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Abstract. In this paper we study the class of w-Jaffard domains in pullback
constructions, and give new examples of these domains. In particular we give
examples to show that the two classes of w-Jaffard and Jaffard domains are
incomparable. As another application, we establish that for each pair of pos-
itive integers (n,m) with n + 1 ≤ m ≤ 2n + 1, there is an (integrally closed)
integral domain R such that w-dim(R) = n and w[X]-dim(R[X]) = m.

1. Introduction

Throughout this paper, R denotes a (commutative integral) domain with identity
with quotient field qf(R). Let X be an algebraically independent indeterminate
over R. In [26, Theorem 2] Seidenberg proved that if R has finite Krull dimension,
then

dim(R) + 1 ≤ dim(R[X]) ≤ 2(dim(R)) + 1.

Moreover, Krull [18] showed that if R is any finite-dimensional Noetherian ring,
then dim(R[X]) = 1 + dim(R) (cf. also [26, Theorem 9]). Seidenberg subsequently
proved the same equality in caseR is any finite-dimensional Prüfer domain. To unify
and extend such results on Krull-dimension, Jaffard [17] introduced and studied the
valuative dimension, denoted by dimv(R), for a domain R. This is the maximum
of the ranks of the valuation overrings of R. Jaffard proved in [17, Chapitre IV]
that, if R has finite valuative dimension, then dimv(R[X]) = 1+dimv(R), and that
if R is a Noetherian or a Prüfer domain, then dim(R) = dimv(R). In [1] Anderson,
Bouvier, Dobbs, Fontana and Kabbaj introduced the notion of Jaffard domains, as
finite dimensional integral domains R such that dim(R) = dimv(R), and studied
this class of domain systematically (see also [6]).

The v, t and w-operations in integral domains are of special importance in mul-
tiplicative ideal theory and were investigated by many authors in the 1980’s. Ideal
w-multiplication converts ring notions such as Dedekind, Noetherian, Prüfer, and
quasi-Prüfer, respectively to Krull, strong Mori, PvMD, and UMt. As the w-
counterpart of Jaffard domains, in [22], we introduced the class of w-Jaffard do-
mains, as integral domains R such that w- dim(R) = w- dimv(R) < ∞. In this
paper we study the transfer of w-Jaffard domains in pullback constructions, in
order to provide original examples.

We need to recall some notions about star operations. Let F (R) denotes the set
of nonzero fractional ideals, and f(R) be the set of all nonzero finitely generated
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fractional ideals of R. Let ∗ be a star operation on the domain R. For every
A ∈ F (R), put A∗f :=

⋃
F ∗, where the union is taken over all F ∈ f(R) with

F ⊆ A. It is easy to see that ∗f is a star operation on R. A star operation ∗ is said
to be of finite character if ∗ = ∗f . We say that a nonzero ideal I of R is a ∗-ideal if
I∗ = I, a ∗-prime if I is a prime ∗-ideal of R, a ∗-maximal if I is maximal in the set
of ∗-prime ideals of R. The set of ∗-maximal ideals of R is denoted by ∗-Max(R). It
has become standard to say that a star operation ∗ is stable if (A∩B)∗ = A∗ ∩B∗

for all A, B ∈ F (R).
Given a star operation ∗ on an integral domain R, it is possible to construct a

star operation ∗̃, which is stable and of finite character defined as follows: for each
A ∈ F (R),

A∗̃ := {x ∈ qf(R)|xJ ⊆ A, for some J ⊆ R, J ∈ f(R), J∗ = R}.

The most widely studied star operations on R have been the identity d, v, t := vf ,
and w := ṽ operations, where Av := (A−1)−1, with A−1 := (R : A) := {x ∈
qf(R)|xA ⊆ R}. In this work we mostly deal with the w-operation.

It is well-known that t-Max(R) = w-Max(R), every t-prime ideal is a w-prime
ideal, and that every prime subideal of a prime w-ideal of R is also a w-ideal.

Let ∗ be a star operation on a domain R. The ∗-Krull dimension of R is defined
as

∗- dim(R) := sup{n|P1 ⊂ · · · ⊂ Pn where Pi is ∗ -prime}.
If the set of ∗-prime ideals is an empty set then pose ∗- dim(R) = 0. Note that, the
notions of ∗̃-dimension, t-dimension, and of w-dimension have received a consider-
able interest by several authors (cf. for instance, [22, 23, 24, 14, 15, 28, 29]).

Now we recall a special case of a general construction for semistar operations
(see [22]). Let X, Y be two indeterminates over R, and let K := qf(R). Set
R1 := R[X], K1 := K(X) and take the following subset of Spec(R1):

Θw
1 := {Q1 ∈ Spec(R1)| Q1 ∩R = (0) or (Q1 ∩R)w ( R}.

Set Sw
1 := R1[Y ]\(

⋃
{Q1[Y ]|Q1 ∈ Θw

1 }) and:

E
⟲Sw

1 := E[Y ]Sw
1
∩K1, for all E ∈ F (R1).

It is proved in [22, Theorem 2.1] that, the mapping w[X] :=⟲Sw
1
: F (R1) →

F (R1), E 7→ Ew[X] is a stable star operation of finite character on R[X], i.e.,
w̃[X] = w[X]. If X1, · · · , Xr are indeterminates over R, for r ≥ 2, we let

w[X1, · · · , Xr] := (w[X1, · · · , Xr−1])[Xr].

For an integer r, let w[r] denote w[X1, · · · , Xr], and R[r] to denote R[X1, · · · , Xr].

