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A B S T R A C T

Leaf Area Index (LAI) is a very important structural attribute of ecosystems which affects the energy, water and
carbon exchanges between the land surface and atmosphere. Direct measurement of LAI is costly and time
consuming so indirect measurement approaches have been developed for determining its magnitude. The pre-
sent paper aimed at modeling LAI in cropland and grassland sites using the available meteorological data
through two heuristic data driven techniques, namely, gene expression programming (GEP) and random forest
(RF). Different data set organizations were designed using local (temporal) and external (spatial) norms to
provide a thoroughgoing data scanning strategy. The results showed that the external GEP and RF models (EGEP
and ERF) might be suitable approaches for modeling LAI by average scatter index (SI) values of 0.275 and 0.270
(for cropland) and 0.273 and 0.279 (for grassland) when compared to the local GEP and RF models with average
SI values of 0.207 and 0.204 (cropland), and 0.249 and 0.204 (grassland), respectively. The presented metho-
dology allowed the evaluation in each site of models developed (trained) using local patterns and the models
developed using the exogenous data (patterns from ancillary sites).

1. Introduction

Leaf area index (LAI) is a dimensionless variable defined as the total
one-sided area of photosynthetic tissues per unit ground surface area
(Watson, 1947). LAI is an important structural characteristic of eco-
system as it influences the exchanges of water, energy, and carbon
between the land surface and atmosphere (Sellers et al., 1988; Wulder
et al., 1998; Sonnentag et al., 2007). It determines the size of the plant–
atmosphere interface, and therefore plays a key role in the energy and
mass exchanges between the canopy and the atmosphere (Weiss et al.,
2004). Xu et al. (2014) showed that the inclusion of LAI in their var-
iational data assimilation model improved the simulation of surface
water and energy fluxes. Li et al. (2009) indicated that using LAI in
Xinanjiang hydrologic modeling improved rainfall-runoff modeling.
Coopersmith et al. (2014) and Chen et al. (2015) obtained a better soil
moisture prediction by incorporating LAI in Integrated Biosphere Si-
mulator (IBS) and HYDRUS-1D models.

The ground-based measurement methods have been developed to
measure LAI accurately (Asner et al., 2003; Jonckheere et al., 2004; Qu
et al., 2014). However, those methods can only obtain LAI at point scale
during limited time periods due to their high cost and time

consumption. Therefore, different models have been developed to ac-
quire LAI over large spatial scales based on remotely sensed data.

Currently, there are mainly three kinds of methods for retrieving
LAI from remotely sensed data, i.e., the empirical relationships, radia-
tive transfer models, and heuristic data driven models. The empirical
methods are used to link LAI with remotely sensed vegetation index (i.e.
NDVI) or with reflectance data with regression equations (Combal
et al., 2003), which are relatively simple and accurate. However, these
methods are sensor dependent and site specific, and have a major
drawback of local calibration need. The physical laws are used in ra-
diative transfer models to explicitly describe associations between the
vegetation properties and canopy spectra, and produce reasonable LAI
at regional scale (Meroni et al., 2004; He et al., 2013). However, the
radiative transfer models are usually complicated and time consuming
(Jacquemoud et al., 2000). Thus, heuristic data driven techniques are
used to estimate LAI at larger scales (Xiao et al., 2014; Liang et al.,
2014). The GLASS-LAI product is produced via the reflectance data in
the visible and infrared bands based on heuristic data driven techniques
(Liang et al., 2014; Xiao et al., 2014).

In recent years, heuristic data driven techniques (e.g., gene ex-
pression programming (GEP) and random forest (RF)) have been
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utilized for modeling hydrological and eco-hydrological parameters.
Genetic programming (GP), a generalization of genetic algorithm (GA)
(Goldberg, 1989), was proposed by Koza (1992). It engages a “parse
tree” structure for exploring the solutions. Gene expression program-
ming (GEP) is equivalent to GP. The chromosomes in GEP collect
multiple genes, each gene converting a smaller subprogram. Moreover,
the systematic organization of the linear chromosomes provides the
unrestrained behavior of important genetic operators such as mutation,
transposition and recombination (Ferreira, 2006). Major dominances of
GP (i.e., GEP) are that it can be applied to areas where (a) the inter-
relationships among the pertinent factors are less clarified, (b) finding
the conclusive solution is difficult, (c) normal mathematical investiga-
tion cannot supply analytical solutions, (d) a rough solution is accep-
table, (e) small improvements in the performance are routinely mea-
sured and highly valued, and (f) there is a large amount of data which
require evaluation, classification, and integration (Banzhaf et al.,
1998). One of the major advantages of GEP is that it can generate an
explicit equation between input(s) and output of the underlying pro-
blem. Such an equation might be subjected to some interpretation to
find the governing rules of the studied process.

