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Sediment transport has attracted the attention of engineers from various aspects and different methods
have been used for its estimation. So, several experimental equations have been submitted by experts.
Though the results of these methods have considerable differences with each other and with
experimental observations, because the sediment measures have some limits, these equations can be
used in estimating sediment load. With regard to the fact that Givichay River has high sediment
production in the region, it is chosen as the study area. This river is one of the Qezeuzan River
branches and through this river it joins to the Sefidrud River. Sefidrud dam is one of the most sediment
receiver dams in the world and now more than half of the dam capacity has been filled with sediment.
With regard to the fact that there are not enough sediment measure stations in this region, therefore
different methods have been used. In this study, neural differential evolution (NDE) models are
proposed to estimate suspended sediment concentration. NDE models are improved by combining two
methods, neural networks and differential evolution. In the first part of the study, NDE model is trained
using daily river flow and suspended sediment data belonging to Givi Chay River in northwest of Iran
and various combinations of current daily stream flow and past daily stream flow, suspended sediment
data are used as inputs to the NDE model so as to estimate current suspended sediment. In the second
part of the study, the suspended sediment estimations provided by NDE model are compared with multi
layer perceptron (MLP), radial basis function (RBF) and sediment rating curves (SRC) results. The Root
mean squared error (RMSE) and the determination coefficient (RZ) are used as comparison criteria.
Obtained results demonstrate that NDE are in good agreement with the observed suspended sediment
concentration; while they depict better results than RBF, MLP and SRC methods. For example, in Givi
Chay River station, the determination coefficient (Rz) is 0.9621 for NDE model, while it is 0.9114, 0.90
and 0.8447 for RBF, MLP and SRC models, respectively. However, for the estimation of maximum
sediment peak, the NDE was mostly found to be better than the RBF and the other techniques. The
results also indicate that the NDE may provide better performance than the RBF, MLP and SRC in the
estimation of the total sediment load (Re = -26%).

Key words: Givi Chay River, neural differential evolution, multi-layer perceptron model, radial basis function,
sediment rating curves.

INTRODUCTION

Sediment transport by rivers, from land to the seas and
oceans are the most important ways of transferring
materials in the earth and amounts to 20 to 52 billion tons
of sediment transferred by rivers and deposits in resident
waters of the world every year. Reducing fertile

agricultural lands, quantitative and qualitative decline in
pastures, increasing the amount of sediment in rivers and
reducing useful life of dam’s tanks are among the
consequences of soil erosion. Every year large amounts
of soil transferred by various factors from basins causes



agricultural (the decrease in output unit level), economic
(reduction in annual income) and social problems
(immigration). Givichay River is not an exception. This
river is one of the Qezeuzan River branches and through
this river it joins to the Sefidrud River. Sefidrud dam is
one of the most sediment receiver dams in the world and
now more than half of the dam capacity is filled with
sediment. To solve this problem this dam is emptied and
filled again for different times from 1980. Also the
construction of a few diversion dams in Shahrood and
Qezeluzan River has begun. With regard to the fact that
the great volume of Sefidrud dam is field by Shahrood
and Qezeluzan Rivers sediments and more than 40% of
the useful amount of the lake has been reduced,
sediment removal method is used in this dam. This way,
in addition to the problems such as water level falls, mass
sediments slide in to the lake’s front, erosion in the dam’s
walls and the loss in a large number of fish and it also
has sediment evacuation problems in the end of the dam.
With regard to all cases the necessity of measuring
suspended sediment load is obvious.

The suspended sediment load of the stream is
generally determined from direct measurement of the
sediment load or from sediment transport equations.
Although direct measurement is the most reliable
method, it is very expensive and the sediment
measurement cannot be done for as many streams as
the measurement of water discharge. On the other hand,
most of the sediment transport equations require detailed
information on the flow and sediment characteristics
(Ozturk et al., 2001). A number of attempts have been
made to relate the amount of sediment transported by a
river to flow conditions such as discharge, velocity and
shear stress. However, none of the equations derived
have received universal acceptance. Usually, either the
weight or the concentration of sediment is related to the
discharge. These two forms are often used
interchangeably. Bean and Nassri (1988) examined load
vs. discharge is misleading because the goodness of fit
implied by this relationship is spurious. Instead they
recommended that the regression link be established.
The physically based models are based on the simplified
partial differential equations of flow and sediment flux as
well as on some unrealistic simplifying assumptions for
flow and empirical relationships for erosive effects of
rainfall and flow. Examples of such models are presented
by Wicks and Bathurst (1996), Refsgaard (1997) and
others. These highly sophisticated and complex models
have components that correspond to physical processes.
They are theoretically capable of accounting for the
spatial variation of catchment properties as well as
uneven distribution of precipitation and evapotranspira-
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-tion. The model complexity should, however, be keyed to
utilizable information about the catchment characteristic
and density and frequency of the available input data. In
particular, because the real spatial distribution of
precipitation is not presently measurable for much of the
world, process-oriented distributed models offer no
practical advantage over lumped models and have many
disadvantages (Guldal et al., 2001).

