W-JAFFARD DOMAINS IN PULLBACKS

PARVIZ SAHANDI

Abstract. In this paper we study the class of *w*-Jaffard domains in pullback constructions, and give new examples of these domains. In particular we give examples to show that the two classes of *w*-Jaffard and Jaffard domains are incomparable. As another application, we establish that for each pair of positive integers (n, m) with $n + 1 \le m \le 2n + 1$, there is an (integrally closed) integral domain *R* such that w -dim(R) = *n* and $w[X]$ -dim($R[X]$) = *m*.

1. Introduction

Throughout this paper, *R* denotes a (commutative integral) domain with identity with quotient field $q f(R)$. Let X be an algebraically independent indeterminate over *R*. In [[26,](#page-14-0) Theorem 2] Seidenberg proved that if *R* has finite Krull dimension, then

 $\dim(R) + 1 \leq \dim(R[X]) \leq 2(\dim(R)) + 1$.

Moreover, Krull [\[18](#page-14-1)] showed that if *R* is any finite-dimensional Noetherian ring, then $\dim(R[X]) = 1 + \dim(R)$ (cf. also [\[26](#page-14-0), Theorem 9]). Seidenberg subsequently proved the same equality in case *R* is any finite-dimensional Prüfer domain. To unify and extend such results on Krull-dimension, Jaffard [\[17](#page-14-2)] introduced and studied the *valuative dimension*, denoted by $\dim_{v}(R)$, for a domain *R*. This is the maximum of the ranks of the valuation overrings of *R*. Jaffard proved in [\[17](#page-14-2), Chapitre IV] that, if *R* has finite valuative dimension, then $\dim_v(R[X]) = 1 + \dim_v(R)$, and that if *R* is a Noetherian or a Prüfer domain, then $\dim(R) = \dim_{\nu}(R)$. In [\[1](#page-13-0)] Anderson, Bouvier, Dobbs, Fontana and Kabbaj introduced the notion of *Jaffard domains*, as finite dimensional integral domains *R* such that $\dim(R) = \dim_{v}(R)$, and studied this class of domain systematically (see also [[6\]](#page-13-1)).

The *v*, *t* and *w*-operations in integral domains are of special importance in multiplicative ideal theory and were investigated by many authors in the 1980's. Ideal *w*-multiplication converts ring notions such as Dedekind, Noetherian, Prüfer, and quasi-Prüfer, respectively to Krull, strong Mori, P*v*MD, and UM*t*. As the *w*counterpart of Jaffard domains, in [\[22](#page-14-3)], we introduced the class of *w-Jaffard domains*, as integral domains *R* such that *w*-dim(*R*) = *w*-dim_{*v*}(*R*) < ∞ . In this paper we study the transfer of *w*-Jaffard domains in pullback constructions, in order to provide original examples.

We need to recall some notions about star operations. Let $F(R)$ denotes the set of nonzero fractional ideals, and $f(R)$ be the set of all nonzero finitely generated

²⁰⁰⁰ *Mathematics Subject Classification.* Primary 13G05, 13A15, 13C15.

Key words and phrases. Jaffard domain, star operation, *w*-operation, valuative dimension, *w*-dimension.

This paper is published as part of a research project supported by the University of Tabriz Research Affaires Office (S/27/1364-4).

fractional ideals of *R*. Let *∗* be a star operation on the domain *R*. For every $A \in F(R)$, put $A^{*f} := \bigcup F^*$, where the union is taken over all $F \in f(R)$ with $F \subseteq A$. It is easy to see that **f* is a star operation on *R*. A star operation *** is said to be *of finite character* if $* = *$ *f*. We say that a nonzero ideal *I* of *R* is a $*$ *-ideal* if $I^* = I$, a **-prime* if *I* is a prime ***-ideal of *R*, a **-maximal* if *I* is maximal in the set of *∗*-prime ideals of *R*. The set of *∗*-maximal ideals of *R* is denoted by *∗*-Max(*R*). It has become standard to say that a star operation $*$ is *stable* if $(A \cap B)^* = A^* \cap B^*$ for all $A, B \in F(R)$.

Given a star operation *∗* on an integral domain *R*, it is possible to construct a star operation *, which is stable and of finite character defined as follows: for each $A \in F(R)$,

$$
A^* := \{ x \in qf(R) | xJ \subseteq A, \text{ for some } J \subseteq R, J \in f(R), J^* = R \}.
$$

The most widely studied star operations on *R* have been the identity $d, v, t := v_f$, and $w := \tilde{v}$ operations, where $A^v := (A^{-1})^{-1}$, with $A^{-1} := (R : A) := \{x \in A(D) \mid A \subseteq D\}$. It this weak we would be able that the weap variation $qf(R)|xA \subseteq R$ [}]. In this work we mostly deal with the *w*-operation.

It is well-known that t -Max $(R) = w$ -Max (R) , every t -prime ideal is a *w*-prime ideal, and that every prime subideal of a prime w -ideal of R is also a w -ideal.

Let *∗* be a star operation on a domain *R*. The *∗*-*Krull dimension of R* is defined as

$$
* \text{-dim}(R) := \sup \{ n | P_1 \subset \cdots \subset P_n \text{ where } P_i \text{ is } * \text{-prime} \}.
$$

If the set of ***-prime ideals is an empty set then pose ***- $\dim(R) = 0$. Note that, the notions of ^γ∗-dimension, *t*-dimension, and of *w*-dimension have received a considerable interest by several authors (cf. for instance, [\[22](#page-14-3), [23](#page-14-4), [24](#page-14-5), [14](#page-14-6), [15](#page-14-7), [28](#page-14-8), [29](#page-14-9)]).

Now we recall a special case of a general construction for semistar operations (see [[22\]](#page-14-3)). Let *X*, *Y* be two indeterminates over *R*, and let $K := qf(R)$. Set $R_1 := R[X], K_1 := K(X)$ and take the following subset of $Spec(R_1)$:

$$
\Theta_1^w := \{Q_1 \in \text{Spec}(R_1) | Q_1 \cap R = (0) \text{ or } (Q_1 \cap R)^w \subsetneq R\}.
$$

Set $\mathfrak{S}_1^w := R_1[Y] \setminus (\bigcup \{Q_1[Y] | Q_1 \in \Theta_1^w\})$ and:

$$
E^{\circlearrowleft_{\mathfrak{S}_1^w}} := E[Y]_{\mathfrak{S}_1^w} \cap K_1, \text{ for all } E \in F(R_1).
$$

It is proved in [[22,](#page-14-3) Theorem 2.1] that, the mapping $w[X] := \circlearrowleft_{\mathfrak{S}_1^w}: F(R_1) \to$ $F(R_1), E \mapsto E^{w[X]}$ is a stable star operation of finite character on $R[X],$ i.e., $\widetilde{w[X]} = w[X]$. If X_1, \cdots, X_r are indeterminates over *R*, for $r \geq 2$, we let

$$
w[X_1, \cdots, X_r] := (w[X_1, \cdots, X_{r-1}])[X_r].
$$

For an integer *r*, let $w[r]$ denote $w[X_1, \dots, X_r]$, and $R[r]$ to denote $R[X_1, \dots, X_r]$.

