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Abstract Evapotranspiration estimation is of crucial impor-
tance in arid and hyper-arid regions, which suffer from water
shortage, increasing dryness and heat. A modeling study is
reported here to cross-station assessment between hyper-arid
and humid conditions. The derived equations estimate ET),
values based on temperature-, radiation-, and mass transfer-
based configurations. Using data from two meteorological sta-
tions in a hyper-arid region of Iran and two meteorological
stations in a humid region of Spain, different local and cross-
station approaches are applied for developing and validating the
derived equations. The comparison of the gene expression pro-
gramming (GEP)-based-derived equations with corresponding
empirical-semi empirical ET,, estimation equations reveals the
superiority of new formulas in comparison with the correspond-
ing empirical equations. Therefore, the derived models can be
successfully applied in these hyper-arid and humid regions as
well as similar climatic contexts especially in data-lack situa-
tions. The results also show that when relying on proper input
configurations, cross-station might be a promising alternative
for locally trained models for the stations with data scarcity.
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1 Introduction

Evapotranspiration (ET) estimation is a key issue in hydrolo-
gy, water resources management and planning, irrigation
scheduling, ecological modeling and environmental studies,
as well as for water allocating, especially in arid and semi-
arid regions which suffer from non-uniform spatial-temporal
distribution of total precipitation. The knowledge of differ-
ences between ET and precipitation (P) is important because
it indicates whether the station (catchment) is water loosing or
water gaining. This has particular importance in arid and
hyper-arid environments and would provide useful decision-
making guidelines (Domingo et al. 2001). Alike to many
points in the world, water resources are limited in Iran, espe-
cially in hyper-arid regions with non-uniform spatial and tem-
poral distribution of precipitation throughout the year. The
total annual precipitation in Iran is about 413 billion m>, from
which a total 280 billion m® losses through evapotranspira-
tion. Consequently, total renewable yearly water amount is
less than 2000 m? for arid and hyper arid regions. Nonetheless,
total water resource balance is sometimes negative leading to
over-withdrawal of water in these regions. Limited total renew-
able water resources, increasing trend of population, dispropor-
tion of water consumption scheme, lower efficiencies of irriga-
tion systems, and lack of a proper cope between the supplied
water and its demand, make it necessary to accurately reset the
demand amounts in these regions. So, accurate information
about ET values in these regions is of crucial importance in water
resources planning and management.

The term reference ET (ET) was introduced by the United
Nations Food and Agriculture Organization (FAO) for com-
puting crop evapotranspiration (Doorenbos and Pruitt 1977)
and represents the evapotranspiration from a hypothesized
reference crop (height 0.12 m, surface resistance 70 s/m and
albedo 0.23) (Allen et al. 1998). So far, numerous attempts

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00704-016-1888-5&domain=pdf

378

Kiafar H. et al.

have been made to estimate ET,, from measured meteorolog-
ical parameters because experimental measurements cannot
commonly be performed, due to absence of the required ex-
perimental equipment. The selection of one method usually
depends on the amount of available inputs in practice. Years
ago, the Penman-Monteith equation was adopted by the FAO
[FAO56-PM] as the reference standard model for estimating
ET, and evaluating other ET, equations (Allen et al. 1998).
Despite being validated using a large variety of meteorologi-
cal data worldwide, it presents the crucial drawback of de-
pending from a large number of meteorological inputs for its
application, which is especially dramatic in regions with a
limited network of meteorological stations. Therefore, the de-
velopment of alternative accurate enough models relying on
fewer inputs is of great importance, especially in arid and
semiarid regions with limited water and weather data
availability.

In recent years, successful applications of data-driven heu-
ristic approaches, among other artificial neural networks
(ANNSs), neuro-fuzzy inference systems (ANFIS), and gene
expression programming (GEP), for ET estimation have been
performed worldwide. A complete review of such applica-
tions is beyond the scope of the present paper. In contrast to
ANNSs and ANFIS, GEP models can be translated into rela-
tively simple expressions to be used by an end user.

Using the principles of genetic algorithms and genetic pro-
gramming, GEP was developed by Ferreira (2001). The prob-
lems are encoded in linear chromosomes of fixed length as a
computer program. GEP performs the symbolic regression
using most of the genetic operators of genetic algorithm
(GA). However, there are some differences between GEP
and GA. Any mathematical expression defined as symbolic
strings of fixed-length (chromosomes) in GA is represented to
be nonlinear entities of different size and shapes (parse trees).
But in GEP, it is encoded as simple strings of fixed-length
which are subsequently expressed as expression trees of dif-
ferent size and shape (e.g., Muiioz 2005).