Artificial neural networks (ANN) are gaining popularity,
especially over the last few years, in terms of hydrological
applications. Since the early nineties, it has been
successfully used in hydrology related areas such as
rainfall runoff modeling, stream flow forecasting, ground
water modeling, water quality, water management policy,
precipitation forecasting, hydrologic time series, and
reservoir operations. Most hydrologic processes exhibit a
high degree of temporal and spatial variability and are
further plagued by issues of non linearity of physical
processes, conflicting spatial and temporal scales, and
uncertainty in parameter estimates. The time and effort
required in developing and implementing such
complicated models may not be justified. Simpler neural
network forecasts may therefore seem attractive as an
alternative tool. White conceptual models are of
importance in understanding hydrologic processes. There
are many practical situations such as stream flow
forecasting where the main concern is with making
accurate prediction of specific watershed location. In
such a situation, a hydrologist may prefer not to expand
the time and efforts required to develop and implement a
conceptual model and instead implement a simpler
theoretic model. Traditionally, feed forward networks,
where nodes in one layer are only connected to nodes in
the next layer, have been used for prediction and
forecasting applications. In the past decades, great
strides have been made in conceptualizing the runoff and
sediment vyield processes from watersheds through
modeling. Models are classified based on their
comprehensiveness in  representing the physical
processes involved. With increasing comprehensiveness,
models are classified as black-box models, conceptual
models and physically based distributed models. The last
of the three can be considered the better choice in a
rigorous theoretical sense. However, the significant data
need of such models and their marginally superior results
compared to the others make them an unfavorable
choice in operational hydrology (Gautam et al., 2000).
Lumped conceptual models are favored, as they can be
based on a sound conceptual framework due to their
limited data need. But they require lengthy calibration and
parameterization processes. Amongst the soft computing
tools vis. genetic algorithm (GA), simulated annealing
(SA), multivariate adaptive, regression splines (MARS)
and ANN, The ANN, are most frequently used for
hydrological modeling.

Jain (2001) used a single ANN approach to establish
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daily sediment discharge relationship and found that the
ANN model could perform better than the rating curve.
Tayfur (2002) developed an ANN model for sheet
sediment transport and indicated that the ANN could
performs as well as, in some cases better than the
physically based models. Cigizoglu et al. (2005)
investigated the accuracy of a single ANN in estimation
and forecasting of daily suspended sediment data. Kisi
(2004) used different ANN techniques for daily
suspended sediment concentration prediction and
estimation, and indicated that multi-layer perceptron
could show better performance than the generalized
regression neural networks and radial basis function. Kisi
(2005) developed an ANN model for modeling daily
suspended sediment and compared the ANN results with
those of the rating curve. Cigizoglu et al. (2006)
developed some methods to improve ANN performance
in daily suspended sediment estimation. Tayfur and
Guldal (2006) used MLP for predicting total suspended
sediment from precipitation. Bhattacharya et al. (2005)
provided an algorithm for developing a data using ANN
published flume and field data from several researchers
have been employed to build the ANN model. The
predictive accuracy of the model was found to be better
than well known sediment transport models such as Van
Rija and Engeland and Hansen. Raghuwanshi et al.
(2006) proposed an ANN model to runoff and sediment
yield modeling in Nagwan watershed in India. A five year
data set was employed for training and a two year data
set was considered for testing the model. Also, other
studies conducted in this field were by Cheng et al.
(2002), Chau et al. (2005), Muttil and Chau (2006), Lin et
al. (2006), Wu et al. (2009), Wang and Traore (2009) and
Wang et al. (2009).

