparing between two stations, the HS2 performance in
Derio and Igorre is similar (ΔRMSE = 0.006 mm/day;
ΔCRM = 0.024), while HS1 and Schendel models show dif-
ferent performance. Nonetheless, the CRM values of the HS2
model show overestimations trend in both stations, while the
trend of Schendel and HS1models are different in the stations.

Attending to the radiation-based models, all the applied
models underestimate ET0 throughout the months in the arid
stations. The Turc model provides the worst estimates, while
the PT model offers the most accurate estimations for Bam
and Zahedan stations. On an RMSE basis, the overall accura-
cies of the radiation-based models in Zahedan are higher than
those of Bam. This might be caused by the solar radiation-air
temperature relationship characteristics, where the average air
temperature in Bam is higher than in Zahedan (24.2 vs.
19.45 °C), while its average incoming solar radiation is lower
than in Zahedan (17.61 vs. 20.45 MJ/m2 day). Moreover, the
inaccurate performance of the Turc model in both stations
may be due to the high skewed nature of RH in these stations.

Similar to the arid stations, in the humid locations, the applied
radiation-based models underestimate ET0 throughout the
months, except the PT and Irmak models, which show over-
estimation trend in both Derio and Igorre stations, in some
month (especially in warm season). Among the radiation-
based models, the Irmak model has the most accurate perfor-
mance in both Derio and Igorre, with the lowest performance
difference between two stations (ΔRMSE = 0.005 mm/day).

Finally, the mass transfer-based models provide inaccurate
results in both arid and humid stations, although its simula-
tions are more accurate for humid stations than those of arid
stations. A reason for this might be the low aerodynamic ef-
fects in the studied arid regions, which make it difficult to
estimate ET0 from the available data using these models. In
general, for the studied hyper-arid stations, the temperature-
based models (i.e., HS1) might be ranked as the most accurate
models, followed by radiation-based models (i.e., PT model)
and mass transfer-based models (i.e., Mahringer). The perfor-
mance of themodels in Zahedan is more accurate than in Bam,
which can be attributed to the high ET0 values of Bam. A
similar trend can be observed in the humid stations, where

(a)

(b)

(c)

0

2

4

6

8

10

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov DecA
v
er

ag
e 

m
o

n
th

ly
 E

T
0

(m
m

/m
o

n
th

)
Bam HS2 HS1 Schendel FAO56-PM

0

4

8

12

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov DecA
v
er

ag
e 

m
o

n
th

ly
 E

T
0
 

(m
m

/m
o

n
th

)

Zahedan HS2 HS1 Schendel FAO56-PM

0

2

4

6

8

10

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

A
v
er

ag
e 

m
o
n

th
ly

 E
T

0
  
  

  
  
  

(m
m

/m
o
n

th
)

Bam Makkink Turc PT Irmak FAO56-PM

0

4

8

12

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

A
v
er

ag
e 

m
o
n

th
ly

 E
T

0
 

(m
m

/m
o
n

th
)

Zahedan
Makkink Turc PT
Irmak FAO56-PM

0

2

4

6

8

10

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

A
v
er

ag
e 

m
o
n

th
ly

 E
T

0
 

(m
m

/m
o
n

th
)

Bam Mahringer WMO Meyer

Trabert Dalton FAO56-PM

0

4

8

12

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

A
v
er

ag
e 

m
o
n

th
ly

 E
T

0
 

(m
m

/m
o
n

th
)

Zahedan
Mahringer WMO Meyer

Trabert Dalton FAO56-PM

Fig. 4 Average monthly ET0 values of the applied ET0 estimation models during the study period (2000–2008) arid stations: a temperature-based
models, b radiation-based models, and c mass transfer-based models
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the Irmak model is ranked as the most accurate model, follow-
ed by HS2 model.