Proposition 1.1. ([22, Theorem 3.1]) For each positive integer r and for n :=
w- dim(R) we have

r + n ≤ w[r]- dim(R[r]) ≤ r + (r + 1)n.

Proposition 1.2. ([24, Lemma 4.4]) Let R be an integral domain and n be an
integer. Then

w[n]- dim(R[n]) = sup{dim(RM [n])|M ∈ w-Max(R)}.
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A valuation overring V of R, is called a w-valuation overring of R, provided
Fw ⊆ FV , for each F ∈ f(R). Following [22], the w-valuative dimension of R is
defined as:

w- dimv(R) := sup{dim(V )|V is w-valuation overring of R}.
Proposition 1.3. ([24, Lemma 2.5]) For each domain R,

w- dimv(R) = sup{dimv(RP )|P ∈ w-Max(R)}.
Proposition 1.4. ([24, Theorem 4.2]) Let R be an integral domain, and n be a
positive integer. Then the following statements are equivalent:

(1) w-dimv(R) = n.
(2) w[n]- dim(R[n]) = 2n.
(3) w[r]- dim(R[r]) = r + n for all r ≥ n− 1.

It is observed in [22] that w-dim(R) ≤ w-dimv(R). We say that R is a w-Jaffard
domain, if w- dim(R) = w- dimv(R) <∞. It is proved in [22], that R is a w-Jaffard
domain if and only if

w[n]- dim(R[n]) = w- dim(R) + n,

for each positive integer n.
Recall that an integral domain is called a strong Mori domain if it satisfies the

ascending chain condition on w-ideals (cf. [30]). Also recall that an integral domain
R is called a UMt-domain, if every upper to zero in R[X] is a maximal t-ideal [16,
Section 3]. It is shown in [22, Corollary 4.6 and Theorem 4.14] that a strong Mori
domain or a UMt domain of finite w-dimension is a w-Jaffard domain. In particular
every Krull domain is a w-Jaffard domain (of w-dimension 1).

If F ⊆ K are fields, then tr. deg.(K/F ) stands for the transcendence degree of
K over F . Let T be an integral domain, M a maximal ideal of T , k = T/M and
φ : T → k the canonical surjection. Let D be a proper subring of k and R = φ−1(D)
be the pullback of the following diagram:

R //

��

D

��
T

φ // k.

In Section 2 we prove that if F := qf(D) then:
(1) w- dim(R) = max{w- dim(T ), w- dim(D) + dim(TM )}.
(2) w- dimv(R) = max{w- dimv(T ), w- dimv(D) + dimv(TM ) + tr. deg.(k/F )}.
(3) If T is quasilocal, then R is a w-Jaffard domain if and only if D is a w-

Jaffard domain, T is a Jaffard domain, and k is algebraic over F .
Using these results, in Section 3 we give examples to show that the two classes

of w-Jaffard and Jaffard domains are incomparable, and an example of a w-Jaffard
domain which is not a strong Mori nor a UMt domain. Also we observe that a
Mori domain need not be a w-Jaffard domain. As another application in Section
4 we prove that for any pair of positive integers (n,m) with n + 1 ≤ m ≤ 2n + 1,
there is an integrally closed integral domain R such that w-dim(R) = n and w[X]-
dim(R[X]) = m, which is similar to a result of Seidenberg [27].

For the convenience of the reader, the following displays a diagram of implications
summarizing the relations between the main classes of integral domains involved in
this work.
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A ring-theoretic perspective for w-Jaffard property.

2. Pullbacks

It is shown in [22, Theorem 4.14] that, a UMt domain of finite w-dimension is
a w-Jaffard domain. Now we give an example of a w-Jaffard non UMt domain.
Recall that recently Houston and Mimouni in [15, Theorem 4.2] proved that, if
m,n are integers with 1 ≤ m ≤ n, and B ⊆ {2, · · · , n} with |B| = n − m, then
there exists a local Noetherian domain R such that dim(R) = n, t-dim(R) = m,
and for each i ∈ B, every prime ideal of height i is a non-t-prime. Now let n = 3,
m = 2 and B = {3}. Then there exists a local Noetherian domain (R,m) such that
dim(R) = 3 = ht(m), t-dim(R) = 2, and that m is a non-t-prime. Consequently
we have w-dim(R) = 2. Since R is Noetherian thus it is strong Mori and hence
is a w-Jaffard domain. But R is not a UMt domain since w-dim(R) = 2 (cf. [16,
Theorem 3.7]). In Example 3.3 we will give a w-Jaffard domain which is not a
strong Mori nor a UMt domain.

To avoid unnecessary repetition, let us fix the notation. Let T be an integral
domain, M a maximal ideal of T , k = T/M and φ : T → k the canonical surjection.
Let D be a proper subring of k and R = φ−1(D) be the pullback of the following
diagram:

R //

��

D

��
T

φ // k.

We assume that R ( T , and we refer to this diagram as a diagram of type (□) and
if the quotient field of D is equal to k, we refer to the diagram as a diagram of type
(□∗). The case where T = V is a valuation domain of the form K +M , where K
is a field and M is the maximal ideal of V is of crucial interest, known as classical
“D +M” construction.

Recall that (R : T ) =M is a prime ideal of R and therefore M is a divisorial ideal
(or a v-ideal) of R. Thus M is a w-prime ideal of R. Also recall that R/M ' D,
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and R and T have the same quotient field. Moreover, T is quasilocal if and only if
every ideal of R is comparable (under inclusion) to M . For each prime ideal P of
R with P +M , there is a unique prime ideal Q of T with Q∩R = P and such that
RP = TQ. For more details on general pullbacks, we refer the reader to [7, 11, 12],
and [4] for classical D +M constructions.