Proposition 1.1. ([[22,](#page-14-3) Theorem 3.1]*) For each positive integer r* and for $n :=$ *w-* dim(*R*) *we have*

$$
r + n \le w[r] - \dim(R[r]) \le r + (r+1)n.
$$

Proposition 1.2. *(*[[24,](#page-14-5) Lemma 4.4]*) Let R be an integral domain and n be an integer. Then*

$$
w[n]\text{-}\dim(R[n])=\sup\{\dim(R_M[n])|M\in w\text{-}\mathop{\mathrm{Max}}(R)\}.
$$

A valuation overring *V* of *R*, is called a *w-valuation overring of R*, provided $F^w \subseteq FV$, for each $F \in f(R)$. Following [[22\]](#page-14-3), the *w-valuative dimension* of *R* is defined as:

 w - dim_{*v*}(*R*) := sup{dim(*V*)|*V* is *w*-valuation overring of *R*}*.*

Proposition 1.3. *(*[\[24](#page-14-5), Lemma 2.5]*) For each domain R,*

 $w \text{-} \dim_v(R) = \sup \{ \dim_v(R_P) | P \in w \text{-} \mathop{\text{Max}}(R) \}.$

Proposition 1.4. *(*[\[24](#page-14-5), Theorem 4.2]*) Let R be an integral domain, and n be a positive integer. Then the following statements are equivalent:*

- (1) *w*-dim_{*v*} $(R) = n$ *.*
- (2) $w[n]$ - $\dim(R[n]) = 2n$.
- (3) $w[r]$ - $\dim(R[r]) = r + n$ *for all* $r \geq n 1$ *.*

It is observed in [\[22](#page-14-3)] that *w*-dim(*R*) \leq *w*-dim_{*v*}(*R*). We say that *R* is a *w*-*Jaffard domain*, if w - dim $(R) = w$ - dim_v $(R) < \infty$. It is proved in [\[22](#page-14-3)], that *R* is a *w*-Jaffard domain if and only if

$$
w[n] - \dim(R[n]) = w - \dim(R) + n,
$$

for each positive integer *n*.

Recall that an integral domain is called a *strong Mori domain* if it satisfies the ascending chain condition on *w*-ideals (cf. [\[30](#page-14-10)]). Also recall that an integral domain *R* is called a *UMt-domain*, if every upper to zero in *R*[*X*] is a maximal *t*-ideal [[16,](#page-14-11) Section 3]. It is shown in [\[22](#page-14-3), Corollary 4.6 and Theorem 4.14] that a strong Mori domain or a UM*t* domain of finite *w*-dimension is a *w*-Jaffard domain. In particular every Krull domain is a *w*-Jaffard domain (of *w*-dimension 1).

If *F ⊆ K* are fields, then tr*.* deg*.*(*K/F*) stands for the *transcendence degree* of *K* over *F*. Let *T* be an integral domain, *M* a maximal ideal of *T*, $k = T/M$ and $\varphi: T \to k$ the canonical surjection. Let *D* be a proper subring of *k* and $R = \varphi^{-1}(D)$ be the pullback of the following diagram:

$$
R \longrightarrow D
$$

\n
$$
\downarrow \qquad \qquad \downarrow
$$

\n
$$
T \longrightarrow k.
$$

In Section 2 we prove that if $F := qf(D)$ then:

- (1) *w*-dim(*R*) = max{*w*-dim(*T*)*, w*-dim(*D*) + dim(*T_M*)}.
- (2) w dim_{*v*}(*R*) = max{ w dim_{*v*}(*T*)*, w* dim_{*v*}(*D*) + dim_{*v*}(*T_M*) + tr*.* deg.(*k*/*F*)}.
- (3) If *T* is quasilocal, then *R* is a *w*-Jaffard domain if and only if *D* is a *w*-Jaffard domain, *T* is a Jaffard domain, and *k* is algebraic over *F*.

Using these results, in Section 3 we give examples to show that the two classes of *w*-Jaffard and Jaffard domains are incomparable, and an example of a *w*-Jaffard domain which is not a strong Mori nor a UM*t* domain. Also we observe that a Mori domain need not be a *w*-Jaffard domain. As another application in Section 4 we prove that for any pair of positive integers (n, m) with $n + 1 \le m \le 2n + 1$, there is an integrally closed integral domain *R* such that w -dim(R) = *n* and $w[X]$ - $\dim(R[X]) = m$, which is similar to a result of Seidenberg [\[27](#page-14-12)].

For the convenience of the reader, the following displays a diagram of implications summarizing the relations between the main classes of integral domains involved in this work.

A ring-theoretic perspective for *w*-Jaffard property.

2. Pullbacks

It is shown in [[22,](#page-14-3) Theorem 4.14] that, a UM*t* domain of finite *w*-dimension is a *w*-Jaffard domain. Now we give an example of a *w*-Jaffard non UM*t* domain. Recall that recently Houston and Mimouni in [[15,](#page-14-7) Theorem 4.2] proved that, if *m, n* are integers with $1 \leq m \leq n$, and $B \subseteq \{2, \dots, n\}$ with $|B| = n - m$, then there exists a local Noetherian domain *R* such that $\dim(R) = n$, t -dim $(R) = m$, and for each $i \in B$, every prime ideal of height i is a non-t-prime. Now let $n = 3$, $m = 2$ and $B = \{3\}$. Then there exists a local Noetherian domain (R, \mathfrak{m}) such that $\dim(R) = 3 = ht(m), t\text{-dim}(R) = 2$, and that m is a non-*t*-prime. Consequently we have w -dim $(R) = 2$. Since R is Noetherian thus it is strong Mori and hence is a *w*-Jaffard domain. But *R* is not a UMt domain since *w*-dim(*R*) = 2 (cf. [[16,](#page-14-11) Theorem 3.7]). In Example [3.3](#page-11-0) we will give a *w*-Jaffard domain which is not a strong Mori nor a UM*t* domain.

To avoid unnecessary repetition, let us fix the notation. Let *T* be an integral domain, *M* a maximal ideal of *T*, $k = T/M$ and $\varphi : T \to k$ the canonical surjection. Let *D* be a proper subring of *k* and $R = \varphi^{-1}(D)$ be the pullback of the following diagram:

We assume that $R \subseteq T$, and we refer to this diagram as a diagram of type (\square) and if the quotient field of *D* is equal to *k*, we refer to the diagram as a diagram of type (\square^*) . The case where $T = V$ is a valuation domain of the form $K + M$, where K is a field and *M* is the maximal ideal of *V* is of crucial interest, known as classical " $D + M$ " construction.

Recall that $(R: T) = M$ is a prime ideal of R and therefore M is a divisorial ideal (or a *v*-ideal) of *R*. Thus *M* is a *w*-prime ideal of *R*. Also recall that $R/M \simeq D$, and *R* and *T* have the same quotient field. Moreover, *T* is quasilocal if and only if every ideal of *R* is comparable (under inclusion) to *M*. For each prime ideal *P* of *R* with $P \not\supseteq M$, there is a unique prime ideal *Q* of *T* with $Q \cap R = P$ and such that $R_P = T_Q$. For more details on general pullbacks, we refer the reader to [[7,](#page-13-2) [11,](#page-14-13) [12\]](#page-14-14), and [[4\]](#page-13-3) for classical $D + M$ constructions.

Lemma 2.1. For a diagram of type (\Box) , suppose that P is a prime ideal of D *and Q is a prime ideal of R such that* $Q = \varphi^{-1}(P)$ *. Then P is a w-prime (resp. w-maximal) ideal of D if and only if Q is a w-prime (resp. w-maximal) ideal of R*

Proof. By [[20,](#page-14-15) Lemma 3.1] we have $Q^w = \varphi^{-1}(P^w)$. So that if *P* is a *w*-prime ideal of *D* then *Q* is *w*-prime ideal of *R*. Conversely if *Q* is a *w*-prime ideal of *R*, then we have $\varphi^{-1}(P^w) = \varphi^{-1}(P)$. Let $a \in P^w$. Then $\varphi^{-1}(a) \subseteq \varphi^{-1}(P^w) = \varphi^{-1}(P)$. So that $a \in P$ since $\varphi^{-1}(a) \neq \emptyset$. Thus $P^w = P$. The other assertion is clear. □

It is well-known that [[7,](#page-13-2) Proposition 2.1(5)] for a diagram of type (\square) , if *T* is quasilocal, we have $\dim(R) = \dim(D) + \dim(T)$. The following proposition gives a satisfactory analogue of this equality.