Among others, Parasuraman et al. (2007), Guven et al.
(2008), Shiri et al. (2012), (2013a, 2014a, b) evaluated GP/
GEP models for estimating ET,, using meteorological inputs
in different climatic contexts. Such studies have focused on
local or regional ET estimation using a single data set assign-
ment. However, the cross-station assessment of GEP and other
data-driven approaches is still very limited or even pending in
ET, estimation. The development of new models relying on
limited input, excluding variables like relative humidity, might
be justified, looking for specific input-output pattern mapping
under this climatic scenario. Further, the consideration of ex-
ogenous patterns from secondary ancillary stations for im-
proving the performance of locally trained models has been
assessed using ANNs and ANFIS, e.g., Kisi et al. (2012),
where they developed generalized ANFIS model for pan
evaporation modeling; Landeras et al. (2008), where they
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developed regional ANN models for simulating ET, in a hu-
mid climate of Sapin; Marti and Gasque (2010) and Marti
et al. (2010, 2011), where they used exogenous data for ET,
simulations; and Shiri et al. (2013b), where a generalized
ANFIS model was developed and evaluated to estimate ETO
using data from distant stations. However, no GEP-based
models have been applied in this regard. The present study
aims at assessing some well-known ET estimation models
(three temperature-based models: Hargreaves-Samani, adjust-
ed Hargreaves-Samani, Schendel; four radiation-based
models: Priestley-Taylor, Makkink, Turc, Irmak; five mass
transfer-based models: Dalton, Trabert, Meyer, WMO,
Mahringer) based on limited inputs in hyper-arid and humid
environments of Iran and Spain, respectively, including the
development of the corresponding GEP-based models, i.e.,
fed with the same inputs. Further, the study also includes a
cross-station scenario, assessing the performance differences
of GEP models taking advantage of ancillary data from other
stations.

2 Materials and methods
2.1 Study area and dataset

Data from four meteorological stations, namely Bam and
Zahedan (located in the central and south-western Iran) and
Derio and Igorre (located in the Basque Country, Northern
Spain) were used in this study. Figure 1 shows the geograph-
ical positions of the stations. Daily maximum, minimum, and
average air temperature (Tax, Trin, aNd Tinean, TESpectively);
solar radiation (Rg); wind speed (Ws); and relative humidity
(Ryy) comprising a period of 9 years were used to estimate ET,.
Two numerical indicators, namely the aridity index (/)
(UNEP 1992), and the Currey continentality index (CIY)
were calculated to better characterize the weather stations
(see Table 1). In Table 1, it can be seen that the climatic
characteristics of all stations attending to ET, are fluctuating
during the study period. Nonetheless, the total annual precip-
itation and ET, values of Bam station corresponding to the
year 2005 are clearly different from the average annual pre-
cipitation of the whole study period (320.1 vs. 61.7 mm for
precipitation and 2218.79 vs. 1782.7 mm for ET). This could
be based on the distance to the sea. In the case of Bam, this
distance is lower, and as result of this, instead of being a
hyper-arid site, it could present during some years more pre-
cipitation (2005) (anomalous year). However, such sharp var-
iations are not observed for CICY values, which involve mild
variations of temperature differences during the study period.
The distance to the sea and altitude in Zahedan are also high.
This might explain the lower Ty, values (wider thermal
ranges) in Zahedan in comparison to Bam. ET, indexes, i.e.,
maximum value, standard deviation and skewness coefficient
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DERIO
Longitude Latitude Altitude

285°(E) 4329° 30m
Distance to the sea

11 km

IGORRE
Longitude Ifar..itude Altitude

27 (E) 431685 4150m
Distance tothe sea
26 km ¥

Fig. 1 Geographical positions of the studied stations

Table 1 Temporal variations of the climatologic characteristics of the studied stations during the study period (2000-2008)

P (mm) ET, (mm) L+ CIev P (mm) ET, (mm) Ly* CcIev
Iran

Bam Zahedan
2000 477 1520.45 0.031 3.031 40.7 1729.10 0.023 3.012
2001 21.1 1576.60 0.013 3.558 183 1758.44 0.010 3.308
2002 24 1575.34 0.015 3.096 342 1737.04 0.019 3.179
2003 243 1700.66 0.014 3.484 316 1674.27 0.018 3.447
2004 459 1699.89 0.027 3.059 64.9 1727.55 0.037 2.791
2005 320.1 2218.79 0.144 3.151 103.5 1638.36 0.063 2.970
2006 24 1903.24 0.019 3.419 41.1 1722.13 0.023 3.438
2007 339 1890.80 0.017 3.253 93.7 1638.85 0.057 3.105
2008 14.7 1958.63 0.007 3.844 101 1709.38 0.059 3.456
Total period 61.7 1782.70 0.031 3.840 58.7 1703.90 0.034 3.53
Spain

Derio Igorre
2000 1232.0 785.61 1.568 1.354 16123 745.82 2.161 1.526
2001 122322 75421 1.621 1.259 1625.4 732.56 2218 1.478
2002 1218.0 748.51 1.627 1.208 1611.4 722.12 2231 1321
2003 12103 816.60 1.482 1.930 15145 804.80 1.881 2.096
2004 1142.8 779.65 1.465 1.631 1410.6 781.75 1.804 1.699
2005 1294.1 820.84 1.576 1.689 14275 823.72 1.732 1.803
2006 1017.5 819.64 1.241 1.858 842.8 801.12 1.052 1.777
2007 11713 761.34 1.538 1.605 1371.5 710.19 1.931 1.829
2008 1486.6 785.96 1.891 1.429 1577.4 744.02 2.120 1.438
Total period 1221.75 785.81 1.556 2.073 1443.71 762.90 1.903 2.206
A

ET,
crev = Mo
1+4

P total annual precipitation (mm), E7} total annual ET, (mm), /4 aridity index, crv Curey continentality index, M; maximum monthly average
temperature (°C), m; minimum monthly average temperature (°C), 6 station latitude (degrees)

*According to the “World Atlas of Desertification” (UNEP 1992, 1997), dry lands have an aridity index of less than 0.65 and precipitation of less than
600 mm per year. Regions with 7, less than 0.05 are categorized as hyper-arid regions
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(not presented here) in Bam are slightly higher in comparison
to Zahedan, which could be related to the low Ry (minimum
value) and high Wg (maximum value and standard deviation)
values. So, the advection pikes in Bam might increase ET, and
make more difficult to find out the model ET response pat-
terns. Attending to the humid stations, such sharp variations
are observed for the precipitation values of Igorre Station,
which presents, during some years, less precipitation (2006).