In this study, the performance of NDE, RBF, MLP and
SRC models are analyzed for daily suspended sediment
concentration prediction in the Givi Chay River in the
northwest of Iran. The main aim of this study is to
investigate capability and accuracy of conventional and
artificial intelligence methods in suspended sediment
concentration prediction. The paper presents a
comparative study on convenient classic and new
generation artificial intelligence approaches in suspended
sediment concentration modeling. Therefore, it will be of
particular utility to researcher that require time-series of
suspended sediment concentration and do not have the
resources to support sampling or turbidity monitoring and
are deciding between various models that predict the
needed data from discharge values.

CASE STUDY

The Givi Chay River originates from southern Ardebil and
flows in to the Ghezel Uzan River in Zanjan. The river is
240 km long, and the major landuse is forest and

agriculture in its drainage area. Including its tributaries,
Givi Chay River drains about 827 km?. Elevations in the
basin range from 2820 m above mean sea level at the
headwaters of the Hero Chay River to 860 m above at
the confluence with the Ghezel Uzan River in Firuzabad
city. The climate of the basin is characterized as semiarid
with average mean temperature of 6.7°C. Average
precipitation in the study area is 444 mm and about 86 to
94% of it occurs in April and May. So the highest amount
of sediment belongs to these months and more than 50%
of region affected by erosion. In addition, this region is
also affected by human factors such as population
growth, rapid economic development, deforestation,
intensified agriculture, construction of dam’s and mining.
For example, Forest coverage in 1965 was equivalent to
38% but in 2009 decreases to 21%. All these factors
have increased sediments production. From 1992 both
discharge and sediment parameters are increasing but
the suspended sediment load has increased more
quickly. Studies showed that there are nonlinear relations
between discharge and sediment parameters. The
reason of nonlinear relations is the effect of other factors
like geology that can decrease or increase sediment
production. Discharge and sediment parameters used as
the entry of all artificial neural network models were used
in this study. These two parameters can affect
suspended sediment production. Melesse et al. (2011)
realized that if the data has a lower distribution or be near
normal distribution it will have better results. For this
purpose to prevent the influence of discharge and
sediment in dry period only wet period discharge and
sediment was used. Research conducted by the
researcher shows that rainfall parameter was less
important between the input data. The main reason for
this issue is the average estimated rainfall because of the
vast basin and no rain measure stations so it has not
enough efficiency. Therefore, in this investigation
sediment and discharge parameters were used. Despite
this, forms of entering data to the above models are
different and different entrance structures will be test in
them.

The main structure of the entrance data is Q,, Q;—1, St—1-
Where Q is discharge, S and t are sediment and
expected day respectively. The flow-sediment time series
data of Givi Chay station at northwest of Iran
(latitude37°,41/,33", longitude48’,32/,26") operated by
the Ardebil regional water corporation were used in the
study. Daily time series of river flow and sediment
concentration for this station was downloaded from the
web server of the Ardebil regional water corporation
(Www.arrw.ir).

In Givi Chay station for training NDE, RBF, MLP and
SRC models wet period data were used from January to
June 2009, the rest 180 days which were used for testing
the model belongs to the January to June 2010. The
statistical parameters of stream flow and sediment
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Table 1. The daily statistical parameters of dataset for the Givi Chay station.

Dataset Data type x Sy Cg, Xmax Xmin

i Flow 79 94 3.62 1029 76
g Sediment 387 815 523 7650 9

Testin Flow 52 79 2.41 426 59
9 Sediment 412 951 6.08 7300 8
" IRAN

E1aEY
f i

a7

o

| Kilometers

KK S I X [ @ RS

stlas

~s1fas~

e ‘_ﬂli!' g

~arfe——

L T R 3

L - -

Figure 1. The location of Givichay station on the Givichay catchment.

concentration data of Givi Chay station are shown in
Table 1. These statistics point out to the complexity of
modeling suspended sediment behavior.

Figure 1 shows the drainage basins and sediment
monitoring stations used in this study.

METHODS
Neural differential evolution (NDE)

The neural differential evolution algorithm can be classified as a

floating point evolutionary optimization algorithm (Storn and Price,
1995, 1997; Lampinen, 2001). Generally, the function to be
optimized, f, is of the form:

f(V):R? >R, €Y

Here, R denotes the real numbers, and D is the number of
parameters of the objective function, f (V) by optimizing the values
of its parameters.

v=_>.Vp)VERP, ()
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Where V denotes a vector composed of D objective function
parameters. In the present study, objective function f (V) denotes
the mean square errors between the observed and calculated
sediment values and wv;is the parameter of the fuzzy subsets
(membership functions). Usually, the parameters of the objective
function are also subject to lower and upper boundary constraints,

Ui(L) ande), respectively:

i

v <v<v® i=1,.,D, 3)
Where v; is the fuzzy subsets parameter and vl.(L)and vl.(U) are lower
and upper boundaries respectively.