Tables 4 and 5 sum up the performance of the GEP-based
models for, respectively, arid and humid stations during the
testing and validation periods. Attending to the testing statis-
tics, GEP5 (corresponding to mass transfer-based models)
provides the most accurate results in both arid stations.
According to Table 4, it seems that the relative difference
between the GEP1 (temperature-based) and GEP4
(radiation-based) models is much larger in Bam than in
Zahedan in the testing period. This suggests that RS is much
more effective over ET0 in Bam than in Zahedan both in the
testing and validation periods. The accuracy of the GEP3 and

GEP4 models is very similar in Bam, while the GEP4 model
performs better than the GEP3 model in Zahedan attending to
RMSE. This reveals that RH might be more influential on ET0

in Zahedan than in Bam. This can also be observed attending
to the statistical characteristics of the RH data, which have a
high skewed distribution (not presented here) in Bam. The
relative differences between the GEP5 and GEP4 models
clearly show that the aerodynamic effect on ET0 is higher in
Bam than in Zahedan. It should be noted that the accuracy of
the GEP models in the testing period (2005–2006) is lower
than in the validation period (2007–2008). The reason for this
might be the fact that Bam presents high ET0 values in the test
period (especially in 2005), as can be clearly observed in
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Fig. 5 Average monthly ET0 values of the applied ET0 estimation models during the study period (2000–2008) humid stations: a temperature-based
models, b radiation-based models, and c mass transfer-based models

384 Kiafar H. et al.



Table 3 Statistics of the ET0 estimation models during the study period (2000–2008)

Arid stations (Iran) Humid stations (Spain)

Bam Zahedan Derio Igorre

r2 RMSE
(mm/day)

CRM r2 RMSE
(mm/day)

CRM r2 RMSE
(mm/day)

CRM r2 RMSE
(mm/day)

CRM

Temperature-based models
HS1 0.919 0.617 0.042 0.896 0.667 0.904 0.854 0.661 −0.190 0.882 0.688 0.185
HS2 0.917 1.216 0.208 0.909 1.062 0.748 0.854 0.428 0.002 0.868 0.434 0.026
Schendel 0.539 2.082 −0.214 0.836 1.150 0.716 0.504 1.110 −0.353 0.571 1.086 0.255

Radiation-based models
Irmak 0.918 1.185 0.172 0.890 1.039 0.768 0.926 0.358 −0.013 0.936 0.353 −0.053
Priestly-Taylor 0.884 0.886 0.114 0.892 0.843 0.847 0.939 0.444 0.039 0.921 0.466 −0.001
Makkink 0.901 1.812 0.722 0.860 1.401 0.579 0.8/16 1.591 0.722 0.890 1.611 0.746
Turc 0.846 3.776 0.320 0.824 3.568 −1.729 0.919 0.540 0.227 0.919 0.482 0.184

Mass transfer-based models
Dalton 0.313 7.210 −0.667 0.883 2.340 −0.183 0.405 0.922 0.104 0.326 1.092 0.073
Trabert 0.408 5.566 −0.512 0.877 1.875 0.245 0.368 1.095 0.336 0.302 1.167 0.293
Meyer 0.358 5.226 −0.429 0.903 1.504 0.514 0.413 0.915 0.140 0.332 1.069 0.115
WMO 0.224 7.440 −0.396 0.768 1.475 0.545 0.342 1.319 0.509 0.278 1.340 0.476
Mahringer 0.408 4.990 −0.406 0.877 1.480 0.529 0.368 1.142 0.382 0.303 1.197 0.342

Table 5 Testing and validation statistics of the GEP and best empirical
models-humid stations

Testing (2005–2006) Validation (2007–2008)

r2 RMSE
(mm/day)

CRM r2 RMSE
(mm/day)

CRM

Derio
Temperature based

GEP1 0.839 0.495 0.013 0.845 0.485 0.016
GEP2 0.677 0.711 −0.042 0.718 0.670 0.068
HS2 0.858 0.503 0.009 0.792 0.453 −0.001

Radiation based
GEP3 0.937 0.309 0.010 0.938 0.305 0.001
GEP4 0.930 0.312 −0.013 0.940 0.301 0.005