Proposition 2.2. For a diagram of type (\Box) , assume that T is quasilocal. Then

$$
w \cdot \dim(R) = w \cdot \dim(D) + \dim(T).
$$

Proof. Let $n := w$ - dim(R), $s := w$ - dim(D), and $t := \dim(T)$. Suppose that *P*₁ ⊂ · · · ⊂ *P*_{*s*} is a chain of *w*-prime ideals of *D*. Let $Q_i := \varphi^{-1}(P_i)$ which is a *w*-prime ideal of *R* by Lemma [2.1](#page-4-0). Thus $M \subset Q_1 \subset \cdots \subset Q_s$. Also consider a chain $L_1 \subset \cdots \subset L_t = M$ of prime ideals of *T*. Note that each L_j is a *w*-prime ideal of *R*. Now we have a chain $L_1 \subset \cdots \subset L_t = M \subset Q_1 \subset \cdots \subset Q_s$ of distinct *w*-prime ideals of *R*. This means that $s + t \leq n$. Conversely suppose that *L*₁ ⊂ · · · ⊂ *L*_{*r*} = *M* ⊂ *Q*₁ ⊂ · · · ⊂ *Q*_{*u*} is a chain of distinct *w*-prime ideals of *R* such that $r + u = n$. Thus $L_1 \subset \cdots \subset L_r = M$ is a chain of prime ideals of *T* and hence *r* \leq *t*. On the other hand by setting $P_i := Q_i/M$, we have a chain $P_1 \subset \cdots \subset P_u$ of *w*-prime ideals of *D* by Lemma [2.1](#page-4-0), and hence $u \leq s$. Therefore $n = r + u \leq t + s$ completing the proof. \Box

Remark 2.3. For a diagram of type (\Box) , assume that T is quasilocal and $D = F$ *is a field. Then by* [\[21](#page-14-16), Theorem 3.1(2)]*, we have that R is a DW-domain (that is the d*- and *w*-operations are the same). Hence w - $\dim(R) = \dim(R)$. So that the *equality in Lemma [2.2](#page-4-1) would be* $(\dim(R) =)w$ *-* $\dim(R) = \dim(T)$ *.*

The following proposition is inspired by [[1,](#page-13-0) Proposition 2.3].

Proposition 2.4. For a diagram of type (\square^*) , assume that T is quasilocal. Then:

- (a) $w[r]$ - $\dim(R[r]) = w[r]$ - $\dim(D[r]) + \dim(T[r]) \dim(k[r])$ *for each positive integer r,*
- (b) $w \text{-} \dim_v(R) = w \text{-} \dim_v(D) + \dim_v(T)$,
- (c) *R is a w-Jaffard domain ⇔ D is a w-Jaffard domain and T is a Jaffard domain.*

Proof. (a) By Proposition [2.2](#page-4-1) we have *w*-dim(*R*) $<\infty$ if and only if *w*-dim(*D*) $<\infty$ and $\dim(T) < \infty$. Hence $w[r]$ - $\dim(R[r]) < \infty$ if and only if $w[r]$ - $\dim(D[r])$ and $\dim(T[r])$ are finite numbers by Proposition [1.1.](#page-1-0) Thus we can assume that each domain is finite (*w*-)dimensional.

By [\[24](#page-14-5), Lemma 4.4 and Corollary 4.5], there is a *w*-maximal ideal q of *R* and a *w*[*r*]-maximal ideal *Q* of *R*[*r*] such that $q = Q \cap R$, and $w[r]$ -dim(*R*[*r*]) = ht(*Q*) = $r + \text{ht}(\mathfrak{q}[r]) = \dim(R_{\mathfrak{q}}[r])$. Note that since *M* is a *w*-prime ideal of *R* we have $M \subseteq \mathfrak{q}$. Thus by Lemma [2.1](#page-4-0) we have that $P := q/M$ is a w-maximal ideal of *D*. Next we claim that $\sup{\dim(D_L[r])}L \in w$ - $\text{Max}(D)$ } = dim($D_P[r]$), then Proposition [1.2](#page-1-1) will implies that $w[r]$ - dim $(D[r]) = \dim(D_P[r])$. Let $L \in w$ - Max (D) and set $\mathfrak{q}_0 := \varphi^{-1}(L)$. We have the following diagrams:

$$
R_{\mathfrak{q}_0} \longrightarrow D_L \qquad R_{\mathfrak{q}} \longrightarrow D_P
$$

\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$

\n
$$
T \longrightarrow k, \qquad \qquad T \longrightarrow k.
$$

Therefore by [\[1](#page-13-0), Proposition 2.3] we have $\dim(D_L[r]) + \dim(T[r]) - r = \dim(R_{\mathfrak{q}_0}[r]) \leq$ $\dim(R_{\mathfrak{a}}[r]) = \dim(D_P[r]) + \dim(T[r]) - r$, where the inequality holds by Propo-sition [1.2.](#page-1-1) Thus $\dim(D_L[r]) \leq \dim(D_P[r])$ for each $L \in w$ - Max(*D*), and hence $\sup{\dim(D_L[r])}$ $|L \in w$ - Max (D) } = dim $(D_P[r])$. Therefore we have

$$
w[r] - \dim(R[r]) = w[r] - \dim(D[r]) + \dim(T[r]) - \dim(k[r]).
$$

(b) First suppose that *w*-dim_{*v*}(R) $< \infty$. Then *w*-dim(*D*)+dim(*T*) = *w*-dim(*R*) $<$ ∞ , and so both *w*-dim(*D*) and dim(*T*) are finite. In addition we claim that $\dim_{\nu}(T) < \infty$. To this end let (V, N) be a valuation overring of *T* and set *P* := *N* ∩ *T*. So that $P \subseteq M$ and thus *P* is a prime ideal of *R*. Hence *P* is in fact a *w*-prime ideal of *R*. Since $R_P \subseteq T_{R \setminus P} \subseteq T_P \subseteq V$ we obtain that *V* is a *w*-valuation overring of *R* by [\[10](#page-13-4), Theorem 3.9], and consequently dim(*V*) \leq w - dim_{*v*}(*R*). This means that $\dim_v(T) \leq w$ - $\dim_v(R) < \infty$. Next we observe that $w\text{-dim}_v(D) < \infty$. By Proposition [1.3](#page-2-0), there exists a *w*-prime ideal *P* of *D* such that w - dim_{*v*}(*D*) = dim_{*v*}(*D_P*). Let $Q := \varphi^{-1}(P)$, which is a *w*-prime ideal of *R*. Note that we have $M \subseteq Q$ and thus $(R \setminus Q) \cap M = \emptyset$, and $\varphi(R \setminus Q) = D \setminus P$. Therefore by [\[7](#page-13-2), Proposition 1.9] we have the following pullback diagram:

$$
R_Q \longrightarrow D_F
$$

\n
$$
\downarrow \qquad \qquad \downarrow
$$

\n
$$
T \xrightarrow{\varphi} k.
$$

If *B* is an *n*-dimensional overring of D_P , then $A := \varphi^{-1}(B)$ is an overring of R_Q , and[[7,](#page-13-2) Proposition 2.1(5)] yields that $n + \dim(T) = \dim(A)$. Thus $n + \dim(T) \leq$ $\dim_v(R_Q)$. This means that w - $\dim_v(D) = \dim_v(D_P) \leq \dim_v(R_Q) \leq w$ - $\dim_v(R)$ *∞*, where the second inequality holds by Proposition [1.3](#page-2-0).