As with all evolutionary optimization algorithms, NDE operates on
a population, P; of candidate solutions, not just a single solution.
These candidate solutions are the individuals of the population. In
particular, NDE maintains a population, and G is the generation to
which the population belongs.

Pg = (Vig,..Vapg) G=0,..,Guax, ©))

Additionally, each vector contains D real parameters (chromosomes
of individuals):

Vig = (vl,i,G,...,vDiG) i=1,.,NP G=0,..,Gny, (O5)

To establish a starting point for optimum seeking, the population
must be initialized. Often there is no knowledge available about the
location of a global optimum other than the limits of the problem
variables. Then a natural way to seed the initial population P;—, is
with random values chosen from within the given boundaries:

J
1,..,D, ©)

U L L . .
V; 10 = rand; [0,1](111.( ) vj( )) + v].( ) i=1, ..,NP,j =

Where rand;[0,1] denotes a uniformly distributed random value
within the range: [0.0, 1.0] that is chosen for each new j.

NDE self-referential population reproduction scheme is different
from other evolutionary algorithms. From the 1st generation
onward, vectors in the current population P; are randomly sampled
and combined to create candidate vectors for the subsequent
generation, P; 1 = Uj 41 = U 1641, IS generated as follows:

UiG+1 =
vV, .
13,6+ (v),r1,6~V),r2,6)if Vj(L)<Yj,i,G+1<Vj(U) if 4.10.1] < CR
Ly rang; [V, >
vj(” ! (7D

otherwise rand; [O,1](vjw) -

otherwise v; ; ¢

The randomly chosen indices, 1, ,and r;are different from each
other and also different from the running index, i. New random,
integer values for, 11, ,and r;are chosen for each value of the index
I, that is for each individual.

F and CR are NDE control parameters. Like NP, both values
remain constant during the search process. F is a real-valued factor
in the range (0.0, 1.0] that scales the differential variations. The
upper limit on F has been empirically determined.

CR is a real- valued crossover factor in the range [0.0, 1.0] that
controls the probability that a trial vector parameter will come from
the randomly chosen, mutated vector, wu; ;. instead of from the
current vector, v;;;. Generally, both F and CR affect the
convergence velocity and robustness of the search process.
Suitable values for F, CR, and NP can usually be found by trial-and-
error after a few tests using different values. Practical advice on
how to select control parameters NP, F and CR can be found from

research work carried out by Lampinen and Zelinka (2000).

NDE selection scheme also differs from other evolutionary
algorithms. The population for the next generation,P; 1, is selected
from the current population, P;, and the child population, according
to the following rule:

UiG+1 if FU; .
Vigsr = { LG+ if f(Uz,GJrl)Sf(VL,G)}, 8)

Vi,G otherwise

Thus, each individual of the temporary population is compared with
its counterpart in the current population. Assuming that the
objective function is to be minimized, the vector with the lower
objective function value wins a place in the next generations'
population. As a result, all the individuals of the next generation are
as good as or better than their counterparts in the current
generation.

Multi - layer perceptrons (MLP)

An MLP distinguishes itself by the presence of one or more hidden
layers, with computation nodes called hidden neurons, whose
function is to intervene between the external inputs and the network
output in a useful manner. By adding hidden layer(s), the network is
enabled to extract higher- order statistic. In a rather loose sense,
the network acquires a global perspective despite its local
connectivity due to the extra set of synaptic connections and the
extra dimension of NN interconnections. The MLP can have more
than one hidden layer; however, theoretical works have shown that
a single hidden layer is sufficient for an ANN to approximate any
complex nonlinear function (Cybenco, 1989; Hornik et al., 1989).
Therefore, in this study, a one- hidden- layer MLP is used.
Throughout all MLP simulations, the adaptive learning rates were
used to speed up training. The numbers of hidden layer neurons
were found using simple trial- and- error method in all applications.
The MLP were trained using the Levenberg- Marquardt technique
as this technique is more powerful than the conventional gradient
descent techniques (Hagan and Menhaj, 1994; El-baker, 2003;
Cigizoglu and Kisi, 2006).