Lemma 2.1. For a diagram of type (□), suppose that P is a prime ideal of D
and Q is a prime ideal of R such that Q = φ−1(P ). Then P is a w-prime (resp.
w-maximal) ideal of D if and only if Q is a w-prime (resp. w-maximal) ideal of R

Proof. By [20, Lemma 3.1] we have Qw = φ−1(Pw). So that if P is a w-prime ideal
of D then Q is w-prime ideal of R. Conversely if Q is a w-prime ideal of R, then
we have φ−1(Pw) = φ−1(P ). Let a ∈ Pw. Then φ−1(a) ⊆ φ−1(Pw) = φ−1(P ). So
that a ∈ P since φ−1(a) 6= ∅. Thus Pw = P . The other assertion is clear. □

It is well-known that [7, Proposition 2.1(5)] for a diagram of type (□), if T is
quasilocal, we have dim(R) = dim(D) + dim(T ). The following proposition gives a
satisfactory analogue of this equality.

Proposition 2.2. For a diagram of type (□), assume that T is quasilocal. Then
w- dim(R) = w- dim(D) + dim(T ).

Proof. Let n := w- dim(R), s := w- dim(D), and t := dim(T ). Suppose that
P1 ⊂ · · · ⊂ Ps is a chain of w-prime ideals of D. Let Qi := φ−1(Pi) which is a
w-prime ideal of R by Lemma 2.1. Thus M ⊂ Q1 ⊂ · · · ⊂ Qs. Also consider a
chain L1 ⊂ · · · ⊂ Lt = M of prime ideals of T . Note that each Lj is a w-prime
ideal of R. Now we have a chain L1 ⊂ · · · ⊂ Lt = M ⊂ Q1 ⊂ · · · ⊂ Qs of
distinct w-prime ideals of R. This means that s+ t ≤ n. Conversely suppose that
L1 ⊂ · · · ⊂ Lr =M ⊂ Q1 ⊂ · · · ⊂ Qu is a chain of distinct w-prime ideals of R such
that r+ u = n. Thus L1 ⊂ · · · ⊂ Lr =M is a chain of prime ideals of T and hence
r ≤ t. On the other hand by setting Pi := Qi/M , we have a chain P1 ⊂ · · · ⊂ Pu of
w-prime ideals of D by Lemma 2.1, and hence u ≤ s. Therefore n = r + u ≤ t+ s
completing the proof. □

Remark 2.3. For a diagram of type (□), assume that T is quasilocal and D = F
is a field. Then by [21, Theorem 3.1(2)], we have that R is a DW-domain (that is
the d- and w-operations are the same). Hence w- dim(R) = dim(R). So that the
equality in Lemma 2.2 would be (dim(R) =)w- dim(R) = dim(T ).

The following proposition is inspired by [1, Proposition 2.3].

Proposition 2.4. For a diagram of type (□∗), assume that T is quasilocal. Then:
(a) w[r]- dim(R[r]) = w[r]- dim(D[r]) + dim(T [r])− dim(k[r]) for each positive

integer r,
(b) w- dimv(R) = w- dimv(D) + dimv(T ),
(c) R is a w-Jaffard domain ⇔ D is a w-Jaffard domain and T is a Jaffard

domain.

Proof. (a) By Proposition 2.2 we have w-dim(R) <∞ if and only if w-dim(D) <∞
and dim(T ) < ∞. Hence w[r]- dim(R[r]) < ∞ if and only if w[r]- dim(D[r]) and
dim(T [r]) are finite numbers by Proposition 1.1. Thus we can assume that each
domain is finite (w-)dimensional.
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By [24, Lemma 4.4 and Corollary 4.5], there is a w-maximal ideal q of R and a
w[r]-maximal ideal Q of R[r] such that q = Q ∩ R, and w[r]- dim(R[r]) = ht(Q) =
r+ht(q[r]) = dim(Rq[r]). Note that since M is a w-prime ideal of R we have M ⊆ q.
Thus by Lemma 2.1 we have that P := q/M is a w-maximal ideal of D. Next
we claim that sup{dim(DL[r])|L ∈ w-Max(D)} = dim(DP [r]), then Proposition
1.2 will implies that w[r]- dim(D[r]) = dim(DP [r]). Let L ∈ w-Max(D) and set
q0 := φ−1(L). We have the following diagrams:

Rq0
//

��

DL

��

Rq
//

��

DP

��
T

φ // k, T
φ // k.

Therefore by [1, Proposition 2.3] we have dim(DL[r])+dim(T [r])−r = dim(Rq0
[r]) ≤

dim(Rq[r]) = dim(DP [r]) + dim(T [r]) − r, where the inequality holds by Propo-
sition 1.2. Thus dim(DL[r]) ≤ dim(DP [r]) for each L ∈ w-Max(D), and hence
sup{dim(DL[r])|L ∈ w-Max(D)} = dim(DP [r]). Therefore we have

w[r]- dim(R[r]) = w[r]- dim(D[r]) + dim(T [r])− dim(k[r]).

(b) First suppose that w- dimv(R) <∞. Then w- dim(D)+dim(T ) = w- dim(R) <
∞, and so both w- dim(D) and dim(T ) are finite. In addition we claim that
dimv(T ) < ∞. To this end let (V,N) be a valuation overring of T and set
P := N ∩ T . So that P ⊆ M and thus P is a prime ideal of R. Hence P is
in fact a w-prime ideal of R. Since RP ⊆ TR\P ⊆ TP ⊆ V we obtain that V
is a w-valuation overring of R by [10, Theorem 3.9], and consequently dim(V ) ≤
w- dimv(R). This means that dimv(T ) ≤ w- dimv(R) < ∞. Next we observe that
w- dimv(D) <∞. By Proposition 1.3, there exists a w-prime ideal P of D such that
w- dimv(D) = dimv(DP ). Let Q := φ−1(P ), which is a w-prime ideal of R. Note
that we have M ⊆ Q and thus (R\Q)∩M = ∅, and φ(R\Q) = D\P . Therefore by
[7, Proposition 1.9] we have the following pullback diagram:

RQ
//

��

DP

��
T

φ // k.