A number of studies (e.g., Walthal et al., 2004; Dunea and Moise,
2008; Xiao et al., 2014) applied data driven neural networks models for
obtaining LAI from remotely sensed data and filling the gaps between
the recorded data. Everingham et al. (2009) applied heuristic techni-
ques to forecast regional sugarcane crop production. Torres et al.
(2011) applied support vector machine to estimate daily potential
evapotranspiration with limited climatic data. Shiri et al. (2014a) used
heuristic techniques to model dew point temperature. Shiri et al.
(2014b) showed the generalizability of GEP in modeling daily evapo-
transpiration in local and regional scales. Karimi et al. (2017) used GEP
for simulating daily evapotranspiration through a cross-station ap-
proach.

Commonly, lots of heuristic-based applications contemplate only a
single data set assignment where models are developed and validated
utilizing data of the same site. Apart from not executing a perfect
performance evaluation of the local patterns, another important
drawback of this data set assignment type is that the generalization
ability of the achieved models is not evaluated outside the locations
that have been used to train the models (Marti et al., 2013; Shiri et al.,
2014b).

The present study aimed at assessing the performances of GEP and
RF techniques in local and external cross-station scales for simulating
LAI, using available meteorological and NDVI data. By relying only on
meteorological data, LAI can be obtained in the long past time and
future when no remotely sensed data exists. To the best of authors’
knowledge, this is the first assessment of heuristic methods in esti-
mating LAI in local and cross-station scales. The robust k-fold testing
cross validation technique was used for assessing the applied meth-
odologies in both local and external scales.

2. Materials and methods

2.1. Data

The GEP and RF-based models were trained and tested extensively
over ten experimental sites (with five cropland and five grassland sites).
The meteorological data of the ten experimental sites were obtained via
Fluxnet website (http://www.fluxnet.ornl.gov/). The site locations and
data temporal coverage were summarized in Table 1. Half-hourly or
hourly micrometeorological data such as wind speed, air temperature
and humidity, atmospheric pressure, solar radiation, and incoming
longwave radiation were measured at the ten experimental sites. The
16- day MODIS NDVI/EVI (MOD13A2) (Huete et al., 2002) and the 8-
day MODIS FPAR/LAI (MOD15A2) products (Myneni et al., 2002) with
1 km spatial resolution were also collected in this research. The daily
NDVI and LAI values were temporally interpolated from the 16- day or

8- day averages using linear interpolation.
In this study, the meteorological data including maximum air tem-

perature (Tmax), minimum air temperature (Tmin), mean air temperature
(Ta) and mean relative humidity (RH), as well as the remotely sensed
normalized difference vegetation index (NDVI) were used as input
parameters of the applied models for simulating the LAI. With these
parameters, the vegetation growth could be well controlled, and thus
could provide useful dynamic information for the LAI estimation
(Stockli et al., 2008; Yao et al., 2008; Qu et al., 2012). Table 2 presents
the statistical characteristics of the applied LAI records.

2.2. Study flowchart

The performances of the applied GEP and RF-based models were
assessed via a cross-validation k-fold test procedure. Accordingly, the
available patterns were divided into k blocks and the train-test process
was repeated k times till a complete data scanning was achieved (Marti
et al., 2013; Roushangar et al., 2014a). Each time, a separate set of data
was reserved for testing. In the present study, two different criteria
were developed for defining the minimum test set size for executing the
k-fold assessment, e.g. external (spatial) and temporal (local) criteria.
First, train-test processes (5-fold spatial assessment) per land cover type
were performed leaving each time the whole available patterns of one
site for testing. This procedure allowed evaluating the external gen-
eralizability of the GEP and RF- based models (Shiri et al., 2015).
Nonetheless, the local (temporal) performance was assessed per loca-
tion through a k-fold temporary assessment. This case was carried out
separately at each site, where one year was used for testing and the rest
data were utilized for training. Finally, a global approach was devel-
oped where the applied models were trained using all data from crop-
land stations, and tested in grassland sites, and vice versa.