Irmak 0.927 0.415 −0.007 0.927 0.858 −0.009
Mass transfer based

GEP5 0.617 0.773 −0.055 0.579 0.804 0.023
Dalton 0.448 1.054 0.088 0.370 1.033 0.126

Igorre
Temperature based

GEP1 0.929 0.510 −0.030 0.930 0.490 −0.098
GEP2 0.840 0.735 −0.078 0.849 0.772 0.072
HS2 0.866 0.525 0.012 0.770 0.482 −0.071

Radiation based
GEP3 0.967 0.350 0.006 0.977 0.286 −0.008
GEP4 0.934 0.490 −0.028 0.967 0.351 0.029
Irmak 0.925 0.445 −0.060 0.942 0.360 −0.013

Mass transfer based
GEP5 0.729 0.938 −0.288 0.666 0.982 −0.332
Dalton 0.363 1.290 0.066 0.303 1.182 0.058

Table 4 Testing and validation statistics of the GEP and best empirical
models-arid stations

Testing (2005–2006) Validation (2007–2008)

r2 RMSE
(mm/day)

CRM r2 RMSE
(mm/day)

CRM

Bam
Temperature based

GEP1 0.932 0.802 0.142 0.975 0.768 0.115
GEP2 0.708 1.257 0.121 0.951 0.939 0.140
HS1 0.908 0.808 0.105 0.972 0.762 0.121

Radiation based
GEP3 0.916 0.847 0.120 0.964 0.908 0.146
GEP4 0.907 0.846 0.114 0.968 0.898 0.145

PT 0.885 1.119 0.176 0.932 1.147 0.186
Mass transfer based

GEP5 0.902 0.667 0.043 0.950 0.593 0.050
Mahringer 0.180 9.821 −0.790 0.970 3.165 −0.477

Zahedan
Temperature based

GEP1 0.930 0.510 −0.032 0.937 0.505 −0.014
GEP2 0.900 0.622 −0.036 0.910 0.592 −0.011
HS1 0.909 0.640 0.918 0.912 0.616 0.927

Radiation based
GEP3 0.932 0.531 −0.032 0.930 0.532 −0.017
GEP4 0.938 0.505 −0.028 0.935 0.501 −0.006
PT 0.901 0.779 0.879 0.903 0.796 0.879

Mass transfer based
GEP5 0.936 0.495 −0.006 0.944 0.465 −0.006
Mahringer 0.876 1.376 0.623 0.882 1.398 0.628
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Table 1. It can be observed that the trend, at least for mass
transfer-based models, is adverse to ET0 equations and mass
transfer-based GEP models perform better than temperature-
based and radiation-based GEP models. This may be ex-
plained through aerodynamic component effects on ET0

values. It seems that the mass transfer-based equations are
not able to explain this effect in these dry regions suitably,
but GEP models provide more accurate estimates with rela-
tively lower error values. In Zahedan, wind speed presents the
highest skewness in comparison to the other climatic param-
eters, and in both stations, the standard deviation values of this
parameter take high values. This higher variation might cause
inaccurate estimates when conventional approaches are used.
Nevertheless, GEP allows for a more realistic mapping of this
nonlinear complex process. Attending to the general estima-
tion trends, the GEP-based models overestimate ET0 values in
Zahedan (negative CRM values) and underestimate it in Bam
(positive values of CRM). In contrast to arid stations, the
radiation-based GEP3 and GEP4 models perform more accu-
rately than the other models in humid stations (see Table 5).

Kisi (2009) also indicated in his study that the RH input has a
significant effect on evaporation and adding this parameter
into input combination significantly increases the models’ ac-
curacies in humid stations or climate. It is clear from Table 5
that the GEP models provide more accurate estimates for
Derio Station than the Igorre. The reason of this may be the
fact that the ET0 data of Igorre Station have a wider range and
a higher skewness than those of the Derio Station. In some
cases, there are higher values of determination coefficient in
the testing data set compared to the validation data set. This
should be due to the fact that the characteristics of validation
data set is more similar to the training (calibration) data set
than the testing data set.

