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Sediment transport has attracted the attention of engineers from various aspects and different methods 
have been used for its estimation. So, several experimental equations have been submitted by experts. 
Though the results of these methods have considerable differences with each other and with 
experimental observations, because the sediment measures have some limits, these equations can be 
used in estimating sediment load. With regard to the fact that Givichay River has high sediment 
production in the region, it is chosen as the study area. This river is one of the Qezeuzan River 
branches and through this river it joins to the Sefidrud River. Sefidrud dam is one of the most sediment 
receiver dams in the world and now more than half of the dam capacity has been filled with sediment. 
With regard to the fact that there are not enough sediment measure stations in this region, therefore 
different methods have been used. In this study, neural differential evolution (NDE) models are 
proposed to estimate suspended sediment concentration. NDE models are improved by combining two 
methods, neural networks and differential evolution. In the first part of the study, NDE model is trained 
using daily river flow and suspended sediment data belonging to Givi Chay River in northwest of Iran 
and various combinations of current daily stream flow and past daily stream flow, suspended sediment 
data are used as inputs to the NDE model so as to estimate current suspended sediment. In the second 
part of the study, the suspended sediment estimations provided by NDE model are compared with multi 
layer perceptron (MLP), radial basis function (RBF) and sediment rating curves (SRC) results. The Root 
mean squared error (RMSE) and the determination coefficient (R

2
) are used as comparison criteria. 

Obtained results demonstrate that NDE are in good agreement with the observed suspended sediment 
concentration; while they depict better results than RBF, MLP and SRC methods. For example, in Givi 
Chay River station, the determination coefficient (R

2
) is 0.9621 for NDE model, while it is 0.9114, 0.90 

and 0.8447 for RBF, MLP and SRC models, respectively. However, for the estimation of maximum 
sediment peak, the NDE was mostly found to be better than the RBF and the other techniques. The 
results also indicate that the NDE may provide better performance than the RBF, MLP and SRC in the 
estimation of the total sediment load (Re = -26%). 
 
Key words: Givi Chay River, neural differential evolution, multi-layer perceptron model, radial basis function, 
sediment rating curves. 

 
 
INTRODUCTION 
 
Sediment transport by rivers, from land to the seas and 
oceans are the most important ways of transferring 
materials in the earth and amounts to 20 to 52 billion tons 
of sediment transferred by rivers and deposits in resident 
waters of the world every year. Reducing fertile 

agricultural lands, quantitative and qualitative decline in 
pastures, increasing the amount of sediment in rivers and 
reducing useful life of dam’s tanks are among the 
consequences of soil erosion. Every year large amounts 
of soil transferred by various factors from basins causes 



 

 

 
 
 
 
agricultural (the decrease in output unit level), economic 
(reduction in annual income) and social problems 
(immigration). Givichay River is not an exception. This 
river is one of the Qezeuzan River branches and through 
this river it joins to the Sefidrud River. Sefidrud dam is 
one of the most sediment receiver dams in the world and 
now more than half of the dam capacity is filled with 
sediment. To solve this problem this dam is emptied and 
filled again for different times from 1980. Also the 
construction of a few diversion dams in Shahrood and 
Qezeluzan River has begun. With regard to the fact that 
the great volume of Sefidrud dam is field by Shahrood 
and Qezeluzan Rivers sediments and more than 40% of 
the useful amount of the lake has been reduced, 
sediment removal method is used in this dam. This way, 
in addition to the problems such as water level falls, mass 
sediments slide in to the lake’s front, erosion in the dam’s 
walls and the loss in a large number of fish and it also 
has sediment evacuation problems in the end of the dam. 
With regard to all cases the necessity of measuring 
suspended sediment load is obvious. 