Let *r* be a positive integer such that $r \ge \max\{w \cdot \dim_v(R), w \cdot \dim_v(D), \dim_v(T)\}$ 1. Then by Proposition [1.4](#page-2-1) and [[2,](#page-13-5) Theorem 6] we have

$$
w[r] - \dim(R[r]) = w - \dim_v(R) + r,
$$

\n
$$
w[r] - \dim(D[r]) = w - \dim_v(D) + r,
$$

\n
$$
\dim(T[r]) = \dim_v(T) + r.
$$

Then by (a), w - $\dim_v(R) + r = (w - \dim_v(D) + r) + (\dim_v(T) + r) - r$, yielding (b) in case *w*- $\dim_v(R) < \infty$.

To complete the proof of (b) we show that w - dim_{*v*}</sub>(R) $<\infty$ whenever w - dim_{*v*}</sub>(D) and $\dim_{\nu}(T)$ are both finite. Let r be a positive integer such that

$$
r \ge \max\{w \cdot \dim_v(D), \dim_v(T)\} - 1.
$$

Then by (a), Proposition [1.4,](#page-2-1) and [[2,](#page-13-5) Theorem 6] we have $w[r]$ - dim $(R[r])$ = $w[r]$ - dim($D[r]$)+dim($T[r]$)− $r = (w$ - dim_{*v*}</sub>(D)+ r)+(dim_{*v*}</sub>(T)+ r)− $r = w$ - dim_{*v*}(D)+ $\dim_v(T) + r$. Hence *w*- $\dim_v(R) < \infty$ by another appeal to Proposition [1.4](#page-2-1).

(c) Since w - $\dim(R) = w$ - $\dim(D) + \dim(T)$ and w - $\dim(B) \leq w$ - $\dim_v(B)$ and $\dim(B) \leq \dim_v(B)$ for a domain *B*, (c) follows directly from (b).

Recall from [\[5](#page-13-6)] the notion of CPI (complete pre-image) extension of a domain *R* with respect to a prime ideal P of R ; this is denoted $R(P)$ and is defined by the following pullback diagram:

Here φ is the canonical homomorphism.

Corollary 2.5. *Let R be an integral domain, and let P be a prime ideal of R. Then the CPI-extension* $R(P)$ *is a w-Jaffard domain* \Leftrightarrow R/P *is a w-Jaffard domain and R^P is a Jaffard domain.*

In [\[1,](#page-13-0) Theorem 2.6], Anderson, Bouvier, Dobbs, Fontana and Kabbaj proved that for a diagram of type (\square) such that *T* is quasilocal and $F := qf(D)$ then $\dim_{\nu}(R) = \dim_{\nu}(D) + \dim_{\nu}(T) + \text{tr. deg.}(k/F)$ and hence R is a Jaffard domain if and only if *D* and *T* are Jaffard domains and *k* is algebraic over *F*. Now we have:

Theorem 2.6. For a diagram of type (\square) , assume that T is quasilocal and let $F = qf(D)$ *. Then*

- (a) $w \text{-} \dim_v(R) = w \text{-} \dim_v(D) + \dim_v(T) + \text{tr. deg.}(k/F)$,
- (b) *R is a w-Jaffard domain* \Leftrightarrow *D is a w-Jaffard domain, T is a Jaffard domain, and k is algebraic over F.*

Proof. (a) Split the pullback diagram (\square) into two parts:

$$
R \longrightarrow D
$$

\n
$$
S := \varphi^{-1}(D) \longrightarrow F
$$

\n
$$
\downarrow \qquad \qquad \downarrow
$$

\n
$$
T \longrightarrow k.
$$

Now the upper diagram is of type (\square^*) , and *S* is quasilocal. Thus by Proposition [2.4](#page-4-2)(b) we have w - dim_v(R) = w - dim_v(D) + dim_v(S). Also from the lower diagram, [\[1](#page-13-0), Proposition 2.5] yields that $\dim_v(S) = \dim_v(T) + \text{tr.deg.}(k/F)$. We thus have the desired equality.

(b) Since w - dim $(R) = w$ - dim $(D) + \dim(T)$, (b) follows directly from (a). \Box

In Example [3.1](#page-9-0) we will give an example of a *w*-Jaffard domain which is not Jaffard. Using Theorem [2.6](#page-6-0) together with [[1,](#page-13-0) Theorem 2.6] we have the following corollary.

Corollary 2.7. For a diagram of type (\Box) *, assume that* T *is quasilocal and let* $F = qf(D)$. Then *R* is a *w*-Jaffard domain which is not Jaffard \Leftrightarrow *D* is a *w*-*Jaffard domain which is not Jaffard, T is a Jaffard domain and k is algebraic over F.*

We pause here to give some concrete applications of the above theory to the classical $D + M$ constructions.

Corollary 2.8. Let V be a nontrivial valuation domain of the form $V = K + M$. *where* K *is a field and* M *is the maximal ideal of* V *. Let* $R = D + M$ *, where* D *is a proper subring of K and let* $F = qf(D)$ *. Then*

- (a) $w \text{-} \dim_v(R) = w \text{-} \dim_v(D) + \dim(V) + \text{tr. deg.}(K/F)$,
- (b) *R is a w-Jaffard domain* \Leftrightarrow *D is a w-Jaffard domain, V is finite-dimensional, and K is algebraic over F.*

A "global" type of $D+M$ constructions arise from $T = K[[X]]$, the formal power series ring over a field K , by considering $M = XT$ and a subring D of K .

Corollary 2.9. Let K be a field, D a subring of K with quotient field F, R = $D + XK[[X]]$ *. Then*

- (a) $w \text{-dim}(R) = w \text{-dim}(D) + 1$,
- (b) w - $\dim_v(R) = w$ - $\dim_v(D) + \text{tr.deg.}(K/F) + 1$.
- (c) *R is a w*-Jaffard domain \Leftrightarrow *D is a w*-Jaffard domain and K is algebraic *over F.*

We next proceed to generalize the previous "quasilocal" theory. In this direction we prove the "global" analogue of Propositions [2.2](#page-4-1) and [2.4\(](#page-4-2)b). Before that, we need two lemmas.

Lemma 2.10. For a diagram of type (\square^*) we have:

- (m) *w*- $dim(R) = max{w \cdot dim(T), w \cdot dim(D) + dim(T_M)},$
- (b) $w \text{-} \dim_v(R) = \max\{w \text{-} \dim_v(T), w \text{-} \dim_v(D) + \dim_v(T_M)\}.$

Proof. (a) We have *w*- $\dim(R) = \sup{\dim(R_P)|P \in w \cdot \text{Max}(R)}$. Now let $P \in$ *w*- Max(*R*) such that *w*-dim(*R*) = dim(*R_P*). If $P \not\supset M$ then $R_P = T_Q$ for some $Q \in \text{Spec}(T)$ such that $P = Q \cap R$. Thus Q and M are incomparable prime ideals of *T*. Hence using [[8,](#page-13-7) Lemma 3.3], we see that *Q* is a *w*-maximal ideal of *T*. On the other hand if $P \supseteq M$, then $\dim(R_P) = \dim(D_Q) + \dim(T_M)$ for some $Q \in w$ - Max(*R*) such that $P = \varphi^{-1}(Q)$. Then we have the inequality \leq in (a). We have two cases to consider:

 1° If $P \not\supset M$ then $R_P = T_Q$ for some $Q \in w$ - Max (R) such that $P = Q \cap R$. We claim that w -dim $(T) = \dim(T_Q)$. Suppose, contrary to our claim, that there exists $L \in w$ - Max (R) such that w -dim $(T) = \dim(T_L)$ and $\dim(T_Q) \leq \dim(T_L)$. Set $P_1 := L \cap R$. Consequently $R_{P_1} = T_L$ by [\[12](#page-14-14), Proposition 1.11]. Thus *w*-dim(*R*) = $\dim(R_P) = \dim(T_Q) \leq \dim(T_L) = \dim(R_{P_1})$. This implies that P_1 is not a *w*-ideal of R contradicting $[12,$ $[12,$ Theorem $2.6(2)$. Thus in this case we have the equality in (a).