The Levenberg- Marquardt algorithm

While back — propagation with gradient descent technique is a
steepest descent algorithm, the Levenberg- Marquardt algorithm is
an approximation to Newton's method (Marquardt, 1963). If a
function V(x) is to be minimized with respect to the parameter
vector X, then Newton’s method would be:

Ax = —[V2V ()] vV (), ()]

Where V2V (x)is the Hessian matrix and VV(x) is the gradient. If
V(X) reads:

V(x) =Y el (x), (10)
Then it can be shown that:

W(x) =] (x)e(x), (11)
VAV () =" ()] (x) + S(0), (12)

Where J(x) is the Jacobian matrix and,
Sx) = z e;V2e;(x), (13)

For the Gauss- Newton method it is assumed that S(x) =0 and



Equation (11) become:
Ax = [T (i1 (e (), (14)

The Levenberg- Marquardt modification to the Gauss- Newton
method is:

Ax = [JT)] () + MIT™YT (x)e(x), (15)

The parameter M is multiplied by some factor (B) whenever a step
would result in an increased V(x). When a step reduces V(x), M is
divided by B. when the scalar M is very large the Levenberg-
Marqurdt algorithm approximates the steepest descent method.
However, when M is small, it is the same as the Gauss- Newton
method. Since the Gauss- Newton method converges faster and
more accurately towards an error minimum, the goal is to shift
towards the Gauss-Newton method as quickly as possible. The
value of M is decreased after each step unless the change in error
is positive; that is the error increases. For the neural network-
mapping problem, the terms in the Jacobian matrix can be
computed by a simple modification to the back- propagation
algorithm (Hagan and Menhaj, 1994).

The radial basis function type neural networks (RBF)

The RBF network model is motivated by the locally tuned response
observed in biological neurons. Neurons with a locally tuned
response characteristic can be found in several parts of the nervous
system, for example, cells in the visual cortex sensitive to bars
oriented in a certain direction or other visual features within a small
region of the visual field (Poggio and Girosi, 1990). These locally
tuned neurons show response characteristic bounded to a small
range of the input space. The theoretical basis of the RBF approach
lies in the field of interpolation of multivariate functions. The
objective of interpolating a set of tuples (x°%,y*)with x° € R¢ is to
find a function F: R - R with F(x°) = y* for alls = 1,...,N. In the
RBF approach, the interpolating function F is a linear combination
of basis functions:

N
FG) = ) wd(lx =21 +p(o), (16)
s=1

Where ||. || denotes Euclidean norm, wy_, wy are real numbers, & a
real valued function, and p € [[¢. a polynomial of degree at most n
(fixed in advance) in d variables. The interpolation problem is to
determine the real coefficients w; ,wy and the polynomial term
p =X a;p; wherep; pp, is the standard basis of [1¢. and
a,,_ap are real coefficients. The interpolation conditions are:

F(x*) =y%s=1,..,N, 17
And

N

Zwsp,- (x)=0j=1,..,D, (18)
s=1

The function @is called a radial basis function if the interpolation
problem has a unique solution for any choice of data point. In some
cases the polynomial term in Equation (18) can be omitted, and by
combining it with Equation (17), one obtains:

dw =y, (19)

Where w = (w;,_wy),y =% ..,y"), and & is aN x Nmatrix
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defined by:
@ = (Olx* - x°1), (20

Provided the inverse of dexists, the solution w of the interpolation

problem can be explicitly calculated and has the form: w = CD_ly.
The most popular and widely used radial basis function is the
Guassian basis function:

O(lx - cll = e 357, @1

With peak at centre ¢ = R%and deceasing as the distance from the
centre increases.

The solution of the exact interpolating RBF mapping passes
through every data point ((x*,y%). In the presence of noise, the
exact solution of the interpolation problem is typically a function
oscillating between the given data points. An additional problem
with the exact interpolation procedure is that the number of basis
functions is equal to the number of data points and so calculating

the inverse of the N x N matrix @*becomes intractable in practice.
The interpretation of the RBF method as an artificial neural network
consists of three layers: a layer of input neurons feeding the feature
vectors in to the network; a hidden layer of RBF neurons,
calculating the outcome of the basis functions and a layer of output
neurons, calculating a linear combination of the basis function
(Taurino et al., 2003). The RBF method does not perform the
parameters learning as in the MLP networks, but just performs
linear adjustment of the weights for the radial basis. This
characteristic of the RBF method gives the advantage of very fast
convergence without local minima, since its error function is always
convex (Poggio and Girosi, 1990; Lee and Change, 2003).