Four statistical criteria were used for assessing the applied models,
namely, the coefficient of determination (r2), the scatter index (SI), the
mean absolute error (MAE), and the Nash Sutcliffe coefficient (NS),
expressions for which are given below:
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where LAIi0 denotes the target (observed) LAI value at the ith time step
and LAIiM represents the corresponding simulated value. n stands for
the number of time steps, LAIo shows the mean of the observed values
and LAIM is the mean value of the simulations.

2.3. Gene expression programming (GEP)

GEP is similar to genetic programming (GP) where it additionally
evolves computer programs with wide size domains and shapes en-
coded in linear chromosomes with fixed lengths. The chromosomes in
GEP consist of multiple genes, where every gene is encoding a sub-
program. In addition, the structural and functional organization of the
linear chromosomes provide the unconstrained operation of important
genetic operators, e.g. mutation, transposition and recombination. One
strength of the GEP approach is that the creation of genetic diversity is
extremely simplified as genetic operators work at the chromosomes
level. Another strength of GEP is its uniqueness of multigenic nature
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which allows the evolution of more complex programs composed of
several subprograms. As a result, GEP surpasses the old GP system in
100–10,000 times (Ferreira, 2001a, 2001b). The advantages of GEP are
(Ferreira, 2006): (i) the chromosomes are simple entities: linear, com-
pact, relatively small, and easy to manipulate genetically (replicate,
mutate, recombine, etc.), (ii) the expression trees are exclusively the
expression of their respective chromosomes; they are entities upon
which selection acts, and according to fitness, they are selected to be
reproduced with modification. However, there are also some problems
regarding the GP (GEP) application. For instance, in some cases, the
depth of parse tree starts growing which leads to produce nested
functions (i.e., the Bloat Phenomena) (Shiri et al., 2014b). In such cases,
penalization of complex models through e.g. Parsimony Pressure (Ploi
and McPhee, 2008) should be established for producing parsimonious
relations.

The first step with GEP development is to select a fitness function. In
this study, different fitness functions were evaluated and it was found
that the mean absolute error (MAE) produce the lowest error and thus
was chosen as the best fitness function. The second step consists of
choosing the set of terminals and functions to create the chromosomes.
Here, the terminal set includes Tmin, Tmax, Ta, RH, and NDVI. The se-
lection of an appropriate function set was carried out by analyzing
different function sets and the following set was found as the optimum
one: {+, −, ×, ÷, 3 , , ln, ex, x2, x3}. The third step is choosing the
chromosomal architecture. Following Ferreira (2001a) and Ferreira
(2006), length of head was set to 8 (h=8), and three genes per chro-
mosomes were employed. The fourth step is to choose the linking
function. The linking function must be “addition” or “multiplication”
for algebraic sub-trees (Ferreira, 2001a). Results showed that the “ad-
dition” linking function produced the most accurate results. The final
step is to choose the genetic operators. Table 3 shows the GEP operators
used in this study. These values are the default values of GeneXpro and
are usually used in the literature (e.g. Shiri and Kisi, 2012).

2.4. Random forest (RF)

Random forests (RF) is an assembling learning algorithm that su-
pervises high-dimensional regression problems. RF is a tree-based as-
sembling attitude, where all trees are dependent on a group of random
variables, and the forest is grown from many regression trees put to-
gether and from a group (Breiman, 2001). The eventual decision is
achieved by averaging the outputs, after fixing individual trees in entity
(bagging procedure). The bias of the bagged trees is the same as the
individual trees’, though the variance is decreased by reducing the
correlation values between the existing trees (Hastie et al., 2009).
Different tree numbers were evaluated and the best tree numbers were
selected when increasing the tree numbers makes negligible variations
in the average squared error values of the simulation. Here, 15 cycles
were found to be the optimum cycle number of the mean error calcu-
lation, by a trial-error process. Similarly, the percentage of decrease in
training error was observed as 5%, minimum child node size to stop (for
controlling the smallest permissible number in a child node, for a split
to be applied) as 5, and the maximum number of levels (the depth of the
tree as measured from the root node) as 10.

Table 1
Summary of the studied locations.