 2° If $P \supseteq M$, then $\dim(R_P) = \dim(D_Q) + \dim(T_M)$ for some $Q \in w$ -Max (D) such that $P = \varphi^{-1}(Q)$ (by Proposition [2.2\)](#page-4-1). We claim that $w \text{-dim}(D) = \dim(D_Q)$.

Suppose, contrary to our claim, that there exists $L \in w$ - Max(*D*) such that w- $\dim(D) = \dim(D_L)$ and $\dim(D_Q) \leq \dim(D_L)$. Set $P_1 := \varphi^{-1}(L)$. Consequently $\dim(R_{P_1}) = \dim(D_L) + \dim(T_M)$. Thus *w*- $\dim(R) = \dim(R_P) = \dim(D_Q) +$ $\dim(T_M) \leq \dim(D_L) + \dim(T_M) = \dim(R_{P_1})$. This implies that P_1 is not a *w*-ideal of *R* contradicting Lemma [2.1.](#page-4-0) Thus in this case again we have the equality in (a).

(b) We have *w*- $\dim_v(R) = \sup{\dim_v(R_P)|P \in w \cdot \text{Max}(R)}$ by Proposition [1.3.](#page-2-0) The rest of the proof is the same as part (a). \Box

Lemma 2.11. For a diagram of type (\square) assume that $D = F$ is a field and let $d = \text{tr.deg.}(k/F)$ *. Then*

- $(w \cdot \dim(R) = \max\{w \cdot \dim(T), \dim(T_M)\},$
- (b) $w \text{-} \dim_v(R) = \max\{w \text{-} \dim_v(T), \dim_v(T_M) + d\}.$

Proof. (a) Note that *M* is a *w*-prime ideal of *R*. Then we have *w*-dim(*R*) = $\max{\{\sup{dim(R_P)|P \in w \cdot Max(R), \text{ and } P \not\supset M\}, \dim(R_M)\}}$. Like Lemma [2.10](#page-7-0) the inequality \leq holds. Let $P \in w$ -Max (R) such that w - dim $(R) = \dim(R_P)$. If $P = M$, then we have $\dim(R_P) = \dim(T_M)$ by [\[7](#page-13-2), Proposition 2.1(5)]. If not we have $P \not\supset M$. Then $R_P = T_Q$ for some $Q \in \text{Spec}(T)$ such that $P = Q \cap R$. Using [[8,](#page-13-7) Lemma 3.3, we see that *Q* is a *w*-maximal ideal of *T*. We claim that w -dim(*T*) = dim(*T*_{*Q*}). Suppose, contrary to our claim, that there exists $L \in w$ - Max(*R*) such that w -dim(*T*_{*L*}) and dim(*T*_{*Q*}) \leq dim(*T*_{*L*}). Set *P*₁ := *L* \cap *R*. If *P*₁ \neq *M* then $R_{P_1} = T_L$. Thus w - dim $(R) = \dim(R_P) = \dim(T_Q) \leq \dim(T_L) = \dim(R_{P_1})$. This implies that P_1 is not a *w*-ideal. But if $L \subseteq M$ then $P_1 \subseteq M$ and hence *P*₁ is a *w*-prime ideal which is a contradiction. So that $L \not\subset M$. Thus P_1 is a *w*-prime ideal by $[12,$ Theorem $2.6(2)$ which is again a contradiction. Therefore $w \cdot \dim(R) = \dim(R_P) = \dim(T_Q) = w \cdot \dim(T)$.

(b) It is the same as part (a) noting that we have

 $w\text{-dim}_{v}(R) = \max\{\sup\{\dim_{v}(R_{P})|P\in w\text{-Max}(R), \text{ and } P\not\supset M\}, \dim_{v}(R_{M})\},\$

by Proposition [1.3](#page-2-0) and using [\[1](#page-13-0), Theorem 2.11(b)] instead of [[7,](#page-13-2) Proposition 2.1(5)]. □

By combining Lemmas [2.10](#page-7-0) and [2.11](#page-8-0) we have:

Theorem 2.12. For a diagram of type (\Box) , let $F = qf(D)$ and $d := \text{tr.deg.}(k/F)$. *Then:*

- (a) w - $\dim(R) = \max\{w \cdot \dim(T), w \cdot \dim(D) + \dim(T_M)\}.$
- (b) w *-* dim_{*v*}</sub> $(R) = \max\{w$ *-* dim_{*v*} (T) *, w-* dim_{*v*} $(D) + \dim_v(T_M) + d\}.$

An integral domain *R* is said to be a *w-locally Jaffard domain* if *R^P* is a Jaffard domain for each *w*-prime ideal *P* of *R*. It is easy to see that a *w*-locally Jaffard domain of finite *w*-valuative dimension is a *w*-Jaffard domain. Now we have the following corollary which is the *w*-analogue of [\[1](#page-13-0), Corollary 2.12].

Corollary 2.13. For a diagram of type (\Box) , let F be the quotient field of D. Then:

- (a) *R is a w-locally Jaffard domain* \Leftrightarrow *D and T are w-locally Jaffard domains, and k is algebraic over F.*
- (b) If *T* is a *w*-locally Jaffard domain with w -dim_{*v*}(*T*) $< \infty$, *D* is a *w*-Jaffard *domain, and k is algebraic over F, then R is a w-Jaffard domain.*

A "global" type of $D + M$ constructions arise from $T = K[X]$, the polynomial ring over a field K , by considering $M = XT$ and a subring D of K . In this case neither *T* nor *R* is quasilocal. Theorem [2.12](#page-8-1) yields:

Corollary 2.14. Let K be a field, D a subring of K with quotient field F , $R =$ $D + XK[X]$ *and* $d = \text{tr.deg.}(K/F)$ *. Then:*

- (a) w *-* $\dim(R) = w$ *-* $\dim(D) + 1$ *.*
- (b) $w \text{-dim}_v(R) = w \text{-dim}_v(D) + d + 1.$
- (c) *R is a w-Jaffard domain ⇔ D is a w-Jaffard domain and K is algebraic over F.*

3. Examples

It is well known that [[9,](#page-13-8) Theorem 6.7.8] a finite dimensional domain *R* has Prüfer integral closure if and only if each overring of *R* is a Jaffard domain. Similarly in [\[25](#page-14-17)] we showed that a finite *w*-dimensional domain *R* has Prüfer integral closure if and only if each overring of *R* is a *w*-Jaffard domain. Thus in particular each overring of a finite dimensional domain is Jaffard if and only if each overring is *w*-Jaffard. In the following two examples we show that the classes of *w*-Jaffard and Jaffard domains are incomparable.

The next example gives a positive answer to our question in [\[22](#page-14-3), page 238], whether it is possible to find a *w*-Jaffard non-Jaffard domain? There is an old question (see $[6]$ $[6]$ $[6]$) asking if it is possible to find a UFD (or a Krull domain) which is not Jaffard. We note that a non-Jaffard Krull domain would be an example of a *w*-Jaffard domain which is not Jaffard. But to the best of author's knowledge there is not such an example.