If B is an n-dimensional overring of DP , then A := φ−1(B) is an overring of RQ,
and [7, Proposition 2.1(5)] yields that n + dim(T ) = dim(A). Thus n + dim(T ) ≤
dimv(RQ). This means that w- dimv(D) = dimv(DP ) ≤ dimv(RQ) ≤ w- dimv(R) <
∞, where the second inequality holds by Proposition 1.3.

Let r be a positive integer such that r ≥ max{w- dimv(R), w- dimv(D), dimv(T )}−
1. Then by Proposition 1.4 and [2, Theorem 6] we have

w[r]- dim(R[r]) =w- dimv(R) + r,

w[r]- dim(D[r]) =w- dimv(D) + r,

dim(T [r]) = dimv(T ) + r.

Then by (a), w- dimv(R) + r = (w- dimv(D) + r) + (dimv(T ) + r)− r, yielding (b)
in case w- dimv(R) <∞.
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To complete the proof of (b) we show that w- dimv(R) <∞ whenever w- dimv(D)
and dimv(T ) are both finite. Let r be a positive integer such that

r ≥ max{w- dimv(D), dimv(T )} − 1.

Then by (a), Proposition 1.4, and [2, Theorem 6] we have w[r]- dim(R[r]) =
w[r]- dim(D[r])+dim(T [r])−r = (w- dimv(D)+r)+(dimv(T )+r)−r = w- dimv(D)+
dimv(T ) + r. Hence w- dimv(R) <∞ by another appeal to Proposition 1.4.

(c) Since w- dim(R) = w- dim(D) + dim(T ) and w-dim(B) ≤ w-dimv(B) and
dim(B) ≤ dimv(B) for a domain B, (c) follows directly from (b). □

Recall from [5] the notion of CPI (complete pre-image) extension of a domain R
with respect to a prime ideal P of R; this is denoted R(P ) and is defined by the
following pullback diagram:

R(P ) //

��

R/P

��
RP

φ // RP /PRP .

Here φ is the canonical homomorphism.

Corollary 2.5. Let R be an integral domain, and let P be a prime ideal of R. Then
the CPI-extension R(P ) is a w-Jaffard domain ⇔ R/P is a w-Jaffard domain and
RP is a Jaffard domain.

In [1, Theorem 2.6], Anderson, Bouvier, Dobbs, Fontana and Kabbaj proved
that for a diagram of type (□) such that T is quasilocal and F := qf(D) then
dimv(R) = dimv(D) + dimv(T ) + tr. deg.(k/F ) and hence R is a Jaffard domain if
and only if D and T are Jaffard domains and k is algebraic over F . Now we have:

Theorem 2.6. For a diagram of type (□), assume that T is quasilocal and let
F = qf(D). Then

(a) w- dimv(R) = w- dimv(D) + dimv(T ) + tr. deg.(k/F ),
(b) R is a w-Jaffard domain ⇔ D is a w-Jaffard domain, T is a Jaffard domain,

and k is algebraic over F .

Proof. (a) Split the pullback diagram (□) into two parts:

R //

��

D

��
S := φ−1(D) //

��

F

��
T

φ // k.

Now the upper diagram is of type (□∗), and S is quasilocal. Thus by Proposition
2.4(b) we have w- dimv(R) = w- dimv(D)+dimv(S). Also from the lower diagram,
[1, Proposition 2.5] yields that dimv(S) = dimv(T ) + tr. deg.(k/F ). We thus have
the desired equality.

(b) Since w- dim(R) = w- dim(D) + dim(T ), (b) follows directly from (a). □
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In Example 3.1 we will give an example of a w-Jaffard domain which is not
Jaffard. Using Theorem 2.6 together with [1, Theorem 2.6] we have the following
corollary.
Corollary 2.7. For a diagram of type (□), assume that T is quasilocal and let
F = qf(D). Then R is a w-Jaffard domain which is not Jaffard ⇔ D is a w-
Jaffard domain which is not Jaffard, T is a Jaffard domain and k is algebraic over
F .

We pause here to give some concrete applications of the above theory to the
classical D +M constructions.
Corollary 2.8. Let V be a nontrivial valuation domain of the form V = K +M ,
where K is a field and M is the maximal ideal of V . Let R = D +M , where D is
a proper subring of K and let F = qf(D). Then

(a) w- dimv(R) = w- dimv(D) + dim(V ) + tr. deg.(K/F ),
(b) R is a w-Jaffard domain ⇔D is a w-Jaffard domain, V is finite-dimensional,

and K is algebraic over F .
A “global” type of D+M constructions arise from T = K[[X]], the formal power

series ring over a field K, by considering M = XT and a subring D of K.
Corollary 2.9. Let K be a field, D a subring of K with quotient field F , R =
D +XK[[X]]. Then

(a) w- dim(R) = w- dim(D) + 1,
(b) w- dimv(R) = w- dimv(D) + tr. deg.(K/F ) + 1.
(c) R is a w-Jaffard domain ⇔ D is a w-Jaffard domain and K is algebraic

over F .
We next proceed to generalize the previous “quasilocal” theory. In this direction

we prove the “global” analogue of Propositions 2.2 and 2.4(b). Before that, we need
two lemmas.
Lemma 2.10. For a diagram of type (□∗) we have:

(a) w- dim(R) = max{w- dim(T ), w- dim(D) + dim(TM )},
(b) w- dimv(R) = max{w- dimv(T ), w- dimv(D) + dimv(TM )}.