Station code Site ID Site Latitude (oN) Longitude (oW) Altitude (m) Available data

Cropland stations
Crop1 US-ARM Brasschaat (De Inslag Forest) 36.605 97.488 314 2003–2005
Crop2 US-Bo1 Bondville 40.006 88.290 219 1996–2007
Crop3 US-Ne1 NE - Mead - irrigated continuous maize site 41.165 96.476 361 2001–2005
Crop4 US-Ne2 NE - Mead - irrigated maize-soybean rotation site 41.164 96.470 362 2001–2005
Crop5 US-Ne3 NE - Mead - rain fed maize-soybean rotation site 41.179 96.439 363 2001–2005

Grassland stations
Grass1 CA-Let Lethbridge 49.709 112.940 960 1998–2005
Grass2 CA-Mer Eastern Peatland- Mer Bleue 45.409 75.518 70 1998–2005
Grass3 FI-Kaa Kaamanen Water Bodiesland 69.140 27.295 155 2000–2006
Grass4 US-FPe MT - Fort Peck 48.307 105.101 634 2000–2006
Grass5 US-var CA - Vaira Ranch- Ione 38.413 120.950 129 2001–2006

Table 2
Statistical indices of the LAI series in the studied locations.

Xmax Xmin Xmean SD CV CSX

Cropland sites
Crop1 1.900 0.100 0.627 0.675 0.798 1.566
Crop2 3.300 0.100 0.740 0.835 1.128 1.444
Crop3 2.300 0.100 0.808 0.557 0.689 0.607
Crop4 2.600 0.100 0.838 0.685 0.817 0.920
Crop5 2.700 0.100 0.846 0.335 0.534 1.000

Grassland sites
Grass1 1.700 0.100 0.503 0.350 0.694 1.143
Grass2 3.300 0.100 0.960 0.820 0.860 0.670
Grass3 1.800 0.000 0.578 0.408 0.705 0.825
Grass4 1.400 0.000 0.384 0.297 0.773 1.238
Grass5 3.500 0.100 1.033 0.653 0.632 1.334

Table 3
Genetic operators used in the GEP models.

Number of
chromosomes

30 One point
recombination rate

0.3

Head size 8 Two point
recombination rate

0.3

Number of genes 3 Gene recombination
rate

0.1

Linking function Addition Gene transposition rate 0.1
Fitness function

Error type
MAE Insertion sequence

transposition rate
0.1

Mutation rate 0.044 Root insertion
sequence transposition

0.1

Inversion rate 0.1 Penalizing tool Parsimony
Pressure

Mutation Allows the evolution of good solutions for the studied models to
virtually all problems

Inversion Inversion is restricted to the heads of genes
One-point

recombination
The parent chromosomes are paired and split up at exactly the
same point

Two-point
recombination

Two parent chromosomes are paired and two points are randomly
chosen as crossover points

Gene recombination Entire genes are exchanged between two parent chromosomes,
forming two daughter chromosomes containing genes from both
parents

Gene transposition An entire gene works as a transposon and transposes itself to the
beginning of the chromosome

IS transposition Short fragments of the genome with a function or terminal in the
first position that transpose to the heads of gene except the root

RIS transposition Short fragments with a function in the first position that transpose
to the start position of genes
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3. Results and discussions

3.1. Global assessment of the models

Table 4 sums up the global statistical indicators of the applied
models for both the land cover types. Expectedly, the local GEP and RF
models (LGEP and LRF, respectively) presented the most accurate si-
mulations because they relied on the local patterns, so they were
trained and tested using the meteorological patterns of the same loca-
tions. This would make a great limitation to the applicability of these
locally trained models, so that they could not be applied using data
outside the trained location. Consequently, the external GEP (EGEP)
and RF (ERF) models were built and assessed through the same pro-
cedure. From Table 4, although the local models have better perfor-
mance accuracy in general, the difference between the performance of
the local and external models (especially for grassland sites) is small.
This is very important, because the external models utilize the exo-
genous data from ancillary sites for simulating the LAI magnitudes in
the target location, so local patterns won’t be necessary using these
models. However, it should be noted that the external models cannot be
validated if the test location presents different input-output trends than
those sites utilized for training the model.