Example 3.1. For each $n \geq 3$ there is an integral domain R_n which is w-Jaffard *of dimension n but not a Jaffard domain.*

Let K *be a field and let* W, X, Y, Z *be indeterminates over* K *. Put* $L = K(W, X, Y, Z)$ *. Now,* $V_1 = K(W, X, Z) + M_1$, where $M_1 = YK(W, X, Z)[Y]_{(Y)}$, is a (discrete) rank *1 valuation domain of L with maximal ideal M*1*. Let* (*V, M*) *be a rank 1 valuation domain of the form* $V = K(W, X, Y) + M$ *, where* $M = ZK(W, X, Y)[Z]_{(Z)}$ *. With τ denoting the canonical surjection* $V \to K(W, X, Y)$ *, consider the pullback* $V' =$ $\tau^{-1}(K(W, X)[Y]_{(Y+1)}) = K(W, X) + M'$ where $M' = (Y+1)K(W, X)[Y]_{(Y+1)} +$ $ZK(W, X, Y)[Z]_{(Z)}$. Thus $dim(V') = 2$. Finally with ψ denoting the canonical sur*jection* $V' \to K(W, X)$ *, consider the pullback* $V_2 = \psi^{-1}(K(W)[X]_{(X)}) = K(W) +$ M_2 , where $M_2 = XK(W)[X]_{(X)} + (Y+1)K(W,X)[Y]_{(Y+1)} + ZK(W,X,Y)[Z]_{(Z)}$ *is a valuation domain of L with maximal ideal* M_2 *and we have* $\dim(V_2) = 3$ *. Further, V*¹ *and V*² *are incomparable. If not, it would follow from the onedimensionality of* V_1 *that* $V_2 \subset V_1$ *. Then we would have* $V_1 = (V_2)_M$ *, whence* $YK(W, X, Z)[Y]_{(Y)} = M_1 = M(V_2)_{M} = M$ and $1 = YY^{-1} \in MV = M$, a *contradiction.* Thus V_1 *and* V_2 *are incomparable. Then* $T := V_1 \cap V_2$ *is a three dimensional Prüfer domain with* $\mathfrak{m}_1 := M_1 \cap T$ *and* $\mathfrak{m}_2 := M_1 \cap T$ *as maximal ideals such that* $T_{m_1} = V_1$ *and* $T_{m_2} = V_2$ *by* [[19,](#page-14-18) Theorem 11.11]*. With* $\varphi: T \to T/\mathfrak{m}_1(\cong V_1/M_1 \cong K(W, X, Z))$ denoting the canonical surjection, con*sider the pullback* $R_3 := \varphi^{-1}(K[W,X])$ *. Notice that T is a DW-domain since it is* a Prüfer domain, $d := \text{tr.deg.}(K(W,X,Z)/K(W,X)) = 1$, and that $K[W,X]$ is a *Noetherian Krull domain. In particular K*[*W, X*] *is a Jaffard domain (of dimension*

2) and w-Jaffard domain (of w-dimension 1). Thus using Theorem [2.12](#page-8-1) we have:

$$
w \cdot \dim(R_3) = \max\{w \cdot \dim(T), w \cdot \dim(K[W, X]) + \dim(T_{\mathfrak{m}_1})\}
$$

= $\max\{3, 1 + 1\} = 3$, and

$$
w \cdot \dim_v(R_3) = \max\{w \cdot \dim_v(T), w \cdot \dim_v(K[W, X]) + \dim_v(T_{\mathfrak{m}_1}) + d\}
$$

= $\max\{3, 1 + 1 + 1\} = 3$.

*This means that R*³ *is a w-Jaffard domain of w-dimension 3. But by* [\[1](#page-13-0), Theorem 2.11] *we have*

$$
\dim(R_3) = \max\{\dim(T), \dim(K[W, X]) + \dim(T_{\mathfrak{m}_1})\}
$$

$$
= \max\{3, 2 + 1\} = 3, \text{ and}
$$

$$
\dim_v(R_3) = \max\{\dim_v(T), \dim_v(K[W, X]) + \dim_v(T_{\mathfrak{m}_1}) + d\}
$$

$$
= \max\{3, 2 + 1 + 1\} = 4.
$$

*Therefore R*³ *is not a Jaffard domain.*

Now set $F := qf(R_3)$ *. Suppose that* $V := F + M$ *is a rank 1 valuation domain with maximal ideal M. Set* $R_4 := R_3 + M$ *. It is easy to see that* R_4 *is w-Jaffard of* w -dim $(R_4) = 4$, dim $(R_4) = 4$, and dim_v $(R_4) = 5$ *. Iterating in the same way we obtain Rⁿ with desired properties.*

Example 3.2. For each $n \geq 2$ there is an integral domain R_n which is Jaffard of *dimension n but not a w-Jaffard domain.*

Let *K* be a field and let X, Y, Z be indeterminates over *K.* Let $C := K[X, Y, Z]$ *and set* $P := (X)$ *and* $Q := (Y, Z)$ *. Let* $T := C_S$ *where* $S := C \setminus (P \cup Q)$ *, which is a multiplicatively closed subset of C. Then* $\text{Max}(T) = \{PT, QT\}$, $\dim(T_{PT}) = 1$ and $\dim(T) = \dim(T_{QT}) = 2$. Next notice that we have a surjective ring homomorphism $\psi: C_P \to K(Y, Z)$ *sending* $f/g \mapsto f(0, Y, Z)/g(0, Y, Z)$ *, with* Ker(ψ) = PC_{*P*}. Thus $we have T/PT \cong C_P/PC_P \cong K(Y,Z)$. With $\varphi: T \to T/PT$ denoting the canonical *surjection, consider the pullback* $R_2 := \varphi^{-1}(K(Y))$ *. Note that T is a Noetherian Krull domain. Thus T is a 2 dimensional Jaffard domain and a w-Jaffard domain of w*-dimension 1. Also notice that $d := \text{tr.deg.}(K(Y,Z)/K(Y)) = 1$. Thus by [[1,](#page-13-0) Theorem 2.11] *we have*

$$
\dim(R_2) = \max{\dim(T), \dim(K(Y)) + \dim(T_{PT})}
$$

= max{2, 0 + 1} = 2, and

$$
\dim_v(R_2) = \max{\dim_v(T), \dim_v(K(Y)) + \dim_v(T_{PT}) + d}
$$

= max{2, 0 + 1 + 1} = 2.

*Therefore R*² *is a Jaffard domain of dimension 2. On the other hand using Theorem [2.12](#page-8-1) we have:*

$$
w\text{-dim}(R_2) = \max\{w\text{-dim}(T), w\text{-dim}(K(Y)) + \dim(T_{PT})\}
$$

= $\max\{1, 0 + 1\} = 1$, and

$$
w\text{-dim}_v(R_2) = \max\{w\text{-dim}_v(T), w\text{-dim}_v(K(Y)) + \dim_v(T_{PT}) + d\}
$$

 $=$ max ${1, 0 + 1 + 1} = 2.$

*This means that R*² *is not a w-Jaffard domain.*

Now set $F := qf(R_2)$ *. Suppose that* $V := F + M$ *is a rank 1 valuation domain with maximal ideal M. Set* $R_3 := R_2 + M$ *. It is easy to see that* R_3 *is Jaffard of* $\dim(R_3) = 3$, *w* $\dim(R_3) = 2$, *and w* $\dim_v(R_3) = 3$. Iterating in the same way we *obtain Rⁿ with desired properties.*

Here we give our promised example of a *w*-Jaffard domain which is not a strong Mori nor a UM*t* domain.

Example 3.3. Let \mathbb{Q} be the field of rational numbers, $\mathbb{K} = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \dots)$ be an *algebraic extension field of* \mathbb{Q} *such that* $[\mathbb{K} : \mathbb{Q}] = \infty$ *. Let X and Y be indeterminates over* K *and set* $R := \mathbb{Q} + (X, Y)K[X, Y]$ *. Then* R *is a w-Jaffard domain of* w *dimension 2 by Theorem [2.12](#page-8-1), but it is not a strong Mori domain by* [[20,](#page-14-15) Theorem 3.11]*. Next we claim that R is not a UMt domain. In fact if R is a UMt domain,* $[8, Corollary 3.2]$ $[8, Corollary 3.2]$ *implies that* (X, Y) *is a t-prime ideal of* $\mathbb{K}[X, Y]$ *, which is absurd since* $\mathbb{K}[X, Y]$ *is a Krull domain and* (X, Y) *has height 2. Note that in this case R is a 2 dimensional Jaffard domain.*

Recall that an integral domain is called a *Mori domain* if it satisfies the ascending chain condition on divisorial ideals. Every strong Mori domain is a Mori domain. The following example is designed to show that a Mori domain *need not* be a *w*-Jaffard domain.