2.2 Input selection

Three categories of ET, estimation models, namely tempera-
ture-, radiation-, and mass transfer-based models were ap-
plied. As stated in Section 1, the input combinations were
defined based on available known models relying on limited
inputs, aiming at looking for specific GEP input-output rela-
tionships in the studied climatic context. Accordingly, the se-
lected input combinations were based on the following
existing approaches:

1. Temperature-based models. The Hargreaves-Samani (HS)
model (Hargreaves and Samani 1985) is recommended by
Allen et al. (1998) if only air temperature records are avail-
able. Although some researches recommend HS applica-
tion for periods longer than 1 month (e.g., Shuttleworth
1993) the applicability of this model has been validated
for daily time scales, too (e.g., Hargreaves and Allen
2003). There are various adaptations of the HS model in
the literature for different climatic contexts, but in the pres-
ent study, the original form of HS model (referred to as
HS1) as well as the adjusted form of Trajkovic (2007)
(HS2) will be used in the analysis (see Table 2 for expres-
sions). Further, the Schendel model (Schendel 1967) was
applied along with HS1 and HS2.

2. Radiation-based models. Four common radiation-based
models, namely the Priestley-Taylor (PT) (1972), the
Makkink (1957), the Turc (1961), and the Irmak (Irmak
et al. 2003) models were used here. The PT model is the
most widely used radiation-based ET( model as a revised
form of the Penman model (1948). Makkink (1957) de-
veloped a model to estimate ET, for grassed lands under
cool climatic conditions of the Netherlands. The Turc
model is a simplification of the Makkink model and re-
quires air temperature, solar radiation, and relative humid-
ity as input variables. The Irmak model is a multi-
regression-based equation, which has been calibrated
and tested through Florida’s data.

3. Mass transfer-based models. Using the Dalton’s law, mass
transfer-based models utilize the eddy motion transfer of
water vapor from the evaporative surface into the sur-
rounding atmosphere. These models are easier to use
and generally demand air temperature, relative humidity,
and wind speed measurements as inputs (Singh and Xu

@ Springer

1997). In the present study, the Dalton (1802), Trabert
(1896), Meyer (1926), WMO (1966), and Mahringer
(1970) models were considered.

The corresponding mathematical expressions of these
models as well as the necessary meteorological inputs for their
application are given in Table 2. These input combinations
were used to feed the corresponding GEP-based models,
too. Moreover, FAO56-PM ET, values were considered as
targets for calibrating the applied models, which is an accept-
ed and very common practice, given the absence of experi-
mental measurements. Figure 2 illustrates the applied input
configurations.

2.3 Gene expression programming

The application of the GEP procedure involves the following
steps.

1. Determining the fitness function: the root mean square
error (RMSE) fitness function is applied here according
to Shiri et al. (2012).

2. Choosing the set of terminals 7and the set of functions F:
Here, the terminal set includes the meteorological vari-
ables. The appropriate functions for modeling ET, are
{—i—, = X,/ I, e, x2,x°, sinx, cosx, Arctgx}
(Shiri et al. 2012).

3. Selecting the length of head (%) and genes per chromo-
some: Here, 4 = 8 and three genes per chromosome were
employed according to Ferreira (2001).

4. Choosing of the linking function: Here, addition linking
functions were applied according to Shiri et al. (2012).

5. Choosing the genetic operators: The parameters used per
run are those used by Shiri et al. (2012).

2.4 Study flowchart

Two methodological approaches were considered in this study
for assessing the model performance: (a) local approach and (b)
cross-station approach. In approach (a), the aforementioned
models were applied individually per station using the com-
plete local dataset (9-year daily parameters). The application
of GEP-based models requires splitting the dataset into three
subsets (training, testing, and validation). In approach (a), these
subsets were defined chronologically. Accordingly, data from
January 2000 to December 2004 (1827 patterns) were used for
developing (training) the GEP models. Then, data from January
2005 to December 2006 (730 patterns) were used for testing the
GEP models, and finally, the data from January 2007 to
December 2008 (731 patterns) were reserved for an
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Table 2 Mathematical

expressions of applied ET, ET, models Meteorological inputs Expression
estimation equations

Standard ET, model

FAO56-PM Tneans Rs, Ws, Rir

Temperature-based ET, estimation models

Hargreaves-Samani (HS1)

HS2

Schendel

Tmcam Tmaxs Tmin, [R&]
Tmeam Tmaxa Tmin» [Ra]