Since the GEP models could be expressed in relatively simple
equations, further models were trained using the complete data set
(patterns) of each location to include a more representative pattern
collection. The corresponding GEP formulations are given in Table 5.
Although the performance accuracy of the global GEP models (fed with
all patterns of the studied locations) cannot be evaluated, the listed
expressions presented higher performance accuracy (not presented
here) than the mentioned external GEP models, since their training set
consisted of the patterns of the sites that have been considered for
testing the models in external scenario. Analyzing the equations shows
that the minimum and average air temperature (Tmin and Ta, respec-
tively) parameters have not been picked by GEP in modeling LAI in
both the land cover types. For the cropland model, NDVI, RH and Tmax

have been used as inputs, while the grassland model does not pick the
Tmax records. Meanwhile, NDVI have had the highest weight (predictor
importance) among the inputs for both the cases. On the other hand, the
RF model utilizes all the introduced parameters for the same cases,
giving them different weights. Similarly, NDVI has had the highest
weight while Tmin has had the minimum weight (importance) for
modeling LAI. Apart from their similarity in selecting NDVI, Tmax and
humidity records, differences in selecting the rest of parameters might
be explained by basic assumptions of the applied methodologies.
Deschaine (2014) argues that GEP develops the general organization
and constant values of the equations concomitantly, so the degree of
similarity between the constant values of two specified sites would

affect the formulation transferability in different locations. In contrast,
RF consists of lots of decision forests run by building lots of decision
trees at training time and outputting the average estimation of the se-
parate trees. Strong regression-based relations of LAI with NDVI have
been approved by the previous studies, too (e.g. Fan et al., 2009).

3.2. Cropland models

The local (temporal) and external (spatial) performances per station
of the applied GEP and RF models are shown in Figs. 1 and 2 for the
cropland and grassland stations, respectively. In each location, the
presented statistics of the local GEP and RF models belong to the global
k-fold temporal testing, while the statistics of the external GEP and RF
models show the indicators of the 5-fold external testing. From the
figure, all r2, SI, RMSE and MAE statistics present high variability in all
locations. In case of the cropland sites, the global SI values of the local
GEP and RF models, respectively range between 0.167 and 0.175 for
the US-Ne3 site (code: crop5) and between 0.260 and 0.267 for the US-
Bo1 site (code: Crop2). This may be attributed to the statistical char-
acteristics of the LAI series at each location (Table 2), where the crop5
station presents the lowest values of the standard deviation and coef-
ficient of variations for LAI, while the Crop2 has the highest amount of
these statistics among others. Higher values of these statistics could
make it difficult to get more accurately outcomes for LAI simulation in a
specified location. The other performance indicators present similar
variations for the stations. Consequently, it is evident that Crop2 and
Crop3 sites are of lowest performance accuracy when applying GEP and
RF models. Such variability might be attributed to the relationships/
differences between the training and testing patterns, too.

Regarding the external performance of the cropland GEP and RF
models, Crop4 site presents the lowest error magnitudes in terms of SI.
On the other hand, Crop1 and Crop4 sites present similar performance
of the external models in terms of MAE and the lowest NS is observed in
Crop3. Overall, Crop5 shows the poorer performance than the other
stations while its r2 values is greater for the external model. This could
be linked to the linear inherent of this index, which can picture only the
linear dependency between the observed and simulated variables.
Nevertheless, as discussed by Legates and McCabe (1999), higher sen-
sitivity to the outliers is another weakness of this index, which totally
makes its application limited, so that other weighted (dimensionless)
indices e.g. SI should be applied together with this index for a better
judgment on the models performance accuracy. The weak performance
of the external models in Crop5 might be due to the differences between
the training and testing patterns applied to feed the models. As can be
seen from Table 1, Crop5 shows the lowest variations (in terms of CV)
for LAI data among the studied locations, which can make it difficult to
extrapolate its LAI values using the more scattered data from other
locations. However, the values of SI difference ( SIΔ ) between the local
and external models are about 0.166 (GEP) and 0.109 (RF), which show
the external models ability in simulating LAI using exogenous data.
Comparing the performances of the local and external GEP and RF
models in Fig. 1 reveals that the accuracies of the models are not similar
for every station, where local models may give better performance in a
specified station than the external models and vice versa. Although the
better performance accuracy of the local models could be anticipated
(since they are relying on the local patterns for the training and testing
phases), the better performance of external models show the high
capability of the generalized GEP and RF models in simulating LAI
values using data outside the test points. These models could be of great
utility in locations with partial or total absence of local input data.