Table 6 Statistical criteria values of the GEP cross-station application:
External training

r2 RMSE
(mm/day)

CRM r2 RMSE
(mm/day)

CRM

a b

GEP1 0.886 0.783 0.089 0.891 0.858 −0.104
GEP2 0.878 1.040 0.167 0.817 1.211 −0.170
GEP3 0.860 0.764 −0.044 0.871 1.233 −0.185
GEP4 0.898 0.707 −0.014 0.876 1.025 −0.149
GEP5 0.929 0.832 0.135 0.906 0.940 −0.138

c d

GEP1 0.808 0.589 −0.019 0.755 0.618 −0.026
GEP2 0.624 0.830 0.066 0.640 0.780 −0.080
GEP3 0.935 0.348 −0.033 0.931 0.326 0.012

GEP4 0.947 0.324 −0.034 0.920 0.350 0.013

GEP5 0.425 1.013 0.005 0.517 0.863 0.010

e f

GEP1 0.528 1.178 0.020 0.882 1.366 0.229

GEP2 0.624 4.578 0.987 0.520 2.151 0.335

GEP3 0.924 0.654 -0.183 0.916 1.075 0.245

GEP4 0.922 0.862 -0.318 0.876 0.941 0.124

GEP5 0.805 0.998 0.135 0.755 1.258 0.235

aGEPmodel trained using the whole data of Bam station and tested using
the whole data of Zahedan station, b GEP model trained using the whole
data of Zahedan station and tested using the whole data of Bam station, c
GEP model trained using the whole data of Derio station and tested using
the whole data of Igorre station, d GEP model trained using the whole
data of Igorre station and tested using the whole data of Derio station, e
GEP model trained using the whole data of arid stations and tested using
the whole data of humid stations, f GEP model trained using the whole
data of humid stations and tested using the whole data of arid stations

Table 7 Statistical criteria values of the GEP cross-station application:
ancillary data application

Test (2005–2006) Validation (2007–2008)

r2 RMSE
(mm/day)

CRM r2 RMSE
(mm/day)

CRM

First typology

GEP1 0.882 0.674 −0.011 0.926 0.581 −0.033
GEP2 0.641 1.195 −0.029 0.904 0.664 −0.025
GEP3 0.727 1.028 −0.027 0.923 0.584 −0.042
GEP4 0.787 0.917 −0.016 0.926 0.563 −0.037
GEP5 0.646 1.202 −0.048 0.905 0.724 −0.075
Second typology

GEP1 0.820 1.067 0.127 0.931 1.158 0.179

GEP2 0.694 1.275 0.121 0.822 1.370 0.180

GEP3 0.774 1.129 0.119 0.906 1.200 0.175

GEP4 0.813 1.074 0.125 0.932 1.147 0.180

GEP5 0.708 1.233 0.115 0.822 1.849 0.266

Third typology

GEP1 0.729 0.943 0.070 0.621 1.092 −0.068
GEP2 0.597 1.144 −0.010 0.541 1.231 −0.028
GEP3 0.694 1.066 0.029 0.595 1.021 −0.041
GEP4 0.602 1.064 0.033 0.702 1.211 −0.041
GEP5 0.622 1.116 −0.017 0.654 1.244 −0.043
Fourth typology

GEP1 0.606 0.793 0.010 0.579 0.990 0.004

GEP2 0.650 0.940 -0.040 0.596 0.936 0.054

GEP3 0.564 0.924 -0.012 0.508 1.013 0.060

GEP4 0.497 0.796 -0.021 0.550 0.980 0.018

GEP5 0.502 0.897 -0.006 0.564 0.891 0.053

First typologyMeteorological parameters of Bam station are used as input
variables to estimate ET0 values of Zahedan station, Second typology
Meteorological parameters of Zahedan station are used as input variables
to estimate ET0 values of Bam station, Third typology Meteorological
parameters of Derio station are used as input variables to estimate ET0

values of Igorre station, Fourth typology Meteorological parameters of
Igorre station are used as input variables to estimate ET0 values of Derio
station
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3.2 Cross-station derivation of ET0 equations