The suspended sediment load of the stream is 
generally determined from direct measurement of the 
sediment load or from sediment transport equations. 
Although direct measurement is the most reliable 
method, it is very expensive and the sediment 
measurement cannot be done for as many streams as 
the measurement of water discharge. On the other hand, 
most of the sediment transport equations require detailed 
information on the flow and sediment characteristics 
(Ozturk et al., 2001). A number of attempts have been 
made to relate the amount of sediment transported by a 
river to flow conditions such as discharge, velocity and 
shear stress. However, none of the equations derived 
have received universal acceptance. Usually, either the 
weight or the concentration of sediment is related to the 
discharge. These two forms are often used 
interchangeably. Bean and Nassri (1988) examined load 
vs. discharge is misleading because the goodness of fit 
implied by this relationship is spurious. Instead they 
recommended that the regression link be established. 
The physically based models are based on the simplified 
partial differential equations of flow and sediment flux as 
well as on some unrealistic simplifying assumptions for 
flow and empirical relationships for erosive effects of 
rainfall and flow. Examples of such models are presented 
by Wicks and Bathurst (1996), Refsgaard (1997) and 
others. These highly sophisticated and complex models 
have components that correspond to physical processes. 
They are theoretically capable of accounting for the 
spatial variation of catchment properties as well as 
uneven distribution  of  precipitation  and  evapotranspira- 
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-tion. The model complexity should, however, be keyed to 
utilizable information about the catchment characteristic 
and density and frequency of the available input data. In 
particular, because the real spatial distribution of 
precipitation is not presently measurable for much of the 
world, process-oriented distributed models offer no 
practical advantage over lumped models and have many 
disadvantages (Guldal et al., 2001). 

Artificial neural networks (ANN) are gaining popularity, 
especially over the last few years, in terms of hydrological 
applications. Since the early nineties, it has been 
successfully used in hydrology related areas such as 
rainfall runoff modeling, stream flow forecasting, ground 
water modeling, water quality, water management policy, 
precipitation forecasting, hydrologic time series, and 
reservoir operations. Most hydrologic processes exhibit a 
high degree of temporal and spatial variability and are 
further plagued by issues of non linearity of physical 
processes, conflicting spatial and temporal scales, and 
uncertainty in parameter estimates. The time and effort 
required in developing and implementing such 
complicated models may not be justified. Simpler neural 
network forecasts may therefore seem attractive as an 
alternative tool. White conceptual models are of 
importance in understanding hydrologic processes. There 
are many practical situations such as stream flow 
forecasting where the main concern is with making 
accurate prediction of specific watershed location. In 
such a situation, a hydrologist may prefer not to expand 
the time and efforts required to develop and implement a 
conceptual model and instead implement a simpler 
theoretic model. Traditionally, feed forward networks, 
where nodes in one layer are only connected to nodes in 
the next layer, have been used for prediction and 
forecasting applications. In the past decades, great 
strides have been made in conceptualizing the runoff and 
sediment yield processes from watersheds through 
modeling. Models are classified based on their 
comprehensiveness in representing the physical 
processes involved. With increasing comprehensiveness, 
models are classified as black-box models, conceptual 
models and physically based distributed models. The last 
of the three can be considered the better choice in a 
rigorous theoretical sense. However, the significant data 
need of such models and their marginally superior results 
compared to the others make them an unfavorable 
choice in operational hydrology (Gautam et al., 2000). 
Lumped conceptual models are favored, as they can be 
based on a sound conceptual framework due to their 
limited data need. But they require lengthy calibration and 
parameterization processes. Amongst the soft computing 
tools vis. genetic algorithm (GA), simulated annealing 
(SA), multivariate adaptive, regression splines (MARS) 
and ANN, The ANN, are most frequently used for 
hydrological modeling. 