Proof. (a) We have w- dim(R) = sup{dim(RP )|P ∈ w-Max(R)}. Now let P ∈
w-Max(R) such that w- dim(R) = dim(RP ). If P 6⊃ M then RP = TQ for some
Q ∈ Spec(T ) such that P = Q ∩ R. Thus Q and M are incomparable prime
ideals of T . Hence using [8, Lemma 3.3], we see that Q is a w-maximal ideal of
T . On the other hand if P ⊇ M , then dim(RP ) = dim(DQ) + dim(TM ) for some
Q ∈ w-Max(R) such that P = φ−1(Q). Then we have the inequality ≤ in (a). We
have two cases to consider:

1◦ If P 6⊃ M then RP = TQ for some Q ∈ w-Max(R) such that P = Q ∩ R.
We claim that w-dim(T ) = dim(TQ). Suppose, contrary to our claim, that there
exists L ∈ w-Max(R) such that w-dim(T ) = dim(TL) and dim(TQ) � dim(TL). Set
P1 := L∩R. Consequently RP1

= TL by [12, Proposition 1.11]. Thus w- dim(R) =
dim(RP ) = dim(TQ) � dim(TL) = dim(RP1

). This implies that P1 is not a w-ideal
of R contradicting [12, Theorem 2.6(2)]. Thus in this case we have the equality in
(a).

2◦ If P ⊇ M , then dim(RP ) = dim(DQ) + dim(TM ) for some Q ∈ w-Max(D)
such that P = φ−1(Q) (by Proposition 2.2). We claim that w-dim(D) = dim(DQ).
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Suppose, contrary to our claim, that there exists L ∈ w-Max(D) such that w-
dim(D) = dim(DL) and dim(DQ) � dim(DL). Set P1 := φ−1(L). Consequently
dim(RP1) = dim(DL) + dim(TM ). Thus w- dim(R) = dim(RP ) = dim(DQ) +
dim(TM ) � dim(DL)+dim(TM ) = dim(RP1

). This implies that P1 is not a w-ideal
of R contradicting Lemma 2.1. Thus in this case again we have the equality in (a).

(b) We have w- dimv(R) = sup{dimv(RP )|P ∈ w-Max(R)} by Proposition 1.3.
The rest of the proof is the same as part (a). □

Lemma 2.11. For a diagram of type (□) assume that D = F is a field and let
d = tr. deg.(k/F ). Then

(a) w- dim(R) = max{w- dim(T ), dim(TM )},
(b) w- dimv(R) = max{w- dimv(T ), dimv(TM ) + d}.

Proof. (a) Note that M is a w-prime ideal of R. Then we have w- dim(R) =
max{sup{dim(RP )|P ∈ w-Max(R), and P 6⊃ M}, dim(RM )}. Like Lemma 2.10
the inequality ≤ holds. Let P ∈ w-Max(R) such that w- dim(R) = dim(RP ). If
P = M , then we have dim(RP ) = dim(TM ) by [7, Proposition 2.1(5)]. If not we
have P 6⊃M . Then RP = TQ for some Q ∈ Spec(T ) such that P = Q∩R. Using [8,
Lemma 3.3], we see that Q is a w-maximal ideal of T . We claim that w-dim(T ) =
dim(TQ). Suppose, contrary to our claim, that there exists L ∈ w-Max(R) such
that w-dim(T ) = dim(TL) and dim(TQ) � dim(TL). Set P1 := L ∩ R. If P1 6⊃ M
then RP1

= TL. Thus w- dim(R) = dim(RP ) = dim(TQ) � dim(TL) = dim(RP1
).

This implies that P1 is not a w-ideal. But if L ⊆ M then P1 ⊆ M and hence
P1 is a w-prime ideal which is a contradiction. So that L 6⊂ M . Thus P1 is a
w-prime ideal by [12, Theorem 2.6(2)] which is again a contradiction. Therefore
w- dim(R) = dim(RP ) = dim(TQ) = w- dim(T ).

(b) It is the same as part (a) noting that we have

w- dimv(R) = max{sup{dimv(RP )|P ∈ w-Max(R), and P 6⊃M}, dimv(RM )},

by Proposition 1.3 and using [1, Theorem 2.11(b)] instead of [7, Proposition 2.1(5)].
□

By combining Lemmas 2.10 and 2.11 we have:

Theorem 2.12. For a diagram of type (□), let F = qf(D) and d := tr. deg.(k/F ).
Then:

(a) w- dim(R) = max{w- dim(T ), w- dim(D) + dim(TM )}.
(b) w- dimv(R) = max{w- dimv(T ), w- dimv(D) + dimv(TM ) + d}.

An integral domain R is said to be a w-locally Jaffard domain if RP is a Jaffard
domain for each w-prime ideal P of R. It is easy to see that a w-locally Jaffard
domain of finite w-valuative dimension is a w-Jaffard domain. Now we have the
following corollary which is the w-analogue of [1, Corollary 2.12].