Tineans R

Radiation-based ET,, estimation models

Trmak

Priestley-Taylor

Makkink

Turc

Tineans Rs
Tmeam RS

Tmeans RS

Tincans Rsy Ryt

Mass transfer-based ET,, estimation models

Dalton
Trabert

Meyer
WMO
Mahringer

e s, Ws
e s, Ws

e s, Ws
€ s, Ws
eq es, Wy

0.408A(R,—G)+77= 220 Wis (es—e,)
A+~(140.34Ws)

ET) =

ET, = 0.0023%( T ncan + 17.8)v/Tmax— T min
ETo = 0.0023%( Tmean + 17.8) (Tmax—Tonin) "+
ET, = 167p=

ETy=0.149Rs + 0.079T 1ycan — 0.611

ETy = § 275 (R,—G)

ETo = 0.61 52-5-0.12

ETo = a70.01 3T Tm“115 23.885§\R5+50
mean

RH 250—>aT =1
50—-Ry
70

Ry<50—ar =1+

ETy=(0.3648 + 0.07223Wg)(es—e,)

ETO = 03075\/ Ws(esfea)
ET,=(0.375 +0.0502Ws)(es — e,)
ETy=(0.1298 + 0.0934Ws)(es — e,)

ETo = 0.15072.1/3.6Ws (es—e,)

In these equations, ET, reference evapotranspiration (mm/day), A slope of the saturation vapor pressure function
(kPa/® C), y psychometric constant (kPa/°C), R, net radiation (MJ/m? /day), G soil heat flux density (MJ/m? /day),
Tmean Mean air temperature (°C), Wy average 24 h wind speed at 2 m height (m/s), eg saturation vapor pressure
(kPa), e, actual vapor pressure, v 1.26, A latent heat of the evaporation (MJ/Kg), R,, extraterrestrial radiation (mm/
day), Ry daily solar radiation (MJ/m? /day), Ry relative humidity (%), 7). maximum air temperature (°C), 7,,,;,
minimum air temperature (°C)

Temperature-

\\based

GEP- input configurations

Radiation-
based

° Tmaxa Tmin; Tmean; Ra (GEPl)
Tmean» RH (GEP2)

d Tmeany RS (GEP3)
L/ Tmean: RS: RH (GEP4)

Fig. 2 Illustration of applied input configurations

Mass transfer-

based

® Gy Gy, WS (GEPS)
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independent validation of the GEP models. Cross-validating
reduces the over-fitting risk and helps the user to efficiently
assess the models’ ability (Pour Ali Baba et al. 2013). In ap-
proach (b), two different applications were examined: (b1) ex-
ternal assessment of the GEP models and (b2) application with
ancillary data. In approach (bl), the GEP model was trained
using the complete dataset of one station and tested using the
complete dataset of the second station. In approach (b2), the
meteorological patterns from one station were used as inputs
for estimating ET), at the second station. Figure 3 represents a
schematic flowchart of the study. The different approaches
mentioned above ((a), (bl), and (b2)) are represented in this
figure. This flowchart is for arid stations. In the case of humid
stations, the approach is the same.

3 Results and discussions

3.1 Local derivation of ET, equations

The comparison of the monthly ET,, values estimated with the
conventional models in the arid and humid stations (not

Fig. 3 Schematic study Approach a)
flowchart GEPs local application
ZAHEDAN
.

i

presented here) shows that in case of temperature-based
models, HS1 provides the most accurate results for the arid
stations (Figs. 4 and 5). Comparing its performance with other
temperature-based models, HS1 can estimate the ET trend
better than HS2 and Schendel models throughout the
12 months (dry as well as wet seasons). Also, three statistical
parameters were used for assessing the models’ performance,
namely, the coefficient of determination (,2)’ the root mean
square error (RMSE), and the coefficient of residual mass
(CRM) (Legates and McCabe 1999). The results presented
in Table 3 confirm this statement. So, HS1 might be ranked
as the most accurate temperature-based model in arid stations.
On a RMSE basis, the HS1 performance in Bam and Zahedan
is similar (ARMSE = 0.05 mm/day), while HS2 and Schendel
models show a different performance in both stations.
Although the RMSE differences might be linked to the aver-
age ET, order of magnitude at each station, the CRM values
(which are a weighted ET differences) are quite different in
both stations, suggesting a higher underestimation in
Zahedan, especially for the Schendel model. This may be
attributed to higher temperature range differences and lower
mean wind speed values in Zahedan (Landeras et al. 2009). In

Approach bl)
GEPs cross station-external training

ZAHEDAN ZAHEDAN

2000 2
2001
2002
2003
2004
2005
2006
2007
2008

[C

2

[N

|

L

L

L

L

[

A

I,

o[- e e T e e ]
e R A S R
s T o TR TRl Tl oo

Approach b2)
GEPs cross station-ancillary data

BAM Meteorological inputs

ZAHEDAN 2000

ZAHEDAN 2001

ZAHEDAN 2003

N

o
I
“—— ZAHEDAN 2002
I
I

ZAHEDAN 2004

ZAHEDAN 2005
ZAHEDAN 2006
ZAHEDAN 2007

ZAHEDAN 2008
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Fig. 4 Average monthly ET, values of the applied ET, estimation models during the study period (2000-2008) arid stations: a temperature-based

models, b radiation-based models, and ¢ mass transfer-based models

the case of humid stations, however, the HS2 model presents
most accurate results as can be seen from Fig. 5 and Table 3.
Comparing between two stations, the HS2 performance in
Derio and Igorre is similar (ARMSE = 0.006 mm/day;
ACRM = 0.024), while HS1 and Schendel models show dif-
ferent performance. Nonetheless, the CRM values of the HS2
model show overestimations trend in both stations, while the
trend of Schendel and HS1 models are different in the stations.

