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ORIGINAL ARTICLE

Evaluation of magnesium sulfate effects on fetus development in
experimentally induced surgical fetal growth restriction in rat

Siamak Kazemi-Darabadia and Ghasem Akbarib

aDepartment of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran; bDepartment of Basic Sciences,
Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran

ABSTRACT
Objective: The objective of this study was to evaluate the effect of magnesium sulfate in the
prevention of fetal growth restriction due to the impaired uterine blood supply in the
rat model.
Methods: A total number of 24 female rats were used in this study. They were mated overnight
and randomly divided into control and treatment groups. After anesthesia and incising abdom-
inal midline in day 17 of gestation, the uterine artery was occluded by an atraumatic clamp for
60min. The rats of the control group received normal saline after surgery and the rats of treat-
ment group received magnesium sulfate subcutaneously. The laparotomy was repeated on day
21 of gestation, and the number of alive and dead fetuses was counted in each horn. The viabil-
ity of fetuses was evaluated. The weight of the placenta and fetuses and the distance between
the head and tail as well as back to the abdomen of the fetuses were also measured. Samples
of the amniotic fluid (AF) were collected during both surgeries for biochemical analyses of the
glucose, urea, lactate, and pyruvate levels by an AutoAnalyzer.
Results: Among the total fetuses in ischemic horn, only 50% survived in the control group.
Dead fetuses had less body consistency and had a dark color. In contrary, only 7.6% of the
fetuses in the treatment group were absorbed and 92.4% were completely healthy and devel-
oped. Parameters related to placenta weight, fetus weight, fetus length, and fetus width had
significant differences and those of the treatment group were higher. Glucose and lactate levels
of the AF in the treatment group were significantly lower and urea level was significantly higher
than the control group in day 21 of gestation. The changes in pyruvate levels were not
significant.
Conclusion: In conclusion, magnesium sulfate may counteract with the effects of temporary
uterine ischemia in pregnant rats and prevent intrauterine growth restriction.
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Introduction

Fetuses which do not reach their potential growth
inside the uterus are in danger of pre- and post-deliv-
ery events including stillbirth, preterm birth, and nega-
tive health consequences either in neonatal or long-
term periods. For this reason, recognition and moni-
toring of fetal growth restriction (FGR) are important
parts of the prebirth surveillance. Despite many risk
factors can lead to stillbirth, the most important factor
is fetal growth restriction [1,2]. This phenomenon is
also known as intrauterine growth restriction (IUGR) or
small for gestational age fetus [3]. Generally, FGR is
the inability of the fetus to reach its full genetic
growth potential, which occurs in up to 8% of all
pregnancies and is the second major cause of infant

mortality after stillbirth. There is not any available
treatment for this disorder [4].

Fetal growth depends on placenta function, mater-
nal nutrition, and many other factors. Restriction of
blood supply to the gravid uterus reduces the delivery
of metabolic nutrients to the placenta and growing
fetus. In addition, any reduction in uterine blood sup-
ply will lead to insufficient oxygen delivery to the
fetus. The causal relationship between hypoxia and
FGR can be justified by decreasing in growth stimula-
tor factors or synthesis ability as a result of low oxy-
gen consumption by the fetus [5,6].

Many investigations have been done for FGR in differ-
ent species of laboratory animals such as the mouse,
guinea pig, rabbit, rat, and domestic animals like sheep.
The rat is mostly used because of its short-term 21 days
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of gestation period and a large number of offspring in
each pregnancy as well as the capability to easy
manipulation during surgery. The researchers have used
different methods for FGR in the rat, including perman-
ent occlusion of uterine artery [7], temporary occlusion
of the uterine artery for 60min [8], dexamethasone injec-
tion, feeding restriction [9,10], and protein restric-
tion [11].

Magnesium has known vasodilatory and anti-inflam-
matory effects [12,13]. In this regard, we assumed that
magnesium sulfate, because of its improving effects
on blood supply and oxygen carrying capacity by
hemoglobin, can compensate reduced blood supply
and prevent FGR when the uterine artery is temporar-
ily occluded. The objective of this study was to evalu-
ate the effect of magnesium sulfate in the prevention
of FGR due to the impaired uterine blood supply in
the rat model.