As stated in Section 2, two different applications were consid-
ered in the cross-station approach: external assessment and
ancillary data supply application. The r2, RMSE, and CRM
results of the GEPmodels for the cross-station applications are
given in Tables 6 and 7. In the case of the external assessment
(a), the GEP4 (radiation-based) model provides the most ac-
curate results, followed by the GEP3, GEP1, GEP5, and
GEP2 models, respectively. In the case of the external assess-
ment (b), however, the mass transfer-based GEP5 model per-
forms better than the other models. The accuracy ranks of the
other GEP models showing decreasing accuracy, are, respec-
tively, GEP1, GEP4, GEP2, and GEP3. In the case of external
assessment (c), similar to the case (a), the GEP4 (radiation-
based) model has the best accuracy followed by the GEP3,
GEP1, GEP2, and GEP5. In the case of external assessment
(d), the GEP3 (radiation-based) model performs the best
followed by the GEP4, GEP1, GEP2, and GEP5. In the case
of external assessment (e), the radiation-based GEP3 model
has the most accurate results followed by the GEP4, GEP5,
GEP1, and GEP2. In the case of external assessment (f), the
radiation-based GEP4 model gives the most accurate esti-
mates followed by the GEP3, GEP5, GEP1, and GEP2.
These different estimation trends of the GEP models in the
external assessment may be due to different patterns in the
trends of the climatic variables in four stations. Accordingly,
the input-output relationships might differ in both arid and
humid stations andmight not be extrapolatable. It is clear from
the Table 6 that the radiation-based GEP models (GEP3 and
GEP4) generally perform better than the other models in the
case of external training. Comparison of (a), (b) vs. (f) cases
indicates that the use of data from arid station in training

considerably increases model accuracy in arid stations. This
is also valid for the humid stations (see the cases of (c), (d) vs.
(e) in Table 6). Similar to the previous application (local ap-
plication), the GEP models generally gives better estimates in
humid stations than the arid stations for the cross-station ap-
plication with external training. GEP2model (relying on Tmean

and RH) seems to be unable to estimate ET0 with enough
accuracy in both cases. According to Table 6, it seems prefer-
able to use Bam meteorological data (in both cross applica-
tions) to estimate in Zahedan than to use Zahedan data to
estimate Bam. This can be explained according to data statis-
tics (not presented here), where ET0 statistical indices presents
a wider range in Bam than in Zahedan. So, there are more pike
events of ET0 in Bam than in Zahedan. The models calibrated
using Zahedan’s data may have difficulty in estimating ET0

data (extrapolation difficulty) in Bam, because the training
patterns cover a lower range than the corresponding test set.
Another reason might be related with the skewed distributed
ET0 data in Bam, which makes it difficult to estimate through
external training. Mass transfer-based GEP5 models seem to
provide less-scattered estimates than the other GEP models.
However, GEP5 models significantly underestimate ET0 in
Bam. Hence, based on the considered limited inputs used to
feed the models, the relationships encountered might not be
able to generalize properly out of the training station, espe-
cially if the range spectrum is very different within training
and testing stations. The generalizability might be partially
improved through the consideration of further inputs.