Corollary 2.13. For a diagram of type (□), let F be the quotient field of D. Then:
(a) R is a w-locally Jaffard domain ⇔ D and T are w-locally Jaffard domains,

and k is algebraic over F .
(b) If T is a w-locally Jaffard domain with w-dimv(T ) <∞, D is a w-Jaffard

domain, and k is algebraic over F , then R is a w-Jaffard domain.
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A “global” type of D +M constructions arise from T = K[X], the polynomial
ring over a field K, by considering M = XT and a subring D of K. In this case
neither T nor R is quasilocal. Theorem 2.12 yields:

Corollary 2.14. Let K be a field, D a subring of K with quotient field F , R =
D +XK[X] and d = tr. deg.(K/F ). Then:

(a) w- dim(R) = w- dim(D) + 1.
(b) w- dimv(R) = w- dimv(D) + d+ 1.
(c) R is a w-Jaffard domain ⇔ D is a w-Jaffard domain and K is algebraic

over F .

3. Examples

It is well known that [9, Theorem 6.7.8] a finite dimensional domain R has Prüfer
integral closure if and only if each overring of R is a Jaffard domain. Similarly in
[25] we showed that a finite w-dimensional domain R has Prüfer integral closure
if and only if each overring of R is a w-Jaffard domain. Thus in particular each
overring of a finite dimensional domain is Jaffard if and only if each overring is
w-Jaffard. In the following two examples we show that the classes of w-Jaffard and
Jaffard domains are incomparable.

The next example gives a positive answer to our question in [22, page 238],
whether it is possible to find a w-Jaffard non-Jaffard domain? There is an old
question (see [6]) asking if it is possible to find a UFD (or a Krull domain) which
is not Jaffard. We note that a non-Jaffard Krull domain would be an example of a
w-Jaffard domain which is not Jaffard. But to the best of author’s knowledge there
is not such an example.

Example 3.1. For each n ≥ 3 there is an integral domain Rn which is w-Jaffard
of dimension n but not a Jaffard domain.
Let K be a field and let W,X, Y, Z be indeterminates over K. Put L = K(W,X, Y, Z).
Now, V1 = K(W,X,Z)+M1, where M1 = Y K(W,X,Z)[Y ](Y ), is a (discrete) rank
1 valuation domain of L with maximal ideal M1. Let (V,M) be a rank 1 valuation
domain of the form V = K(W,X, Y ) +M , where M = ZK(W,X, Y )[Z](Z). With
τ denoting the canonical surjection V → K(W,X, Y ), consider the pullback V ′ =
τ−1(K(W,X)[Y ](Y+1)) = K(W,X) +M ′ where M ′ = (Y + 1)K(W,X)[Y ](Y+1) +
ZK(W,X, Y )[Z](Z). Thus dim(V ′) = 2. Finally with ψ denoting the canonical sur-
jection V ′ → K(W,X), consider the pullback V2 = ψ−1(K(W )[X](X)) = K(W ) +
M2, where M2 = XK(W )[X](X) +(Y +1)K(W,X)[Y ](Y+1) +ZK(W,X, Y )[Z](Z),
is a valuation domain of L with maximal ideal M2 and we have dim(V2) = 3.
Further, V1 and V2 are incomparable. If not, it would follow from the one-
dimensionality of V1 that V2 ⊂ V1. Then we would have V1 = (V2)M , whence
Y K(W,X,Z)[Y ](Y ) = M1 = M(V2)M = M and 1 = Y Y −1 ∈ MV = M , a
contradiction. Thus V1 and V2 are incomparable. Then T := V1 ∩ V2 is a three
dimensional Prüfer domain with m1 := M1 ∩ T and m2 := M1 ∩ T as maxi-
mal ideals such that Tm1

= V1 and Tm2
= V2 by [19, Theorem 11.11]. With

φ : T → T/m1(∼= V1/M1
∼= K(W,X,Z)) denoting the canonical surjection, con-

sider the pullback R3 := φ−1(K[W,X]). Notice that T is a DW-domain since it is
a Prüfer domain, d := tr. deg.(K(W,X,Z)/K(W,X)) = 1, and that K[W,X] is a
Noetherian Krull domain. In particular K[W,X] is a Jaffard domain (of dimension
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2) and w-Jaffard domain (of w-dimension 1). Thus using Theorem 2.12 we have:

w- dim(R3) =max{w- dim(T ), w- dim(K[W,X]) + dim(Tm1)}

=max{3, 1 + 1} = 3, and

w- dimv(R3) =max{w- dimv(T ), w- dimv(K[W,X]) + dimv(Tm1
) + d}

=max{3, 1 + 1 + 1} = 3.

This means that R3 is a w-Jaffard domain of w-dimension 3. But by [1, Theorem
2.11] we have

dim(R3) =max{dim(T ), dim(K[W,X]) + dim(Tm1)}

=max{3, 2 + 1} = 3, and

dimv(R3) =max{dimv(T ), dimv(K[W,X]) + dimv(Tm1
) + d}

=max{3, 2 + 1 + 1} = 4.

Therefore R3 is not a Jaffard domain.
Now set F := qf(R3). Suppose that V := F +M is a rank 1 valuation domain

with maximal ideal M . Set R4 := R3 +M . It is easy to see that R4 is w-Jaffard
of w-dim(R4) = 4, dim(R4) = 4, and dimv(R4) = 5. Iterating in the same way we
obtain Rn with desired properties.