3.3. Grassland models

Fig. 2 displays the statistical indices of the applied models for the
grassland sites. Similar to the cropland sites, there are obvious varia-
tions for the statistical indicators among the studied sites for the local

Table 4
Global statistical indices of the applied models.

Approach Cropland sites Grassland sites

LGEP EGEP LRF ERF LGEP EGEP LRF ERF

r2 0.960 0.934 0.963 0.913 0.935 0.927 0.942 0.915
SI 0.207 0.275 0.204 0.270 0.249 0.273 0.240 0.279
MAE 0.113 0.155 0.113 0.150 0.160 0.193 0.164 0.207
NS 0.922 0.861 0.933 0.910 0.880 0.851 0.889 0.869

Table 5
Mathematical expressions of the GEP-based models.

Land cover type GEP expression

Cropland = + + +LAI NDVI NDVI R T2.383[ ] 2[ ] 0.007[2 ]H max9 2

Grassland = ∗ − + − +LAI NDVI NDVI R NDVI R R NDVI[3.9601 ] [ ]H H H4 3
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and external models. Regarding the local GEP and RF models, Grass2
presents the more accurate results with the highest r2 and NS and the
lowest SI and MAE magnitudes, and the rest of the locations (except
Grass3), showed similar performance accuracy. The best performance
of the models in Grass2 might be linked to the lowest skewness values
(the lowest deviation from the normal distribution) of the LAI values in
this station that makes the LAI simulation easy using the local patterns.
Nonetheless, analyzing the correlations between the input variables and
LAI (not presented here) showed that the highest correlation values
belonged to Grass2 that could be a possible reason for better perfor-
mance of the models in this location. For all studied locations, the re-
lative humidity (RH) showed a small negative correlation with LAI,
while the highest correlation corresponded to NDVI, followed by tem-
perature components, except Grass5 where only NDVI presented high

correlation with LAI and the rest of inputs had small correlation mag-
nitudes. Given that the land cover is similar for all these stations
(grassland) such difference for LAI responses to the applied inputs may
be due to the higher differences between the observed LAI values
(which ranges between 0.1 and 3.5) in this site as well as the geo-
graphical position of the site (the lowest latitude). In case of the ex-
ternal grassland models, again the Grass2 site presents the most accu-
rate results.

3.4. General statements

The results for both the land cover types revealed that in spite of
slight differences in the local and external models’ performance accu-
racy; it could be more practical to utilize the external GEP and RF
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models, as it would not be necessary to train a specific model at each
site. So, no local patterns would be necessary to previously train/cali-
brate the local models, as discussed by Shiri et al. (2014c). The per-
formance fluctuations among the studied sites dictate the necessity of
applying a complete data set scanning for evaluating the applied
models.

Figs. 3 and 4 show the observed and simulated LAI values of the
local GEP and RF models for the best models (as stated before). As
observed, both LGEP and LRF models show considerable scatters
around identity line, although the regression coefficients (a and b,

respectively) of the fitted lines (in terms of y= ax + b) are respectively
closer to 1 and 0 which shows their tendency to the identity function
(y= x). On the other hand, as the LAI values are generally low (less
than 3.5 in general), the discrepancy between the observed and simu-
lated values for the studied models (which show accurate results) will
be low and the observed scatters will have lower magnitudes as can be
seen from Figs. 3 and 4. In case of the cropland sites, LGEP presents
more scatter (in terms of both underestimation and overestimation) for
values greater than 0.5 while LRF shows such trend for all ranges of LAI
amount. In Grass2 site, however, the scatters between the observed and
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simulated LAI amounts are distributed for all LAI magnitudes. Some
unusual scatters in the plots might be explained by taking into con-
sideration the quality of the applied data as well as sharp variations of
LAI among different days/months which has made it difficult to get a
more accurate simulation using the same input parameters with gen-
erally mild variations. Nevertheless, any possible variations of the input
parameters which can affect LAI magnitudes and its simulation should
be taken into account. The similar statements would stand for the ex-
ternal models.

For both the cropland and grassland sites, it seems difficult to assess
the model performance in the climatic context of each location, as the
present study considers only 5 sites for each land cover type (due to the
high computational costs involved in the k-fold testing procedures as
well as limitation of necessary records for modeling issue), and because
these present similar climatic parameters (not presented here). In
cropland sites, Crop5 has higher temperature magnitudes and slightly
lower LAI records than the other locations. Further, Crop3 has slightly
higher relative humidity records and the highest LAI. Similar variations
of the meteorological variables are observed in grassland sites, where
Grass5 presents the highest air temperature and LAI records while
Grass4 shows the lowest NDVI and LAI values. Nevertheless, much
couldn’t be inferred here since the number of considered sites was low.