Jain  (2001)  used  a  single ANN approach to establish 
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daily sediment discharge relationship and found that the 
ANN model could perform better than the rating curve. 
Tayfur (2002) developed an ANN model for sheet 
sediment transport and indicated that the ANN could 
performs as well as, in some cases better than the 
physically based models. Cigizoglu et al. (2005) 
investigated the accuracy of a single ANN in estimation 
and forecasting of daily suspended sediment data. Kisi 
(2004) used different ANN techniques for daily 
suspended sediment concentration prediction and 
estimation, and indicated that multi-layer perceptron 
could show better performance than the generalized 
regression neural networks and radial basis function. Kisi 
(2005) developed an ANN model for modeling daily 
suspended sediment and compared the ANN results with 
those of the rating curve. Cigizoglu et al. (2006) 
developed some methods to improve ANN performance 
in daily suspended sediment estimation. Tayfur and 
Guldal (2006) used MLP for predicting total suspended 
sediment from precipitation. Bhattacharya et al. (2005) 
provided an algorithm for developing a data using ANN 
published flume and field data from several researchers 
have been employed to build the ANN model. The 
predictive accuracy of the model was found to be better 
than well known sediment transport models such as Van 
Rija and Engeland and Hansen. Raghuwanshi et al. 
(2006) proposed an ANN model to runoff and sediment 
yield modeling in Nagwan watershed in India. A five year 
data set was employed for training and a two year data 
set was considered for testing the model. Also, other 
studies conducted in this field were by Cheng et al. 
(2002), Chau et al.  (2005), Muttil and Chau (2006), Lin et 
al. (2006), Wu et al. (2009), Wang and Traore (2009) and 
Wang et al. (2009). 

In this study, the performance of NDE, RBF, MLP and 
SRC models are analyzed for daily suspended sediment 
concentration prediction in the Givi Chay River in the 
northwest of Iran. The main aim of this study is to 
investigate capability and accuracy of conventional and 
artificial intelligence methods in suspended sediment 
concentration prediction. The paper presents a 
comparative study on convenient classic and new 
generation artificial intelligence approaches in suspended 
sediment concentration modeling. Therefore, it will be of 
particular utility to researcher that require time-series of 
suspended sediment concentration and do not have the 
resources to support sampling or turbidity monitoring and 
are deciding between various models that predict the 
needed data from discharge values. 
 
 
CASE STUDY 
 
The Givi Chay River originates from southern Ardebil and 
flows in to the Ghezel Uzan River in Zanjan. The river is 
240  km   long,  and  the   major  landuse   is   forest   and 

 
 
 
 
agriculture in its drainage area. Including its tributaries, 
Givi Chay River drains about 827 km

2
. Elevations in the 

basin range from 2820 m above mean sea level at the 
headwaters of the Hero Chay River to 860 m above at 
the confluence with the Ghezel Uzan River in Firuzabad 
city. The climate of the basin is characterized as semiarid 
with average mean temperature of 6.7°C. Average 
precipitation in the study area is 444 mm and about 86 to 
94% of it occurs in April and May. So the highest amount 
of sediment belongs to these months and more than 50% 
of region affected by erosion. In addition, this region is 
also affected by human factors such as population 
growth, rapid economic development, deforestation, 
intensified agriculture, construction of dam’s and‌ mining. 
For example, Forest coverage in 1965 was equivalent to 
38% but in 2009 decreases to 21%. All these factors 
have increased sediments production. From 1992 both 
discharge and sediment parameters are increasing but 
the suspended sediment load has increased more 
quickly. Studies showed that there are nonlinear relations 
between discharge and sediment parameters. The 
reason of nonlinear relations is the effect of other factors 
like geology that can decrease or increase sediment 
production. Discharge and sediment parameters used as 
the entry of all artificial neural network models were used 
in this study. These two parameters can affect 
suspended sediment production. Melesse et al. (2011) 
realized that if the data has a lower distribution or be near 
normal distribution it will have better results. For this 
purpose to prevent the influence of discharge and 
sediment in dry period only wet period discharge and 
sediment was used. Research conducted by the 
researcher shows that rainfall parameter was less 
important between the input data. The main reason for 
this issue is the average estimated rainfall because of the 
vast basin and no rain measure stations so it has not 
enough efficiency. Therefore, in this investigation 
sediment and discharge parameters were used. Despite 
this, forms of entering data to the above models are 
different and different entrance structures will be test in 
them. 