Example 3.4. *Let K be a field and let X, Y be two indeterminates over K and set* $R := K + YK(X)[Y]$. Then *R* is not a *w*-Jaffard domain by Corollary [2.14,](#page-9-1) but it *is a Mori domain by* [\[11](#page-14-13), Theorem 4.18]*.*

The following example shows that a *w*-Jaffard domain *need not* be *w*-locally Jaffard.

Example 3.5. *Let K be a field and X*1*, X*² *indeterminates over K. It is proved in* [[1,](#page-13-0) Example 3.2(a)] *that there are two incomparable valuation domains* (V_1, M_1) *and* (V_2, M_2) *of dimension 1 and 2 respectively. Set* $T := V_1 \cap V_2$ *which is a two-dimensional Prüfer domain with exactly two maximal ideals* m_1 *and* m_2 *so that* $T_{\mathfrak{m}_1} = V_1$ *and* $T_{\mathfrak{m}_2} = V_2$ *. Denoting* $\varphi : T \to T/\mathfrak{m}_1 (\cong V_1/M_1 \cong K(X_1, X_2))$ *consider the pullback* $R := \varphi^{-1}(K(X_1))$ *. Since* $K(X_1)$ *and* T *are DW-domains*, [[21,](#page-14-16) Theorem 3.1(3)] *implies that R is also a DW-domain. In particular* w -dim(R) = $\dim(R)$ *and* w *-* $\dim_w(R) = \dim_v(R)$ *. It follows that* w *-* $\dim(R) = \max\{2, 0 + 1\} = 2$ *,* w -dim_{*v*}(*R*) = max $\{2, 0 + 1 + 1\}$ = 2*. Thus R is a w-Jaffard (=Jaffard) domain. It is observed in* [\[1](#page-13-0), Example 3.2(a)] *that for the prime ideal* $\mathfrak{n}_1 := \mathfrak{m}_1 \cap R$ *of R,* $\dim(R_{\mathfrak{n}_1}) = 1$ and $\dim_v(R_{\mathfrak{n}_1}) = 2$. This shows that R is not w-locally Jaffard.

By [\[13](#page-14-19), Exercise 17(1), Page 372], for each positive integer *n*, there exists a finite-dimensional (non-Jaffard) domain *R* such that $\dim_{v}(R) - \dim(R) = n$ (see also $[1, \text{Example } 3.1(a)]$.

Example 3.6. *For each positive integer n, there exists a finite w-dimensional domain R such that* w *-* dim_{*v*}(R) – w *-* dim(R) = n *.*

Indeed let D *be a Krull domain. Let* K *be the quotient field of* D *and* $\{X_1, \dots, X_n, Y\}$ *be a set of* $n + 1$ *indeterminates over K. Let L denote the field* $K(X_1, \dots, X_n)$ *. Also define the valuation domain* $V := LY = L + M$ *(with* $M = YV$ *) and the ring* $R := D + M$ *. Applying Proposition [2.12](#page-8-1) to the pullback description of R*, we have w - $\dim(R) = w$ - $\dim(D) + 1$ and w - $\dim_v(R) = w$ - $\dim_v(D) + 1 + n$. *Since D is a Krull domain we have* w *-* $\dim(D) = w$ *-* $\dim_v(D) = 1$ *. So that* w ^{*-*} $\dim_{v}(R)$ ^{*-*} w ^{*-*} $\dim(R)$ = *n.* In particular R is not a *w*⁻Jaffard domain. Note that $\dim(R) = \dim(D) + 1$ *by* [\[7](#page-13-2), Proposition 2.1(5)] *and* $\dim_v(R) = \dim_v(D) + 1 + n$ *by* [\[1](#page-13-0), Theorem 2.6(a)] *while w-* dim(*R*) = 2 *and w-* dim_{*v*}(*R*) = 2 + *n. In particular* $if \dim(D) > 2$ *then* $\dim(R) \neq w$ *-* $\dim(R)$ *and* $\dim_v(R) \neq w$ *-* $\dim_v(R)$ *.*

We remark that in the above example if *D* is a Dedekind domain then *R* is a DW-domain by [[21,](#page-14-16) Theorem 3.1(2)]. This means that $\dim(R) = w \cdot \dim(R)$ and $\dim_v(R) = w \cdot \dim_v(R)$. Therefore *R* is a non-Jaffard domain with $\dim_v(R)$ – $dim(R) = n$.

4. An application

Recall that in [\[27](#page-14-12)] Seidenberg proved that if *n, m* are positive integers such that $n+1 \leq m \leq 2n+1$, there is an integrally closed domain *R* such that $\dim(R) = n$ and $\dim(R[X]) = m$. More recently in [\[29](#page-14-9), Theorem 2.10] Wang showed that for any pair of positive integers *n, m* with $1 \leq n \leq m \leq 2n$, there is an integrally closed domain *R* such that *w*-dim(*R*) = *n* and *w*-dim(*R*[*X*]) = *m*. By Proposition [1.1](#page-1-0) we have for an integral domain *R* if $n = w$ -dim(*R*) then

$$
n+1 \le w[X] \cdot \dim(R[X]) \le 2n+1.
$$

Now we show that these bounds are the best possible. We say that an integral domain *R* is of w_x -type (n, m) if w -dim $(R) = n$ and $w[X]$ -dim $(R[X]) = m$.

Theorem 4.1. Let D be an integral domain of w_x -type (n, m) with quotient field *K. Let L be a purely transcendental field extension of K. Then:*

- (a) *If* $V_1 = K + M_1$ *is a DVR and* $R_1 = D + M_1$ *, then* R_1 *is of* w_x *-type* $(n+1, m+1)$.
- (b) *If* $V_2 = L + M_2$ *is a DVR and* $R_2 = D + M_2$ *, then* R_2 *is of* w_x -type $(n+1, m+2)$.

Proof. (a) Using Proposition [2.2](#page-4-1) we have

$$
w \cdot \dim(R_1) = w \cdot \dim(D) + \dim(V_1) = n + 1.
$$

Since R_1 is a pullback of a diagram of type (\square^*) , Proposition [2.4](#page-4-2) yields that

 $w[X]$ - dim $(R_1[X]) = w[X]$ - dim $(D[X]) + \dim(V_1[X]) - 1 = m + 2 - 1 = m + 1$.

(b) By the same way as (a) we have w - dim $(R_2) = n + 1$. Now we compute *w*[*X*]- dim(*R*₂[*X*]). If Q_1 ⊂ · · · ⊂ Q_m is a chain of *w*[*X*]-prime ideals of *D*[*X*] of length *m*, then

$$
M_2[X] \subset Q_1 + M_2[X] \subset \cdots \subset Q_m + M_2[X]
$$

is a chain of prime ideals of $R_2[X]$ of length $m+1$. Notice that $(Q_i + M_2[X]) \cap R_2 =$ $Q_i \cap D + M_2$ for $i = 1, \dots, m$. Since Q_i is a *w*[X]-prime ideal of *D* then $Q_i \cap D$ is a *w*-prime ideal of *D* (or equal to zero) by [\[22](#page-14-3), Remark 2.3]. Therefore by [[29,](#page-14-9) Lemma