The performances of the GEP and RF models were also assessed
temporally (per test year) at each site. For instance, the SI variations of
the local GEP and RF models split per test year have been presented in
Fig. 5 for sample stations. The figure clearly shows the considerable
fluctuations of the SI values within test years. In case of Crop5, SI varies
between 0.102 (test year 2005) and 0.231 (test year 2004) for GEP and
between 0.115 and 0.24 (the same test years) for RF. Similarly, in

Grass2, the SI oscillations is between 0.098 (test year 2004) and 0.29
(test year 2002) for GEP and between 0.1 and 0.3 (the same test years)
for RF models. Such variability may be due to the relationships between
the train/test patterns considered at each stage of modeling phase,
where a part of patterns (here one year) was reserved for testing, then
the model was trained using the rest of patters. In this way, any in-
consistency or outlier values within the test/train patterns would cru-
cially affect the performance accuracy of the trained models. The out-
comes of this parts confirms the requirement of the complete data
scanning procedure for evaluating the applied methodologies, other-
wise, the obtained results would be partially valid as discussed by Marti
et al. (2011).

Finally, the global cross-station assessment was achieved where all
patterns of each land cover type were pooled and the GEP and RF
models were trained using the pooled data from all sites of cropland
sites, then tested using all patterns of the grassland sites. The same
procedure was repeated by training the models using grassland data
and testing using cropland data. Based on the SI values, GEP and RF
models have SI values of 0.295 and 0.300 (for the first case) and 0.301
and 0.315 (for the second case), respectively.

Although the number of sites is limited due to the high computa-
tional costs as well as the availability of data (as stated before), and the
chronological period of the applied patterns is generally short (limited
study period), the applied models (i.e. GEP and RF) have lower degree
of sensitivity to the amount of utilized patterns, so the applied techni-
ques can be utilized with any chronological period (number of patterns;
here the years), provided that the information content in the data set is
sufficient to evolve a generalized formulation, as discussed by
Deschaine (2014) and Shiri (2017).
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Summarizing, the results obtained in the present study revealed that
a complete cross validation data scanning procedure (i.e. k-fold testing)
is very necessary to better assessment of the models’ performance which
confirms the results obtained by previously published literature (e.g.
Marti et al., 2015; Roushangar et al., 2014b). The presented k-fold
validation is infrequently applied in practical issues for assessing
heursitic models in case of LAI simulation. Further, the presented ex-
ternal validation of data driven approaches outside the training station
might be a valid alternative to conventional locally trained models.
Further researches would be necessary using data from other land cover
types and using other sites/techniques for confirming the outcomes of
the present study. Nonetheless, in this study, LAI is predicted with re-
motely sensed LAI as the target. However, these estimates may not
accurate when the remotely sensed LAI have large uncertainties.
Therefore, the ground-based LAI should be collected broadly and used
as target to enhance the models’ prediction abilities.

4. Conclusions

The present study reports a new application of heuristic data driven
models for simulating cropland and grassland LAI using meteorological
variables. Meteorological and remotely sensed data from the mentioned
land cover types were utilized to estimate the LAI through gene ex-
pression programming (GEP) and random forest (RF) techniques. A
most robust cross validation approach, i.e. k-fold testing was adopted
here for both local (temporal) and external (spatial) assessment of the
applied models. Accordingly, the test patterns were selected either
chronologically or geographically independent of the training patterns,
so a complete data scanning procedure was fulfilled. In both land cover
types, temporal (local) models gave the most accurate results since they
were relying on the local inputs which were used for the train and test
stages. However, the performance accuracy of the external models was
comparable to the local ones, even though they were trained without
considering data set of the test sites. This was a big step forward in case
of the LAI modeling because the training of the local models would not
be required if sufficient necessary data were available at other loca-
tions. The obtained results showed that externally trained GEP and RF
models could be valid alternatives to locally trained models. This study
was the first attempt for applying the local and external heuristic
models (e.g. GEP and RF) for simulating LAI in literature. The presented
application of local and external k-fold testing processes provided a
sound evaluation of the GEP and RF performances.
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