Sediment rating curves (SRC)

A rating curve consists of a graph or equation, relating sediment
discharge or concentration to stream discharge, which can be used
to estimate sediment loads from the stream flow record. The
sediment rating curve generally represents a functional relationship
of the form:

s=aQb, (22)

In which Q is stream discharge and S is either suspended sediment
load (Sandy, 1990). Values of a and b for a particular stream are
determined from data via a linear regression between (logs) and
(logQ). After log- transformation to the arithmetic domain and
application of the Ferguson (1986) correction factor, the sediment
load occurring at a specific discharge can be estimated using the
following expression:

S =CF.a.Q", (23)

Where CF is the log- transformation bias correction factor.
Specifically,

CF = e2657% (24)

Where e is the exponential function and ¢ is the standard error of
the regression equation.

APPLICATION AND RESULTS
Model performance

Some conventional evaluations such as correlation
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Table 2. The final architectures and RMSE and R? statistics of the NDE model.

NDE model inputs NDE structure RMSE (mg/l) R’

Qr; NDE (1,3,1) 187 0.9621
Qr, and Qr,—; NDE (2,2,1) 208 0.9267
Qr; and Sty_4 NDE (2,2,1 219 0.8439
Qr:, Qri_q and Sty_4 NDE (3,2,1) 228 0.8226

coefficient (p), coefficient of determination R? sum of
square error, and root mean square error (RMSE) were
critically reviewed by Legates and McCabe (1999). They
indicated that the correlation coefficient is unsuitable for
model evaluation. Legates and McCabe proposed that a
perfect evaluation of model performance should contain
at least one good-of-fit or relative error measure for
example R? and at least one absolute error measure for
example RMSE. Nash and Sutcliffe (1970) described R?,
which has e range of minus infinity to 1, with higher
values describing better agreement. In this paper, the
performance of the models was evaluated utilizing R? and
RMSE. In brief, the models predictions are optimum if
R?>and RMSE are found to be close to 1 and O,
respectively. The R? parameter clarifies relation between
observed and predicted values and RMSE evaluates the
residual between observed and predicted suspended
sediment concentration. The RMSE are defined as
follows:

N

1 2
RMSE = NZ[St measured St predicted ] ) (25)
i=1

Suspended sediment concentration estimation using
neural differential evolution (NDE)

The input combinations used in this application to
estimate suspended sediment values for Givi Chay River
are(i)Qr,, (iH)Qr,, Qry_y, (iii)Qr, and Sr,_y; and (iv)Qr,, Qri_ and Sr,_y,
where Qr; and Sr; represent, respectively, the stream
flow and sediment concentration at day t.

A program code was written in MATLAB language for
the NDE model simulations. Different NDE architectures
were tried using this code and appropriate model
structures were determined for each input combination.
Then, the NDE models were tested and the results were
compared by mean of RMSE and R” statistics. The
RMSE and R? statistics of each NDE model in test period
are given in Table 2. The final architectures of the NDE
model found after many trials are also provided in this
table. For the last input combination, the NDE (3.2.1) has
3, 2 and 1 nodes for the input, hidden and output layers,
respectively. According to the results, it can be observe

that by first combined entry NDE model has lowest
RMSE (187) and the highest R* (0.9621) values.

Comparisons of different models versus NDE

In the second part of the study, in order to assess the
ability of NDE model in relative to different ANN
computing techniques, RBF and MLP models are
developed using the best input combination selected in
the first application. The other model considered in the
study for comparison is SRC.

Pre-processing of the data is usually required before
presenting the data samples to the neural network
models when the neurons have a transfer function with
bounded range. The reasons for scaling of the data
samples can be described as to initially equalize the
importance of variables and to improve interpretability of
network weights (Masters, 1993; Goh, 1995). In this
study, the data are scaled in the range of 0.01 and 0.99
by using the following equation:

_ 0'99(xi B xmin)

= +0.01, (26)
(xmax - xmin)

Xs

In Equation (26), x, is the scaled input value, x; is the
actual unscaled observed input value, x,,;, and x,,,, refer
to the minimum and maximum values of the data,
respectively.