Materials and methods

Animals

Twenty four adult healthy female Wistar rats weighing
250 ± 20 g were used in this study. They were kept in
separate cages in a room with appropriate ventilation
and the environmental temperature was kept in
22–25 �C. The light/dark cycle was 12 h. The rats were
fed by semisynthetic pellets and free access to the
water was available. The 1-week period of acclimatiza-
tion was considered. They were treated according to
the guidelines as recommended by the National
Research Council’s criteria (NIH No. 86-23) and the
study follows the principles of the Declaration
of Helsinki.

Study design and surgery

The female rats were kept with male ones in the same
cage to mate overnight. After detecting the vaginal
plaque early in the morning which indicates successful
mating, they were randomly divided into two equal
groups including control and treatment. When the
vaginal plaque was not detectable, the rats were
allowed to mate one another night.

All rats were anesthetized by intraperitoneal injec-
tion of ketamine 5% (Alfasan, Woerden, Holland) and
xylazine 2% (Alfasan, Woerden, Holland) combination
at the doses of 80 and 5mg/kg, respectively, at the
day 17 of pregnancy. After shaving the abdomen from
xiphoid to pubis and aseptic preparation, the area was
draped and laparotomy was done by a ventral midline
incision. The horns of the gravid uterus and its blood
vessels were identified and the number of implanta-
tions was counted in both horns. The uterine artery of
the left horn was occluded by atraumatic bulldog
clamps (CodmanVR 20–1200 DRAKE Aneurysm Clip,
16mm) for 60min to induce ischemia (Figure 1). The
abdomen was temporarily closed with towel clamps
and the vital parameters of the rat were checked until
removal of the clamp. The clamp was removed 60min
later and the abdomen was closed in two layers with
the simple continuous pattern using 4-0 polyglactin
910 (Coated Vicryl, Ethicon Inc, US) and 3-0 polyamide
(Monofil Polyamide, SUPA, Tehran, Iran) sutures.

The treatment group received 270mg/kg 10% mag-
nesium sulfate (Pasteur Institute, Tehran, Iran) subcuta-
neously immediately after abdominal closure, and
then 27mg/kg every 20min for 4 h [13]. The control
group received the same volume of normal saline
(Shahid Ghazi Co, Tabriz, Iran). A single dose of 50mg/
kg cefazolin (Cefazolin-ExirVR , Exir Pharmaceutical Co,
Iran) was injected intraperitoneally after surgery.

Sampling and evaluation method

The rats were again anesthetized and went under
laparotomy at 21 days of gestation (total pregnancy
length is 21 days in rat). After cesarean section, the
number of alive, absorbed, and dead fetuses was
counted in each uterine horn and compared to the
number of implantations at day 17 of gestation. The
absorption rate of the fetuses was calculated by
implantation number at day 17 minus the number of
absorbed fetuses at day 21. Mortality percent was
computed similarly based on dead fetuses. Fetus via-
bility percent was calculated according to the number
of live fetuses. Macroscopic parameters such as color
(pink or purple¼ normal, brown or dark

Figure 1. Experimental fetal growth restriction by temporary
occluding of the uterine artery by an atraumatic clamp.
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green¼ abnormal), body consistency (normal, dried, or
wet), size, and body anomalies were evaluated. The
rats were euthanized by an intracardiac overdose of

sodium thiopental (VUAB Pharma Inc. Czech Republic).
In all alive and dead fetuses, they were weighted by a
digital balance and the head to tail and back to abdo-
men distances were measured using a digital caliper
(Figure 2). The weight of the placenta was also
recorded. The liver and brain to the body weights
ratios were calculated. It is worthy to mention that
weights and body dimensions were not measured in
absorbed fetuses, but the measurements were done in
alive and dead fetuses because the dead fetuses had
reached nearly to their ultimate growth similar to
alive ones.

Biochemical analyses

Samples of the amniotic fluid (AF) were collected from all
fetuses during the first surgery and from alive and dead
fetuses during the second surgery and transferred in a
liquid nitrogen tank into a �20 �C freezer. But, it was not
collected from absorbed fetuses in the second surgery
because they were shrunk and had not any fluid. The
samples were diluted to 1:20 with distilled water in order
to biochemical analyses by an AutoAnalyzer (Hitachi 917,
Roche Diagnostics, Indianapolis, IN, USA) using glucose
and urea (Pars Azmun, Tehran, Iran), lactate (Lactate
Gen2, Roche Diagnostic GmbH, Mannheim, Germany),
and pyruvate (Greiner Diagnostic GmbH, Bahlingen,
Germany) commercial kits.