The test and validation performance accuracy of the GEP
models considering ancillary input data is given in Table 7.
The GEP4 (radiation-based) model provides the most accurate
results in the validation period, followed, respectively, by the
GEP1, GEP3, GEP2, and GEP5 models for the first and

Table 8 Mathematical expressions of the optimal GEP models

Model Expression

Optimal GEPs: Local application

Zahedan GEP5
ET0 ¼ arctg ea−eSð Þ:eS½ �4 þ arctg 2eS−1:865ea½ �: ffiffiffiffiffiffiffi

WS
3
p þ W2

S ea þ eS þWSð Þ−1
� �0:166

Igorre GEP3
ET0 ¼ RS þ TmeanRS−0:5656½ �0:25þ arctg sin −0:153RSð Þ½ � þ Sin arctg −41:68T−1

mean

� �� �

Optimal GEPs: Cross-station application: External training

Scenario a GEP4
ET0 ¼ 2Tmean−R2

S

� �
Exp 0:225Tmeanð Þ½ � þ Arctg −3:878RHð Þ Exp 0:17Tmeanð Þ−1

� �h i
þ R0:66

S

Scenario b GEP1
ET0 ¼ Tmean 0:0053 Ra−5:3467ð Þð Þ½ � þ arctg Tmean þ 6:8161R−1

a −Tmin−0:71
� �þ 0:0106Tmax−0:07

Scenario c GEP4
ET0 ¼ sin cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Exp 0:0014þ ffiffiffiffiffiffi

RS
3
p� �qh i

þ sin Ln Tmean þ 5:7106ð Þ2 þ 5:165RS

� �h i
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Exp

ffiffiffiffiffiffi
RS

3
pp

Scenario d GEP3
ET0 ¼ cos 0:7475þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tmean þ 6:0823
p� �þ 2Tmean þ 1:577ð Þ0:16 ffiffiffiffiffiffi

RS
3
p þ sin arctg

ffiffiffiffiffiffi
RS

3
p

−0:841
ffiffiffiffiffiffi
RS

p� �
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second topology. In the third topology, however, GEP3
(radiation-based) model has the best accuracy while the
GEP5 model provides the best estimates in the fourth topolo-
gy. In contrast to the local application, the mass transfer-based
GEP5 model performs worse than the other models in the
ancillary data application except for the fourth typology. A
comparison with the results of the local application (Table 5)
clearly reveals that the ancillary data application decreases the
models’ accuracies much more in Bam. The reasons given in
the external training application seem to be also valid for this
application (ancillary data application). Comparing with the
cross-station application 1 (external training), the GEPmodels
seem to be more accurate in this application, in which local
meteorological data were used in calibration of the GEP
models. The performance of the cross-station applications is
quite accurate. So, in case of lack of meteorological data in
hyper-arid and humid areas, the utilization of data of only one
station could be interesting for the estimation of ET0 in wide
areas. Table 8 represents the optimal GEP mathematical ex-
pressions for applied scenarios. As can be clearly observed
from the tables, the model expressions can be used by anyone
not necessarily being familiar with GEP. The GEP model pro-
vides practical way for ET0 estimation to obtain accurate re-
sults and encourages use of GEP in other aspects of water
engineering studies.

Nevertheless, according to Santos et al. (2014), the worst
results of the approaches considered in humid stations could
be due to the necessity to include another independent variable
as the NAO index, which might be subject to future studies.

4 Conclusions

This paper provides new expressions based on gene expres-
sion programming to estimate reference evapotranspiration
from limited inputs in hyper-arid and humid environments.
The performance of the new heuristic models is compared
with the performance of the corresponding temperature-, radi-
ation-, and mass transfer-based conventional approaches, con-
sidering a local and cross-station assessment in two hyper-arid
and humid stations of Iran and Spain, respectively. The local
prediction ability of the GEP models is higher than the perfor-
mance of the conventional approaches. So, if enough local
data series are available, the development of local GEP
models can be a more accurate alternative to conventional
existing approaches. The accuracy of the GEP models de-
creases outside by using cross-station scenario, because
models relying on ancillary inputs might not be able to per-
form a suitable simulation. The results showed that in case of
lack of meteorological data in hyper-arid and humid areas, the
utilization of data of only one station could be interesting. In
the present study, data from two hyper-arid and humid stations
were applied for deriving the new expressions. Further studies

might be carried out for analyzing the ET0 trends and deriving
new equations using data from similar stations worldwide.
These may be subjects for future studies.
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