Two different ANN models, namely RBF and MLP are
developed for estimating sediment concentration. For this
purpose, two different program codes, including neural
networks toolbox, were written in MATLAB language for
the RBF and MLP simulations. Different ANN
architectures were tried using these codes and the
appropriate model structures were determined. Different
number of hidden layer neurons and spread parameters
was tried for the RBF model in the study. The number of
unit for the single hidden layer and the spread parameter
value providing the best testing performance of the RBF
was found to be 17 and 0.39, respectively. The optimum
hidden nodes numbers of the MLP was found to be four
after employing trial and error method.

The SRC techniques were applied to the training data
set. The following formulas were found to offer the best
statistical measures for fit of training dataset,
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Models NDE RBF MLP SRC
RMSE (mg/L) 187 318 330 404
R 0.9621 0.9114 0.90003 0.8447

respectively:
S, = 1.327 x (4.268Q08%), 27

In which Q is stream discharge and S is suspended
sediment concentration.

The NDE model is compared with the MLP, RBF and
SRC models in Table 3. The table indicates that the NDE
whose input is the current discharge has the smallest
RMSE (187 mg/L) and highest R? (0.9621). It is obvious
from Table 3 that the NDE model performs better than
the MLP, RBF and SRC models.

A comparison of the observed and estimated
suspended sediment concentration in the test period is
shown in Figures 2 and 3, in hydrograph and scatter plot
form. It can be seen from the hydrographs that the NDE
estimates closely follow the observed values.

This is also confirmed by the scatter plots. It can be
clearly seen from the scatter plots that the NDE has a
higher R? value (0.9621) than the MLP, RBF and SRC
models.

The sediment peak- estimates of the models are
compared in Table 4. In general, the NDE model gave
better estimates of peak sediment concentration values
than the other models. The NDE, RBF, MLP and SRC
models predicted the maximum peak as 6549, 5982,
5732 and 5329 with underestimations of 10, 18, 21 and
27%, respectively. As can be seen from Table 4 the SRC
give poor estimate for the other peak, too.

The estimation of total sediment load obtained from the
estimated suspended sediment concentration values is
also considered for comparison due to its importance in
reservoir management. The total estimated sediment
amounts in test period are given in Table 5. The
estimates of the NDE, RBF, MLP and SRC are 26, 35, 52
and 66% lower than the observed value (76842 ton),
respectively.

To evaluate the robustness of the NDE, MLP, RBF and
SRC models using Akaike information criterion (AIC)
defined by Akaike (1974) is utilized:

AIC = N x In(RMSE) + 2k, (28)

Where N is the number of samples in the testing set and
k is the number of model parameters or weights.
Equation (28) indicates that the values of AIC increases
as the number of model parameters (k) increases, but if
the RMSE of the model is much lower than that of
another models, its AIC may be lower despite its
relatively layer network size. The AIC values of the

models for the test period are given in Table 6. Table 6
shows that NDE has the lowest AIC values for the Givi
Chay River.

Despite the number of model weights being higher than
SRC, SRC estimates gave worse AIC values. The AIC
values of NDE model was slightly lower than the values
of the other models.

Overall, the NDE models which combine the two
methods, ANN and DE, seem to perform better than the
RBF, MLP and SRC models in establishing a rating
relationship between suspended sediment and flow. Such
problems frequently arise in a non linear manner.
However, the SRC technique assumes a linear
relationship between the log of sediment and the log of
stream flow values since the SRC is obtained by
establishing linear regression between the logarithm
transformation of the sediment and flow data. This model
requires that the variable be normally distributed. It is
clear from Table 1 that the stream flow and sediment
data have quite a scattered distribution. In view of the
complexity of the problem, therefore, the SRC technique
is not adequate. The main advantages of using ANN
models are their flexibility and ability to model nonlinear
relationships. However, the ANN models use back
propagation methodology for adjusting the membership
function parameters and weights, respectively (Jang,
1993). In back propagation methodology, it is very easy
for the training process to get trapped in a local minimum
(Kumar et al, 2002; Sudheer et al, 2003). The
evolutionary algorithms (EA) belong to a class of search
methods with remarkable balance between exploitation of
the best solutions and exploration of the search space.
They combine elements of stochastic and directed search
and, therefore, are more robust than existing direct
search methods, providing the global optimum without
becoming trapped in local optima (Mantoglu et al., 2004;
Karterakis et al., 2007). The NDE proposed in this study
uses DE. Unlike conventional evolutionary
algorithmswhich depend on a predefined probability
distribution function for the mutation process, DE uses
the differences of randomly sampled pairs of objective
vectors for its mutation process. Consequently, the object
vectors differences will pass the objective functions
topographical information toward the  optimization
process, and therefore provide more efficient global
optimization capability (Storn et al., 1995, 1997).