Statistical analysis

Minitab software (version 16.2.0, Minitab Inc, State
College, PA, USA) was used for statistical analysis.
Regarding two experimental groups, all numerical
data were analyzed by Student t-test method. p < .05
was considered as significant difference.

Results

Among the total fetuses in ischemic horn which were
counted in the first surgery, 15 fetuses were dead and
another 15 fetuses were absorbed in the control
group, and only 30 fetuses survived. Dead fetuses had
less body consistency and had a dark color (Figure 3).
The closer the fetuses to the horn tip, the more

Figure 2. Measuring the length of the fetuses by a digital cali-
per on day 21 of gestation.

Figure 3. Absorbed fetuses along with their placenta in the
control group in comparison to an alive one.

Figure 4. Alive fetuses and attached placenta in the treatment
group. Only one fetus is absorbed.

Table 1. Viability, absorption, and mortality rates (%) of the
fetuses in experimental groups.

Control group Treatment group

Total number of the fetuses 60 78
Viability rate (%)a (p ¼ .001) 50 92.4
Absorption rate (%)a (p ¼ .009) 25 7.6
Mortality rate (%)a (p ¼ .005) 25 0
aIndicates significant difference (p < .05).
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congestion and underdevelopment they had. In con-
trary, only six fetuses of the treatment group were
absorbed and 72 fetuses were completely healthy and
developed (Figure 4). The viability, absorption, and
mortality rates of the fetuses are presented in Table 1.
Parameters related to the placenta weight, fetus
weight, fetus length, and fetus width had significant
differences and those of the treatment group were
higher (Table 2).

Biochemical findings of the AF are presented in
Figure 5(a–d). The glucose level of the AF in the treat-
ment group was decreased over time and had a sig-
nificant difference (p ¼ .000) with the control group in
day 21 of gestation. Urea concentration of the AF had
an increasing pattern in both groups, with significant
difference (p¼ .005) in day 21 of gestation. The AF lac-
tate level of the control group was significantly higher
than the treatment group (p¼ .0001). Finally, the
changes of pyruvate levels were not signifi-
cant (p¼ .246).

Discussion

In this current study, administration of magnesium sul-
fate to the pregnant rats which encountered uterine
ischemia in day 17 of gestation significantly increased
viability rate of the fetuses and encouraged their
growth in comparison with the control group. In add-
ition, the absorption and mortality rates of the fetuses
in the treatment group were significantly lesser than
the control group. The fetal and placental weights of
the treatment group were greater than of those in the
control group.

FGR can be either symmetric in which the whole
body is smaller or asymmetric that is manifested by
the normal size of the vital organs like brain and
heart, but the restricted growth of the liver, muscles,
and fat tissue. If the causative agent is severe or
presents for a long time, asymmetric FGR can alter to
symmetric one [14]. In our study, the growth restric-
tion was symmetric and the brain and liver to body
ratios had no significant difference in the groups. So,

the 60min of ischemia is a long period for this species
and the protective mechanisms could not preserve
the vital organs.

The mineral magnesium is the second most abun-
dant intracellular cation and has a role in several
important biochemical reactions [15]. Supplementation
of magnesium can prevent hypertension in the early
stages [16]. Van Laecke et al. [17] have reported that
hypomagnesemia may affect vascular stiffness in
patients undergoing renal transplantation. Magnesium
deficiency may alter the mechanical properties of the
arteries in young animals and may be the mechanism
that contributes to increased blood pressure, athero-
sclerosis, and other cardiovascular diseases [18]. The
results of a study on forearm blood flow showed that
magnesium causes endothelium-dependent vasodilata-
tion without any change in general hemodynamics
[19]. In another study, magnesium caused concentra-
tion-dependent dilation in the brain’s arterioles. The
authors concluded that magnesium can be effective in
the treatment of delayed brain ischemia or vascular
spasm following subarachnoid hemorrhage [20].