Attending to the radiation-based models, all the applied
models underestimate ET throughout the months in the arid
stations. The Turc model provides the worst estimates, while
the PT model offers the most accurate estimations for Bam
and Zahedan stations. On an RMSE basis, the overall accura-
cies of the radiation-based models in Zahedan are higher than
those of Bam. This might be caused by the solar radiation-air
temperature relationship characteristics, where the average air
temperature in Bam is higher than in Zahedan (24.2 vs.
19.45 °C), while its average incoming solar radiation is lower
than in Zahedan (17.61 vs. 20.45 MJ/m> day). Moreover, the
inaccurate performance of the Turc model in both stations
may be due to the high skewed nature of R}y in these stations.

Similar to the arid stations, in the humid locations, the applied
radiation-based models underestimate ET, throughout the
months, except the PT and Irmak models, which show over-
estimation trend in both Derio and Igorre stations, in some
month (especially in warm season). Among the radiation-
based models, the Irmak model has the most accurate perfor-
mance in both Derio and Igorre, with the lowest performance
difference between two stations (ARMSE = 0.005 mm/day).

Finally, the mass transfer-based models provide inaccurate
results in both arid and humid stations, although its simula-
tions are more accurate for humid stations than those of arid
stations. A reason for this might be the low aerodynamic ef-
fects in the studied arid regions, which make it difficult to
estimate ET, from the available data using these models. In
general, for the studied hyper-arid stations, the temperature-
based models (i.e., HS1) might be ranked as the most accurate
models, followed by radiation-based models (i.e., PT model)
and mass transfer-based models (i.e., Mahringer). The perfor-
mance of the models in Zahedan is more accurate than in Bam,
which can be attributed to the high ET, values of Bam. A
similar trend can be observed in the humid stations, where
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Fig. 5 Average monthly ET, values of the applied ET, estimation models during the study period (2000-2008) humid stations: a temperature-based
models, b radiation-based models, and ¢ mass transfer-based models

the Irmak model is ranked as the most accurate model, follow- ~ GEP4 models is very similar in Bam, while the GEP4 model
ed by HS2 model. performs better than the GEP3 model in Zahedan attending to

Tables 4 and 5 sum up the performance of the GEP-based =~ RMSE. This reveals that Ry might be more influential on ET,
models for, respectively, arid and humid stations during the = in Zahedan than in Bam. This can also be observed attending
testing and validation periods. Attending to the testing statis-  to the statistical characteristics of the Ry data, which have a
tics, GEP5 (corresponding to mass transfer-based models)  high skewed distribution (not presented here) in Bam. The
provides the most accurate results in both arid stations.  relative differences between the GEP5 and GEP4 models
According to Table 4, it seems that the relative difference  clearly show that the aecrodynamic effect on ET) is higher in
between the GEP1 (temperature-based) and GEP4  Bam than in Zahedan. It should be noted that the accuracy of
(radiation-based) models is much larger in Bam than in ~ the GEP models in the testing period (2005-2006) is lower
Zahedan in the testing period. This suggests that R is much  than in the validation period (2007-2008). The reason for this
more effective over ET in Bam than in Zahedan both in the =~ might be the fact that Bam presents high ET, values in the test
testing and validation periods. The accuracy of the GEP3 and  period (especially in 2005), as can be clearly observed in
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Table 3  Statistics of the ET,, estimation models during the study period (2000-2008)
Arid stations (Iran) Humid stations (Spain)
Bam Zahedan Derio Igorre
s RMSE CRM /2 RMSE CRM /2 RMSE CRM RMSE CRM
(mm/day) (mm/day) (mm/day) (mmv/day)
Temperature-based models
HS1 0919 0.617 0.042 0.896 0.667 0904 0.854  0.661 —0.190 0.882 0.688 0.185
HS2 0917 1216 0208 0.909 1.062 0.748 0.854 0428 0.002 0.868 0.434 0.026
Schendel 0.539 2.082 -0214 0836 1.150 0.716 0504 1.110 -0.353  0.571 1.086 0.255
Radiation-based models
Irmak 0918 1.185 0.172 0.890 1.039 0.768 0926  0.358 -0.013 0936 0.353 —-0.053
Priestly-Taylor  0.884  0.886 0.114 0.892 0.843 0.847 0939 0444 0.039 0921 0.466 —0.001
Makkink 0901 1.812 0.722  0.860 1.401 0.579 0.8/16 1.591 0.722  0.890 1.611 0.746
Turc 0.846  3.776 0320 0.824 3.568 -1.729 0919 0.540 0227 0919 0482 0.184
Mass transfer-based models
Dalton 0313 7.210 -0.667 0.883 2.340 -0.183 0405 0922 0.104 0.326 1.092 0.073
Trabert 0408 5.566 -0.512 0877 1.875 0245 0368 1.095 0336 0302 1.167 0.293
Meyer 0.358 5.226 -0429 0903 1.504 0.514 0413 0915 0.140 0.332  1.069 0.115
WMO 0.224  7.440 -0.396 0.768 1.475 0.545 0342 1319 0.509 0.278 1.340 0476
Mahringer 0.408  4.990 -0.406 0877 1.480 0.529 0368 1.142 0.382 0303 1.197 0.342