Example 3.2. For each n ≥ 2 there is an integral domain Rn which is Jaffard of
dimension n but not a w-Jaffard domain.
Let K be a field and let X,Y, Z be indeterminates over K. Let C := K[X,Y, Z]
and set P := (X) and Q := (Y, Z). Let T := CS where S := C\(P ∪Q), which is a
multiplicatively closed subset of C. Then Max(T ) = {PT,QT}, dim(TPT ) = 1 and
dim(T ) = dim(TQT ) = 2. Next notice that we have a surjective ring homomorphism
ψ : CP → K(Y, Z) sending f/g 7→ f(0, Y, Z)/g(0, Y, Z), with Ker(ψ) = PCP . Thus
we have T/PT ∼= CP /PCP

∼= K(Y, Z). With φ : T → T/PT denoting the canonical
surjection, consider the pullback R2 := φ−1(K(Y )). Note that T is a Noetherian
Krull domain. Thus T is a 2 dimensional Jaffard domain and a w-Jaffard domain
of w-dimension 1. Also notice that d := tr. deg.(K(Y, Z)/K(Y )) = 1. Thus by [1,
Theorem 2.11] we have

dim(R2) =max{dim(T ), dim(K(Y )) + dim(TPT )}

=max{2, 0 + 1} = 2, and

dimv(R2) =max{dimv(T ), dimv(K(Y )) + dimv(TPT ) + d}

=max{2, 0 + 1 + 1} = 2.



12 PARVIZ SAHANDI

Therefore R2 is a Jaffard domain of dimension 2. On the other hand using Theorem
2.12 we have:

w- dim(R2) =max{w- dim(T ), w- dim(K(Y )) + dim(TPT )}

=max{1, 0 + 1} = 1, and

w- dimv(R2) =max{w- dimv(T ), w- dimv(K(Y )) + dimv(TPT ) + d}

=max{1, 0 + 1 + 1} = 2.

This means that R2 is not a w-Jaffard domain.
Now set F := qf(R2). Suppose that V := F +M is a rank 1 valuation domain

with maximal ideal M . Set R3 := R2 +M . It is easy to see that R3 is Jaffard of
dim(R3) = 3, w-dim(R3) = 2, and w-dimv(R3) = 3. Iterating in the same way we
obtain Rn with desired properties.

Here we give our promised example of a w-Jaffard domain which is not a strong
Mori nor a UMt domain.
Example 3.3. Let Q be the field of rational numbers, K = Q(

√
2,
√
3, · · · ) be an

algebraic extension field of Q such that [K : Q] = ∞. Let X and Y be indeterminates
over K and set R := Q + (X,Y )K[X,Y ]. Then R is a w-Jaffard domain of w-
dimension 2 by Theorem 2.12, but it is not a strong Mori domain by [20, Theorem
3.11]. Next we claim that R is not a UMt domain. In fact if R is a UMt domain,
[8, Corollary 3.2] implies that (X,Y ) is a t-prime ideal of K[X,Y ], which is absurd
since K[X,Y ] is a Krull domain and (X,Y ) has height 2. Note that in this case R
is a 2 dimensional Jaffard domain.

Recall that an integral domain is called a Mori domain if it satisfies the ascending
chain condition on divisorial ideals. Every strong Mori domain is a Mori domain.
The following example is designed to show that a Mori domain need not be a w-
Jaffard domain.
Example 3.4. Let K be a field and let X,Y be two indeterminates over K and set
R := K + Y K(X)[Y ]. Then R is not a w-Jaffard domain by Corollary 2.14, but it
is a Mori domain by [11, Theorem 4.18].

The following example shows that a w-Jaffard domain need not be w-locally
Jaffard.
Example 3.5. Let K be a field and X1, X2 indeterminates over K. It is proved
in [1, Example 3.2(a)] that there are two incomparable valuation domains (V1,M1)
and (V2,M2) of dimension 1 and 2 respectively. Set T := V1 ∩ V2 which is a
two-dimensional Prüfer domain with exactly two maximal ideals m1 and m2 so
that Tm1

= V1 and Tm2
= V2. Denoting φ : T → T/m1(∼= V1/M1

∼= K(X1, X2))
consider the pullback R := φ−1(K(X1)). Since K(X1) and T are DW-domains , [21,
Theorem 3.1(3)] implies that R is also a DW-domain. In particular w-dim(R) =
dim(R) and w-dimv(R) = dimv(R). It follows that w-dim(R) = max{2, 0+1} = 2,
w-dimv(R) = max{2, 0 + 1 + 1} = 2. Thus R is a w-Jaffard (=Jaffard) domain.
It is observed in [1, Example 3.2(a)] that for the prime ideal n1 := m1 ∩ R of R,
dim(Rn1

) = 1 and dimv(Rn1
) = 2. This shows that R is not w-locally Jaffard.

By [13, Exercise 17(1), Page 372], for each positive integer n, there exists a
finite-dimensional (non-Jaffard) domain R such that dimv(R) − dim(R) = n (see
also [1, Example 3.1(a)]).
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Example 3.6. For each positive integer n, there exists a finite w-dimensional
domain R such that w- dimv(R)− w- dim(R) = n.
Indeed let D be a Krull domain. Let K be the quotient field of D and {X1, · · · , Xn, Y }
be a set of n + 1 indeterminates over K. Let L denote the field K(X1, · · · , Xn).
Also define the valuation domain V := L[Y ](Y ) = L +M (with M = Y V ) and
the ring R := D +M . Applying Proposition 2.12 to the pullback description of
R, we have w- dim(R) = w- dim(D) + 1 and w- dimv(R) = w- dimv(D) + 1 + n.
Since D is a Krull domain we have w- dim(D) = w- dimv(D) = 1. So that
w- dimv(R)−w- dim(R) = n. In particular R is not a w-Jaffard domain. Note that
dim(R) = dim(D) + 1 by [7, Proposition 2.1(5)] and dimv(R) = dimv(D) + 1 + n
by [1, Theorem 2.6(a)] while w- dim(R) = 2 and w- dimv(R) = 2+ n. In particular
if dim(D) ≥ 2 then dim(R) 6= w- dim(R) and dimv(R) 6= w- dimv(R).