Change in extracellular level of magnesium can
affect the production and release of nitric oxide
which changes the smooth muscle tone of the
arteries and regulates the blood pressure [21]. In
addition, in vitro researches demonstrated that mag-
nesium acts as calcium canal antagonist [22]. Low
extracellular magnesium level stimulates intracellular
calcium metabolism by inositol-triphosphate and
reduces calcium-ATPase. Therefore, calcium intake
by the sarcoplasmic reticulum diminishes that leads
to intracellular calcium accumulation which is an
important factor in vasoconstriction [23].
Intracellular magnesium has a role in ATP produc-
tion and glucose intake by insulin and regulation of
vascular tone [24,25]. Other possible mechanisms of
magnesium include anti-inflammatory, antioxidant,
and cellular growth regulation [26]. Animals with
magnesium deficiency have shown high levels of
angiotensin I—which is a vasoactive agent [27].
Alpha and beta-adrenergic vascular sensitivity
reduce during normal pregnancy. In some pregnant
women, the inability to reduce alpha-adrenergic vas-
cular contractility may be important in the patho-
genesis of gestational hypertension or other
physiological conditions associated with placental
blood flow. There is considerable evidence that
magnesium sulfate is an arterial dilatant in humans
and animals [28,29]. In pregnant ewes, magnesium
sulfate significantly reduces the mean arterial blood
pressure and systemic vascular resistance and

Table 2. Measurements of fetus and placenta parameters in
experimental groups (mean ± SD).

Control group
Treatment
group

Fetus weight (gr)a (p ¼ .000) 1.49 ± 0.73 2.86 ± 0.94
Placenta weight (gr)a (p ¼ .018) 0.44 ± 0.18 0.56 ± 0.95
Fetus length (mm)a (p ¼ .000) 23.38 ± 7 32.28 ± 5
Fetus width (mm)a (p ¼ .001) 9.53 ± 2.46 12.14 ± 1.44
Liver to body weight ratio (%) (p ¼ .460) 6.99 ± 2.77 7.68 ± 1.94
Brain to body weight ratio (%) (p ¼ .677) 5.21 ± 0.99 5.37 ± 1.12
aIndicates significant difference (p < .05).
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prevented cardiac output decrease during alpha-2-
adrenergic stimulation. Meanwhile, magnesium sul-
fate has also been shown to overcome uterine blood
flow decrease when stimulating alpha 1-adrenergic
or angiotensin II [30]. Several studies on the arteries
and veins isolated from the umbilical cord show that
magnesium deficiency may be responsible for spasm
of the umbilical and placental arteries [31,32]. We
believe that increased placenta weight, fetus weight,
fetus length, and fetus width in magnesium sulfate
treated group of this study is due to increase in
blood flow of the uterine and placenta by mecha-
nisms that discussed earlier, which has overcome
the effects of temporary ischemia. However, the
exact blood flow level of the placenta was not eval-
uated by Doppler ultrasound or similar methods,
which could be a limitation of this study.

Amniotic fluid produced from maternal, fetal, and pla-
cental tissues and its metabolic profile is the result of
metabolite synthesis/degradation, fetal maturation, and
biochemical exchanges. It shows the physiological proc-
esses of fetal development and is a valuable material for
fetal health diagnostics [33]. Our results showed a
decrease in AF glucose levels in the treatment group,
while unaffected in the control group. The decrease in
the glucose level overlaps with increasing fetal energy
demand during the pregnancy progression [33]. On the
other hand, magnesium can encourage normal fetal
development and increase its energy needs, so that little

glucose is secreted into the amniotic fluid. Albeit urea
concentration of AF was increased in both groups, its
level in the treatment group was significantly higher
than those of the control group in day 21 of gestation.
Lower contents of urea in malformation samples may be
related to the fetal inability to synthesize urea, kidney
underdevelopment, and/or prerenal causes such as defi-
cient blood perfusion [34]. The origin of the AF lactate is
fetus metabolism and its concentration increases in fetal
distress conditions including hypoxemia [35]. So, a sig-
nificant increase in AF lactate level of control group
reflects compromised blood supply in this group, while
magnesium sulfate could overcome this situation.
Pyruvate levels were increased in both groups; however,
the differences were not significant. Pyruvate is amongst
the major sources of acetyl-CoA for Krebs cycle [33].

In conclusion, magnesium sulfate may neutralize the
effects of uterine ischemia in pregnant rats and prevent
fetal intrauterine growth restriction caused by temporary
occlusion of the uterine artery. However, different doses
of magnesium sulfate are needed in future studies.
Surgical FGR induction in different pregnancy days is
also recommended.
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