Table4 Testing and validation statistics of the GEP and best empirical

models-arid stations

Table5 Testing and validation statistics of the GEP and best empirical

models-humid stations

Testing (2005-2006)

Validation (2007-2008)

Testing (2005-20006)

Validation (2007-2008)

” RMSE CRM /2 RMSE  CRM P RMSE CRM /* RMSE  CRM
(mm/day) (mm/day) (mm/day) (mm/day)
Bam Derio
Temperature based Temperature based
GEP1 0.932 0.802 0.142 0.975 0.768 0.115 GEP1 0.839 0495 0.013 0.845 0.485 0.016
GEP2 0.708 1.257 0.121 0.951 0.939 0.140 GEP2 0.677 0.711 -0.042 0.718 0.670 0.068
HS1 0.908 0.808 0.105 0.972 0.762 0.121 HS2 0.858 0.503 0.009 0.792 0.453 —0.001
Radiation based Radiation based
GEP3 0.916 0.847 0.120 0.964 0.908 0.146 GEP3 0937 0.309 0.010 0.938 0.305 0.001
GEP4 0.907 0.846 0.114 0.968 0.898 0.145 GEP4 0930 0.312 -0.013 0.940 0.301 0.005
PT 0.885 1.119 0.176 0.932 1.147 0.186 Irmak 0927 0415 -0.007 0.927 0.858 —0.009
Mass transfer based Mass transfer based
GEP5 0.902 0.667 0.043 0.950 0.593 0.050 GEP5 0.617 0.773 -0.055 0.579 0.804 0.023
Mahringer  0.180 9.821 =0.790 0.970 3.165 -0.477 Dalton 0.448 1.054 0.088 0.370 1.033 0.126
Zahedan Igorre
Temperature based Temperature based
GEP1 0.930 0.510 —-0.032 0.937 0.505 -0.014 GEP1 0929 0.510 -0.030 0.930 0.490 —0.098
GEP2 0.900 0.622 —0.036 0.910 0.592 —0.011 GEP2 0.840 0.735 -0.078 0.849 0.772 0.072
HS1 0.909 0.640 0918 0.912 0.616 0.927 HS2 0.866 0.525 0.012 0.770 0.482 -0.071
Radiation based Radiation based
GEP3 0.932 0.531 -0.032 0.930 0.532 -0.017 GEP3 0967 0.350 0.006 0.977 0.286 —0.008
GEP4 0.938 0.505 —0.028 0.935 0.501 —0.006 GEP4 0934 0.490 -0.028 0.967 0.351 0.029
PT 0.901 0.779 0.879 0.903 0.796 0.879 Irmak  0.925 0.445 -0.060 0.942 0.360 -0.013
Mass transfer based Mass transfer based
GEP5 0.936 0.495 —0.006 0.944 0.465 —0.006 GEP5 0.729 0.938 —0.288 0.666 0.982 -0.332
Mahringer 0.876 1.376 0.623 0.882 1.398 0.628 Dalton 0.363 1.290 0.066 0303 1.182 0.058
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Table 1. It can be observed that the trend, at least for mass
transfer-based models, is adverse to ET, equations and mass
transfer-based GEP models perform better than temperature-
based and radiation-based GEP models. This may be ex-
plained through aerodynamic component effects on ET,
values. It seems that the mass transfer-based equations are
not able to explain this effect in these dry regions suitably,
but GEP models provide more accurate estimates with rela-
tively lower error values. In Zahedan, wind speed presents the
highest skewness in comparison to the other climatic param-
eters, and in both stations, the standard deviation values of this
parameter take high values. This higher variation might cause
inaccurate estimates when conventional approaches are used.
Nevertheless, GEP allows for a more realistic mapping of this
nonlinear complex process. Attending to the general estima-
tion trends, the GEP-based models overestimate ET, values in
Zahedan (negative CRM values) and underestimate it in Bam
(positive values of CRM). In contrast to arid stations, the
radiation-based GEP3 and GEP4 models perform more accu-
rately than the other models in humid stations (see Table 5).

Table 6  Statistical criteria values of the GEP cross-station application:
External training

” RMSE CRM 7 RMSE CRM
(mm/day) (mm/day)
a b
GEP1  0.886 0.783 0.089 0.891 0.858 ~0.104
GEP2  0.878 1.040 0.167 0817 1211 -0.170
GEP3  0.860 0.764 -0.044 0871 1233 ~0.185
GEP4 0.898 0.707 -0.014 0876 1.025 -0.149
GEP5  0.929 0.832 0.135  0.906  0.940 -0.138
c d
GEP1  0.808 0.589 -0.019 0.755 0.618 -0.026
GEP2  0.624 0.830 0.066 0.640  0.780 ~0.080
GEP3  0.935 0.348 -0.033 0931 0326 0.012
GEP4 0.947 0324 -0.034 0920 0.350 0.013
GEP5 0425 1.013 0.005 0.517  0.863 0.010
e f
GEP1 0528 1.178 0.020 0.882 1366 0.229
GEP2  0.624 4578 0.987 0520 2.151 0.335
GEP3  0.924 0.654 -0.183 0916 1.075 0.245
GEP4 0922 0.862 0318 0876 0.941 0.124
GEP5  0.805 0.998 0.135  0.755 1.258 0.235

a GEP model trained using the whole data of Bam station and tested using
the whole data of Zahedan station, » GEP model trained using the whole
data of Zahedan station and tested using the whole data of Bam station, ¢
GEP model trained using the whole data of Derio station and tested using
the whole data of Igorre station, d GEP model trained using the whole
data of Igorre station and tested using the whole data of Derio station, e
GEP model trained using the whole data of arid stations and tested using
the whole data of humid stations, /' GEP model trained using the whole
data of humid stations and tested using the whole data of arid stations