The main structure of the entrance data is Qt , Qt−1, St−1. 
Where Q is discharge, S and t are sediment and 
expected day respectively. The flow-sediment time series 
data of Givi Chay station at northwest of Iran 

(latitude37°, 41/, 33", longitude48°, 32/, 26") operated by 
the Ardebil regional water corporation were used in the 
study. Daily time series of river flow and sediment 
concentration for this station was downloaded from the 
web server of the Ardebil regional water corporation 
(www.arrw.ir). 

In Givi Chay station for training NDE, ‌RBF, ‌MLP and 
SRC models wet period data were used from January to 
June 2009, the rest 180 days which were used for testing 
the model belongs to the January to June 2010. The 
statistical parameters of stream flow and sediment
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Table 1. The daily statistical parameters of dataset for the Givi Chay station. 
 

Dataset Data type 𝒙  𝑺𝒙 𝐂𝑺𝒙 𝒙𝒎𝒂𝒙 𝒙𝒎𝒊𝒏 

Training 
Flow 79 94 3.62 1029 7.6 

Sediment 387 815 5.23 7650 9 

       

Testing 
Flow 52 79 2.41 426 5.9 

Sediment 412 951 6.08 7300 8 

 
 
 

 
 

Figure 1. The location of Givichay station on the Givichay catchment. 

 
 
 

concentration data of Givi Chay station are shown in 
Table 1. These statistics point out to the complexity of 
modeling suspended sediment behavior. 

Figure 1 shows the drainage basins and sediment 
monitoring stations used in this study. 
 
 

METHODS 
 

Neural differential evolution (NDE) 
 

The neural differential evolution algorithm  can  be  classified  as  a 

floating point evolutionary optimization algorithm (Storn and Price, 
1995, 1997; Lampinen, 2001). Generally, the function to be 
optimized, f, is of the form: 

 
   𝑓 𝑉 : 𝑅𝐷 → 𝑅,                                                                 (1)                   

 
Here, R denotes the real numbers, and D is the number of 
parameters of the objective function, f (V) by optimizing the values 
of its parameters. 

 
   𝑉 =  𝑉1,…,𝑉𝐷 , 𝑉 ∈ 𝑅𝐷 ,                                                   (2) 
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Where V denotes a vector composed of D objective function 
parameters. In the present study, objective function f (V) denotes 
the mean square errors between the observed and calculated 

sediment values and 𝑣𝑖 is the parameter of the fuzzy subsets 
(membership functions). Usually, the parameters of the objective 
function are also subject to lower and upper boundary constraints, 

𝑣𝑖
(𝐿)

 and𝑣𝑖
(𝑈)

, respectively: 

 

𝑣𝑖
(𝐿)

≤ 𝑣𝑖 ≤ 𝑣𝑖
(𝑈)

   𝑖 = 1, … , 𝐷,                                           (3) 

 

Where 𝑣𝑖  is the fuzzy subsets parameter and 𝑣𝑖
(𝐿)

and 𝑣𝑖
(𝑈)

 are lower 

and upper boundaries respectively. 
As with all evolutionary optimization algorithms, NDE operates on 

a population, 𝑃𝐺  of candidate solutions, not just a single solution. 
These candidate solutions are the individuals of the population. In 
particular, NDE maintains a population, and G is the generation to 
which the population belongs. 
 

𝑃𝐺 =  𝑉1,𝐺,…,𝑉𝑁𝑃,𝐺    𝐺 = 0,… , 𝐺𝑚𝑎𝑥 ,                                (4) 

 

Additionally, each vector contains D real parameters (chromosomes 
of individuals): 
 

𝑉𝑖𝐺 =  𝑣1,𝑖,𝐺,…,𝑣𝐷𝑖𝐺   𝑖 = 1, … ,𝑁𝑃   𝐺 = 0,… , 𝐺𝑚𝑎𝑥 ,     (5) 

 

To establish a starting point for optimum seeking, the population 
must be initialized. Often there is no knowledge available about the 
location of a global optimum other than the limits of the problem 

variables. Then a natural way to seed the initial population 𝑃𝐺=0  is 
with random values chosen from within the given boundaries: 
 