2.3] we see that $Q_i \cap D + M_2 = (Q_i + M_2[X]) \cap R_2$ is a *w*-prime ideal of R_2 . Thus using [\[22](#page-14-3), Remark 2.3] we obtain that $Q_i + M_2[X]$ is a $w[X]$ -prime ideal of $R_2[X]$. On the other hand $(R_2)_{M_2} = K + M_2$, and therefore it is not a valuation domain. Thus [\[13](#page-14-19), Theorem 19.15(2)] yields that $M_2[X]$ is not minimal in $R_2[X]$. Therefore $w[X]$ - dim $(R_2[X]) \geq m+2$. We consider a chain $P_1 \subset \cdots \subset P_s$ of $w[X]$ -prime ideals of $R_2[X]$ of maximal length. Since P_2 is not minimal in $R_2[X], P_2 \cap R_2 \neq (0)$. By [\[13](#page-14-19), Part (3) of Exercise 12 Page 202] M_2 is the unique minimal prime ideal of R_2 . Therefore $M_2 \subseteq P_2 \cap R_2$ and $M_2[X] \subseteq P_2$. Each $P_j \cap R_2$ is a *w*-prime ideal of R_2 by [\[22](#page-14-3), Remark 2.3] for $j = 1, \dots, s$. Since $(P_j/M_2[X]) ∩ D = (P_j/M_2[X]) ∩ R_2/M_2 =$ $(P_j \cap R_2)/M_2$ we claim that $(P_j \cap R_2)/M_2 = (P_j/M_2[X]) \cap D$ is a *w*-prime ideal of *D* by Lemma [2.1.](#page-4-0) Therefore $P_i/M_2[X]$ is a $w[X]$ -prime ideal of $D[X]$ by [[22,](#page-14-3) Remark 2.3]. So that $P_3/M_2[X] \subset \cdots \subset P_s/M_2[X]$ is a chain of $w[X]$ -prime ideals of $D[X]$, and thus $s-2 \leq m$. It follows that $w[X]$ - $\dim(R_2[X]) = m+2$ completing the proof. \Box

Remark 4.2. Let D^c and R^c denote the integral closures of D and R_i in their *quotient fields, respectively* $(i = 1, 2)$ *. Then* $R_i^c = D^c + M_i$ *by [\[29](#page-14-9), Lemma 2.6(1)]. Therefore, Rⁱ is integrally closed if and only if D is integrally closed.*

Following Seidenberg, we say that a domain R is an $F\text{-}ring$ if $\dim(R) = 1$ and $\dim(R[X]) = 3$. By [\[16](#page-14-11), Corollary 3.6] and [\[13](#page-14-19), Proposition 30.14], a onedimensional domain *R* is an F-ring if and only if *R* is not a UM*t*-domain. For an F-ring, w -dim $(R) = 1$ and $w[X]$ -dim $(R[X]) = 3$ by [[22,](#page-14-3) Corollary 3.6]. Thus a F-ring is a domain of w_x -type $(1,3)$.

Corollary 4.3. *For any pair of positive integers* (n, m) *with* $n + 1 \le m \le 2n + 1$, *there is an integrally closed integral domain* R *of* w_r -type (n, m) .

Proof. A PID is an integrally closed integral domain of w_x -type (1,2). By [[27,](#page-14-12) Theorem 3] there is an integrally closed F-ring. Thus by the comments before the corollary it is of w_x -type $(1,3)$. So if $n=1$ the result is true. Using Theorem [4.1](#page-12-0) and by an induction argument similar to the proof of [[27,](#page-14-12) Theorem 3], the proof is complete. \Box

REFERENCES

- 1. D. F. Anderson, A. Bouvier, D. Dobbs, M. Fontana and S. Kabbaj, *On Jaffard domain*, Expo. Math., **6**, (1988), 145–175.
- 2. J. T. Arnold, *On the dimension theory of overrings of an integral domain*, Trans. Amer. Math. Soc., **138**, (1969), 313–326.
- 3. J. T. Arnold and R. Gilmer, *The dimension sequence of a commutative ring*, Amer. J. Math., **96**, (1974), 385–408.
- 4. E. Bastida and R. Gilmer, *Overrings and divisorial ideals of rings of the form D*+*M*, Michigan Math. J. **20**, (1973), 79–95.
- 5. M. Boisen and P. Sheldon, *CPI-extensions: overrings of integral domains with special prime spectrum*, Canad. J. Math. **29**, (1977), 722–737.
- 6. A. Bouvier and S. Kabbaj, *Examples of Jaffard domains*, J. Pure Appl. Algebra, **54**, (2-3), (1988), 155–165.
- 7. M. Fontana, *Topologically defined classes of commutative rings*, Ann. Mat. Pura Appl. **123**, (1980), 331–355.
- 8. M. Fontana, S. Gabelli and E. Houston, *UMT-domains and domains with Prüfer integral closure*, Comm. Algebra **26**, (1998), 1017–1039.
- 9. M. Fontana, J. Huckaba, and I. Papick, *Prüfer domains*, New York, Marcel Dekker, 1997.
- 10. M. Fontana and K. A. Loper, *Nagata rings, Kronecker function rings and related semistar operations*, Comm. Algebra **31** (2003), 4775–4801.
- 11. S. Gabelli and E. Houston, *Coherentlike conditions in pullbacks*, Michigan Math. J. **44**, (1997), 99–123.
- 12. S. Gabelli and E. Houston, *Ideal theory in pullbacks* Non-Noetherian commutative ring theory, 199–227, Math. Appl., 520, Kluwer Acad. Publ., Dordrecht, 2000.
- 13. R. Gilmer, *Multiplicative ideal theory*, New York, Dekker, 1972.
- 14. E. Houston, *Prime t-ideals in R*[*X*], in: P.-J. Cahen, D.G. Costa, M. Fontana, S-E. Kabbaj (Eds.), Commutative Ring Theory, Dekker Lecture Notes **153**, 1994, 163–170.
- 15. E. Houston and A. Mimouni, *On the divisorial spectrum of a Noetherian domain*, J. Pure Appl. Algebra **214** (2010), 47–52.
- 16. E. Houston and M. Zafrullah, *On t-invertibility, II*, Comm. Algebra **17**, (1989), 1955–1969.
- 17. P. Jaffard, *Théorie de la dimension dans les anneaux de polynomes*, Gauthier-Villars, Paris, 1960.
- 18. W. Krull, *Jacobsonsche Rings, Hilbertsche Nullstellensatz, Dimension Theorie*, Math. Z. **54**, (1951), 354–387.
- 19. M. Nagata, *Local rings*, Wiley-Interscience, New York, 1962.
- 20. A. Mimouni, *TW-domains and strong Mori domains*, J. Pure Appl. Algebra **177**, (2003), 79–93.
- 21. A. Mimouni, *Integral domains in which each ideal is a w-ideal*, Comm. Algebra **33**, No. 5, (2005), 1345–1355.
- 22. P. Sahandi, *Semistar-Krull and valuative dimension of integral domains*, Ricerche Mat., **58**, (2009), 219–242.
- 23. P. Sahandi, *Universally catenarian integral domains, strong S-domains and semistar operations*, Comm. Algebra **38**, No. 2, (2010), 673–683.
- 24. P. Sahandi, *Semistar dimension of polynomial rings and Prüfer-like domains*, Bull. Iranian Math. Soc., to appear, arXiv:0808.1331v2 [math.AC].
- 25. P. Sahandi, *On quasi-Prüfer and UMt domains*, preprint (2010).
- 26. A. Seidenberg, *A note on the dimension theory of rings*, Pasific J. Math. **3**, (1953), 505–512.
- 27. A. Seidenberg, *On the dimension theory of rings II*, Pasific J. Math. **4**, (1954), 603–614.
- 28. F. G. Wang, *On w-dimension of domains*, Comm. Algebra **27**, (1999), 2267–2276.
- 29. F. G. Wang, *On w-dimension of domains, II*, Comm. Algebra **29**, (2001), 2419–2428.
- 30. F. G. Wang and R. L. McCasland, *On w-modules over strong Mori Domains*, Comm. Algebra **25**, (1997), 1285–1306.

Department of Mathematics, University of Tabriz, Tabriz, Iran *Email address*: sahandi@ipm.ir