@ Springer

Kisi (2009) also indicated in his study that the Ry input has a
significant effect on evaporation and adding this parameter
into input combination significantly increases the models’ ac-
curacies in humid stations or climate. It is clear from Table 5
that the GEP models provide more accurate estimates for
Derio Station than the Igorre. The reason of this may be the
fact that the ET data of Igorre Station have a wider range and
a higher skewness than those of the Derio Station. In some
cases, there are higher values of determination coefficient in
the testing data set compared to the validation data set. This
should be due to the fact that the characteristics of validation
data set is more similar to the training (calibration) data set
than the testing data set.

Table 7  Statistical criteria values of the GEP cross-station application:
ancillary data application

Test (2005-2006) Validation (2007-2008)

” RMSE CRM 7 RMSE CRM
(mm/day) (mm/day)

First typology
GEP1 0.882 0.674 —0.011 0926 0.581 —0.033
GEP2 0.641 1.195 —0.029 0.904 0.664 —0.025
GEP3  0.727 1.028 —0.027 0923 0.584 —0.042
GEP4 0.787 0917 —0.016 0.926  0.563 —0.037
GEP5  0.646 1.202 —0.048 0905 0.724 —0.075
Second typology
GEP1  0.820 1.067 0.127 0931 1.158 0.179
GEP2  0.694 1275 0.121 0.822 1.370 0.180
GEP3  0.774 1.129 0.119  0.906 1.200 0.175
GEP4 0.813 1.074 0.125 0932 1.147 0.180
GEP5S  0.708 1.233 0.115 0.822 1.849 0.266
Third typology
GEPI  0.729 0.943 0.070  0.621  1.092 —0.068
GEP2 0597 1.144 —0.010 0.541 1.231 —0.028
GEP3  0.694 1.066 0.029 0.595 1.021 —0.041
GEP4 0.602 1.064 0.033 0702 1211 —0.041
GEP5 0.622 1.116 —0.017 0.654 1.244 —0.043
Fourth typology
GEP1 0.606 0.793 0.010 0579 0.990 0.004
GEP2  0.650 0.940 -0.040  0.596  0.936 0.054
GEP3  0.564 0.924 -0.012  0.508 1.013 0.060
GEP4  0.497 0.796 -0.021  0.550  0.980 0.018
GEP5  0.502 0.897 -0.006  0.564  0.891 0.053

First typology Meteorological parameters of Bam station are used as input
variables to estimate ET, values of Zahedan station, Second typology
Meteorological parameters of Zahedan station are used as input variables
to estimate ET, values of Bam station, Third typology Meteorological
parameters of Derio station are used as input variables to estimate ET,
values of Igorre station, Fourth typology Meteorological parameters of
Igorre station are used as input variables to estimate ET, values of Derio
station
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3.2 Cross-station derivation of ET, equations

As stated in Section 2, two different applications were consid-
ered in the cross-station approach: external assessment and
ancillary data supply application. The 7%, RMSE, and CRM
results of the GEP models for the cross-station applications are
given in Tables 6 and 7. In the case of the external assessment
(a), the GEP4 (radiation-based) model provides the most ac-
curate results, followed by the GEP3, GEP1, GEPS5, and
GEP2 models, respectively. In the case of the external assess-
ment (b), however, the mass transfer-based GEPS model per-
forms better than the other models. The accuracy ranks of the
other GEP models showing decreasing accuracy, are, respec-
tively, GEP1, GEP4, GEP2, and GEP3. In the case of external
assessment (c), similar to the case (a), the GEP4 (radiation-
based) model has the best accuracy followed by the GEP3,
GEP1, GEP2, and GEPS. In the case of external assessment
(d), the GEP3 (radiation-based) model performs the best
followed by the GEP4, GEP1, GEP2, and GEPS. In the case
of external assessment (e), the radiation-based GEP3 model
has the most accurate results followed by the GEP4, GEPS,
GEP1, and GEP2. In the case of external assessment (f), the
radiation-based GEP4 model gives the most accurate esti-
mates followed by the GEP3, GEP5, GEP1, and GEP2.
These different estimation trends of the GEP models in the
external assessment may be due to different patterns in the
trends of the climatic variables in four stations. Accordingly,
the input-output relationships might differ in both arid and
humid stations and might not be extrapolatable. It is clear from
the Table 6 that the radiation-based GEP models (GEP3 and
GEP4) generally perform better than the other models in the
case of external training. Comparison of (a), (b) vs. (f) cases
indicates that the use of data from arid station in training