𝑉𝑗 ,𝑖,𝑜 = 𝑟𝑎𝑛𝑑𝑗  0,1  𝑣𝑗
(𝑈)

− 𝑣𝑗
(𝐿)
 + 𝑣𝑗

(𝐿)
  𝑖 = 1,… ,𝑁𝑃, 𝑗 =

1, … ,𝐷,                         (6)  
 

Where 𝑟𝑎𝑛𝑑𝑗  0,1  denotes a uniformly distributed random value 

within the range: [0.0, 1.0] that is chosen for each new j. 
NDE self-referential population reproduction scheme is different 

from other evolutionary algorithms. From the 1st generation 

onward, vectors in the current population 𝑃𝐺  are randomly sampled 
and combined to create candidate vectors for the subsequent 
generation, 𝑃𝐺+1 = 𝑈𝑖,𝐺+1 = 𝑢𝑗 ,𝑖,𝐺+1, is generated as follows: 

 

𝑢𝑗 ,𝑖,𝐺+1 =

 
 
 

 
 
  

𝑣
𝑗 ,𝑟3,𝐺+𝐹 𝑣𝑗 ,𝑟1,𝐺−𝑣𝑗 ,𝑟2,𝐺 𝑖𝑓  𝑣𝑗

(𝐿)
<𝑦𝑗 ,𝑖,𝐺+1<𝑣𝑗

(𝑈)

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑟𝑎𝑛𝑑𝑗  0,1 (𝑣𝑗
 𝑈 

− 𝑣𝑗
(𝐿)  𝑖𝑓 𝑟𝑎𝑛𝑑𝑗  0,1 ≤ 𝐶𝑅 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑣𝑗 ,𝑖,𝐺  
 
 

 
 

, (7)   

 

The randomly chosen indices, 𝑟1, 𝑟2and 𝑟3are different from each 
other and also different from the running index, i. New random, 
integer values for, 𝑟1, 𝑟2and 𝑟3are chosen for each value of the index 
I, that is for each individual. 

F and CR are NDE control parameters. Like NP, both values 
remain constant during the search process. F is a real-valued factor 
in the range (0.0, 1.0] that scales the differential variations. The 
upper limit on F has been empirically determined. 

CR is a real- valued crossover factor in the range [0.0, 1.0] that 
controls the probability that a trial vector parameter will come from 
the randomly chosen, mutated vector, 𝑢𝑗 ,𝑖,𝐺+1instead of from the 

current vector, 𝑣𝑗 ,𝑖,𝐺. Generally, both F and CR affect the 

convergence velocity and robustness of the search process. 
Suitable values for F, CR, and NP can usually be found by trial-and-
error after a few tests using different values. Practical advice on 
how to select control parameters NP, F and CR can be  found  from 

 
 
 
 
research work carried out by Lampinen and Zelinka (2000). 

NDE selection scheme also differs from other evolutionary 
algorithms. The population for the next generation,𝑃𝐺+1, is selected 
from the current population, 𝑃𝐺 , and the child population, according 
to the following rule: 
 

𝑉𝑖,𝐺+1 =  
𝑈𝑖,𝐺+1  𝑖𝑓   𝑓(𝑈𝑖,𝐺+1)≤𝑓(𝑉𝑖,𝐺)

𝑉𝑖,𝐺    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 ,                                          (8) 

 

Thus, each individual of the temporary population is compared with 
its counterpart in the current population. Assuming that the 
objective function is to be minimized, the vector with the lower 
objective function value wins a place in the next generations' 
population. As a result, all the individuals of the next generation are 
as good as or better than their counterparts in the current 
generation. 
 