We remark that in the above example if D is a Dedekind domain then R is a
DW-domain by [21, Theorem 3.1(2)]. This means that dim(R) = w- dim(R) and
dimv(R) = w- dimv(R). Therefore R is a non-Jaffard domain with dimv(R) −
dim(R) = n.

4. An application

Recall that in [27] Seidenberg proved that if n,m are positive integers such that
n+ 1 ≤ m ≤ 2n+ 1, there is an integrally closed domain R such that dim(R) = n
and dim(R[X]) = m. More recently in [29, Theorem 2.10] Wang showed that for
any pair of positive integers n,m with 1 ≤ n ≤ m ≤ 2n, there is an integrally closed
domain R such that w-dim(R) = n and w-dim(R[X]) = m. By Proposition 1.1 we
have for an integral domain R if n = w-dim(R) then

n+ 1 ≤ w[X]- dim(R[X]) ≤ 2n+ 1.

Now we show that these bounds are the best possible. We say that an integral
domain R is of wx-type (n,m) if w-dim(R) = n and w[X]-dim(R[X]) = m.

Theorem 4.1. Let D be an integral domain of wx-type (n,m) with quotient field
K. Let L be a purely transcendental field extension of K. Then:

(a) If V1 = K + M1 is a DVR and R1 = D + M1, then R1 is of wx-type
(n+ 1,m+ 1).

(b) If V2 = L + M2 is a DVR and R2 = D + M2, then R2 is of wx-type
(n+ 1,m+ 2).

Proof. (a) Using Proposition 2.2 we have
w- dim(R1) = w- dim(D) + dim(V1) = n+ 1.

Since R1 is a pullback of a diagram of type (□∗), Proposition 2.4 yields that
w[X]- dim(R1[X]) = w[X]- dim(D[X]) + dim(V1[X])− 1 = m+ 2− 1 = m+ 1.

(b) By the same way as (a) we have w- dim(R2) = n + 1. Now we compute
w[X]- dim(R2[X]). If Q1 ⊂ · · · ⊂ Qm is a chain of w[X]-prime ideals of D[X] of
length m, then

M2[X] ⊂ Q1 +M2[X] ⊂ · · · ⊂ Qm +M2[X]

is a chain of prime ideals of R2[X] of length m+1. Notice that (Qi+M2[X])∩R2 =
Qi∩D+M2 for i = 1, · · · ,m. Since Qi is a w[X]-prime ideal of D then Qi∩D is a
w-prime ideal of D (or equal to zero) by [22, Remark 2.3]. Therefore by [29, Lemma
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2.3] we see that Qi ∩D+M2 = (Qi +M2[X]) ∩R2 is a w-prime ideal of R2. Thus
using [22, Remark 2.3] we obtain that Qi +M2[X] is a w[X]-prime ideal of R2[X].
On the other hand (R2)M2 = K +M2, and therefore it is not a valuation domain.
Thus [13, Theorem 19.15(2)] yields that M2[X] is not minimal in R2[X]. Therefore
w[X]- dim(R2[X]) ≥ m+2. We consider a chain P1 ⊂ · · · ⊂ Ps of w[X]-prime ideals
of R2[X] of maximal length. Since P2 is not minimal in R2[X], P2 ∩R2 6= (0). By
[13, Part (3) of Exercise 12 Page 202] M2 is the unique minimal prime ideal of R2.
Therefore M2 ⊆ P2∩R2 and M2[X] ⊆ P2. Each Pj ∩R2 is a w-prime ideal of R2 by
[22, Remark 2.3] for j = 1, · · · , s. Since (Pj/M2[X])∩D = (Pj/M2[X])∩R2/M2 =
(Pj ∩ R2)/M2 we claim that (Pj ∩ R2)/M2 = (Pj/M2[X]) ∩ D is a w-prime ideal
of D by Lemma 2.1. Therefore Pj/M2[X] is a w[X]-prime ideal of D[X] by [22,
Remark 2.3]. So that P3/M2[X] ⊂ · · · ⊂ Ps/M2[X] is a chain of w[X]-prime ideals
of D[X], and thus s−2 ≤ m. It follows that w[X]- dim(R2[X]) = m+2 completing
the proof. □
Remark 4.2. Let Dc and Rc

i denote the integral closures of D and Ri in their
quotient fields, respectively (i = 1, 2). Then Rc

i = Dc +Mi by [29, Lemma 2.6(1)].
Therefore, Ri is integrally closed if and only if D is integrally closed.

Following Seidenberg, we say that a domain R is an F-ring if dim(R) = 1
and dim(R[X]) = 3. By [16, Corollary 3.6] and [13, Proposition 30.14], a one-
dimensional domain R is an F-ring if and only if R is not a UMt-domain. For an
F-ring, w-dim(R) = 1 and w[X]-dim(R[X]) = 3 by [22, Corollary 3.6]. Thus a
F-ring is a domain of wx-type (1, 3).
Corollary 4.3. For any pair of positive integers (n,m) with n+ 1 ≤ m ≤ 2n+ 1,
there is an integrally closed integral domain R of wx-type (n,m).
Proof. A PID is an integrally closed integral domain of wx-type (1, 2). By [27,
Theorem 3] there is an integrally closed F-ring. Thus by the comments before the
corollary it is of wx-type (1, 3). So if n = 1 the result is true. Using Theorem 4.1
and by an induction argument similar to the proof of [27, Theorem 3], the proof is
complete. □
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