Conclusions

In current study, suspended sediment concentration were
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Figure 2. A comparison of the observed and estimated suspended sediment concentration by the NDE,

MLP, RBF and SRC models for the test period.

estimated by an neural differential evolution (NDE) and
two different neural network approach using different
combination of hydrological variables (stream flow) and
antecedent suspended sediment concentrations. In the
first part of the study, several input combinations

including daily stream flow and suspended sediment
concentration of previous days are used as inputs to the
NDE model to estimate current suspended sediment
concentration. It is observed that in NDE model the
structure with one entry layer, 3 hidden layers and 1
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Figure 3. Scatter plots of observed and predicted suspended sediment by the NDE, MLP, RBF and SRC models

for the test period.

Table 4. The comparison of the NDE, MLP, RBF and SRC peak-estimation for the test phase.
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Observed sediment peaks

Relative error (%)

(>3000 mg/L) NDE RBF MLP SRC NDE RBF MLP SRC
7300 6549 5982 5732 5329 -10 -18 -21 -27
7036 6132 5153 4923 4617 -12 -26 -30 -38
4743 5937 3867 3927 3364 25 -17 -18 -29
3970 3421 3245 3128 2843 -5 -18 -21 -28
3806 4576 1945 1837 1721 -20 48 51 54

Table 5. Estimated total sediment amounts in test period.
Parameters Observed NDE RBF MLP SRC
Estimate (ton) 76842 97313 104243 117539 128042
Relative error (%) -26 -35 -52 -66

output layer has the smallest RMSE (187 mg/l) and the the best input combination obtained in the first part of the
highest R* (0.9621). In the second part of the study, the study. The SRC models were also considered for the
accuracy of the NDE model was compared with two comparison. The comparison results reveal that the NDE
different ANN computing technigques, MLP and RBF for model performs better than the ANN and SRC models in
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Table 6. AIC values of NDE, RBF, MLP and SRC.

Model RMSE (mg/L) k AIC
NDE 187 955
RBF 318 11 1059
MLP 330 6 1055
SRC 404 3 1086

daily suspended sediment concentration estimation. The
ANN models also provided better estimates than the
SRC. After estimating the sediment load and comparing
the results from each of the models, quantities that are
higher than 3000 mg/L compared with each other.
Relative error (RE) had been used for validating the
accuracy of models and it is observed that the NDE
model had better efficiency in estimating sediment load.
For example, this model estimated the 7300 mg/L
sediment amount equal to 6549 mg with relative error -
10. This is when the above quantities for the RBF, MLP
and SRC models are estimated as -18, -21 and -27.
Finally in order to determine the RMSE parameter ability
the Akaike information system were used in validating
each of the models. Investigations showed that the NDE
model with 955 Akaike value had the best capability.

Among the ANNs methods, in general, the RBF model
was found to be slightly better than those of the MLP
method in setting up suspended sediment concentration-
hydrological relationship. In general, the NDE model can
be considered to be relatively superior to the ANN and
SRC models.

The superiority of ANNs over conventional methods in
the simulation of sediment load series is evident because
the ANNs are able to capture the nonlinear dynamics and
generalize the structure of the whole data set. They are a
flexible alternative and standard ANN software can be
used to construct intricate multi-purpose nonlinear
solutions. The method has no limitations in the form of
fixed assumptions or formal constraints. The neural
network has a distributed processing structure.

The employment of ANN algorithms other than NDE,
RBF and MLP should also be investigated in future
studies in order to obtain a better fit to the observed data
and to remove the negative value production. On the
other hand, further information about the hydrological
data could also enrich the input data sets of ANNs.

The prediction of suspended sediment loads carries
significance for water resource projects like dam reservoir
constructions. Therefore, the results of this study, which
show ANNSs are an important tool in suspended sediment
load simulation, could be considered as progress for the
solution of this problems.
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