Table 8 Mathematical expressions of the optimal GEP models

considerably increases model accuracy in arid stations. This
is also valid for the humid stations (see the cases of (¢), (d) vs.
(e) in Table 6). Similar to the previous application (local ap-
plication), the GEP models generally gives better estimates in
humid stations than the arid stations for the cross-station ap-
plication with external training. GEP2 model (relying on Tijean
and Ryy) seems to be unable to estimate ET, with enough
accuracy in both cases. According to Table 6, it seems prefer-
able to use Bam meteorological data (in both cross applica-
tions) to estimate in Zahedan than to use Zahedan data to
estimate Bam. This can be explained according to data statis-
tics (not presented here), where ET statistical indices presents
a wider range in Bam than in Zahedan. So, there are more pike
events of ET,, in Bam than in Zahedan. The models calibrated
using Zahedan’s data may have difficulty in estimating ET,,
data (extrapolation difficulty) in Bam, because the training
patterns cover a lower range than the corresponding test set.
Another reason might be related with the skewed distributed
ET, data in Bam, which makes it difficult to estimate through
external training. Mass transfer-based GEP5 models seem to
provide less-scattered estimates than the other GEP models.
However, GEP5 models significantly underestimate ET, in
Bam. Hence, based on the considered limited inputs used to
feed the models, the relationships encountered might not be
able to generalize properly out of the training station, espe-
cially if the range spectrum is very different within training
and testing stations. The generalizability might be partially
improved through the consideration of further inputs.

The test and validation performance accuracy of the GEP
models considering ancillary input data is given in Table 7.
The GEP4 (radiation-based) model provides the most accurate
results in the validation period, followed, respectively, by the
GEP1, GEP3, GEP2, and GEP5 models for the first and

Model Expression

Optimal GEPs: Local application
Zahedan GEPS5

0.166
ET) = [arctg(e,,—es).eg}4 + arctg[2es—1.865¢,]./Ws + (W%(ea +es + W5)71>

Igorre GEP3

Optimal GEPs: Cross-station application: External training

ETo = [Rs 4+ TmeanRs—0.5656]0.25 + arctg[sin(—0.153Rs)] + Sin [arctg(*41.68T’1 )}

mean

ETy = [2T meanR2] [EX(0.225 T mean)] + Arctg [(—3.878RH) (Exp(o.nrmm)*)} + ROSS

ETo = [Tmean(0.0053(R,~5.3467))] + arctg | Tmean + 6.8161R,'~T'in—=0.71] + 0.0106T o —0.07

ET, = sin [cos\/Exp(0.00M T s/RS)] + sin [Ln((Tmn +5.7106) + 5.165Rs)] + /Expv/Rs

Scenario a GEP4
Scenario b GEP1
Scenario ¢ GEP4
Scenario d GEP3

ET) = c08[0.7475 + /Trmean + 6.082] + (2T mean + 1.577)"'°/Rs + sin [arctg/Rs—0.841+/Rs]
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second topology. In the third topology, however, GEP3
(radiation-based) model has the best accuracy while the
GEP5 model provides the best estimates in the fourth topolo-
gy. In contrast to the local application, the mass transfer-based
GEPS5 model performs worse than the other models in the
ancillary data application except for the fourth typology. A
comparison with the results of the local application (Table 5)
clearly reveals that the ancillary data application decreases the
models’ accuracies much more in Bam. The reasons given in
the external training application seem to be also valid for this
application (ancillary data application). Comparing with the
cross-station application 1 (external training), the GEP models
seem to be more accurate in this application, in which local
meteorological data were used in calibration of the GEP
models. The performance of the cross-station applications is
quite accurate. So, in case of lack of meteorological data in
hyper-arid and humid areas, the utilization of data of only one
station could be interesting for the estimation of ET, in wide
areas. Table 8 represents the optimal GEP mathematical ex-
pressions for applied scenarios. As can be clearly observed
from the tables, the model expressions can be used by anyone
not necessarily being familiar with GEP. The GEP model pro-
vides practical way for ET estimation to obtain accurate re-
sults and encourages use of GEP in other aspects of water
engineering studies.

Nevertheless, according to Santos et al. (2014), the worst
results of the approaches considered in humid stations could
be due to the necessity to include another independent variable
as the NAO index, which might be subject to future studies.

4 Conclusions

This paper provides new expressions based on gene expres-
sion programming to estimate reference evapotranspiration
from limited inputs in hyper-arid and humid environments.
The performance of the new heuristic models is compared
with the performance of the corresponding temperature-, radi-
ation-, and mass transfer-based conventional approaches, con-
sidering a local and cross-station assessment in two hyper-arid
and humid stations of Iran and Spain, respectively. The local
prediction ability of the GEP models is higher than the perfor-
mance of the conventional approaches. So, if enough local
data series are available, the development of local GEP
models can be a more accurate alternative to conventional
existing approaches. The accuracy of the GEP models de-
creases outside by using cross-station scenario, because
models relying on ancillary inputs might not be able to per-
form a suitable simulation. The results showed that in case of
lack of meteorological data in hyper-arid and humid areas, the
utilization of data of only one station could be interesting. In
the present study, data from two hyper-arid and humid stations
were applied for deriving the new expressions. Further studies

@ Springer

might be carried out for analyzing the ET trends and deriving
new equations using data from similar stations worldwide.
These may be subjects for future studies.
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