 

Multi - layer perceptrons (MLP) 
 

An MLP distinguishes itself by the presence of one or more hidden 
layers, with computation nodes called hidden neurons, whose 
function is to intervene between the external inputs and the network 
output in a useful manner. By adding hidden layer(s), the network is 
enabled to extract higher- order statistic. In a rather loose sense, 
the network acquires a global perspective despite its local 
connectivity due to the extra set of synaptic connections and the 
extra dimension of NN interconnections. The MLP can have more 
than one hidden layer; however, theoretical works have shown that 
a single hidden layer is sufficient for an ANN to approximate any 
complex nonlinear function (Cybenco, 1989; Hornik et al., 1989). 
Therefore, in this study, a one- hidden- layer MLP is used. 
Throughout all MLP simulations, the adaptive learning rates were 
used to speed up training. The numbers of hidden layer neurons 
were found using simple trial- and- error method in all applications. 
The MLP were trained using the Levenberg- Marquardt technique 
as this technique is more powerful than the conventional gradient 
descent techniques (Hagan and Menhaj, 1994; El-baker, 2003; 
Cigizoglu and Kisi, 2006). 
 
 

The Levenberg- Marquardt algorithm 
 

While back – propagation with gradient descent technique is a 
steepest descent algorithm, the Levenberg- Marquardt algorithm is 
an approximation to Newton's method (Marquardt, 1963). If a 
function 𝑉(𝑥) is to be minimized with respect to the parameter 
vector x, then Newton’s method would be: 
 

∆𝑥 = − ∇2𝑉 𝑥  −1∇𝑉 𝑥 ,                                                                 (9)       
 

Where ∇2𝑉 𝑥   is the Hessian matrix and ∇𝑉(𝑥) is the gradient. If 
v(x) reads: 
 

𝑉 𝑥 =  𝑒𝑖
2 𝑥 ,                                                                                 (10)  

 

Then it can be shown that: 
 

∇𝑉 𝑥 = 𝐽𝑇 𝑥 𝑒 𝑥 ,                                                                          (11) 
 

∇2𝑉 𝑥 = 𝐽𝑇 𝑥 𝐽 𝑥 + 𝑆 𝑥 ,                                                           (12) 
 

Where J(x) is the Jacobian matrix and, 
 

𝑆 𝑥 =  𝑒𝑖∇
2𝑒𝑖 𝑥 ,                                                                        (13) 

 
For  the  Gauss-  Newton  method  it  is  assumed  that S(x) = 0 and 



 

 

 
 
 
 
Equation (11) become: 
 

∆𝑥 =  𝐽𝑇 𝑥 𝑗 𝑥  −1𝐽𝑇 𝑥 𝑒 𝑥 ,                                            (14) 
 

The Levenberg- Marquardt modification to the Gauss- Newton 
method is: 
 
∆𝑥 =  𝐽𝑇 𝑥 𝐽 𝑥 + 𝑀𝐼 −1𝐽𝑇 𝑥 𝑒 𝑥 ,                                 (15) 
 

The parameter M is multiplied by some factor (B) whenever a step 
would result in an increased V(x). When a step reduces V(x), M is 
divided by B. when the scalar M is very large the Levenberg- 
Marqurdt algorithm approximates the steepest descent method. 
However, when M is small, it is the same as the Gauss- Newton 
method. Since the Gauss- Newton method converges faster and 
more accurately towards an error minimum, the goal is to shift 
towards the Gauss-Newton method as quickly as possible. The 
value of M is decreased after each step unless the change in error 
is positive; that is the error increases. For the neural network-
mapping problem, the terms in the Jacobian matrix can be 
computed by a simple modification to the back- propagation 
algorithm (Hagan and Menhaj, 1994). 
 
 

The radial basis function type neural networks (RBF) 
 

The RBF network model is motivated by the locally tuned response 
observed in biological neurons. Neurons with a locally tuned 
response characteristic can be found in several parts of the nervous 
system, for example, cells in the visual cortex sensitive to bars 
oriented in a certain direction or other visual features within a small 
region of the visual field (Poggio and Girosi, 1990). These locally 
tuned neurons show response characteristic bounded to a small 
range of the input space. The theoretical basis of the RBF approach 
lies in the field of interpolation of multivariate functions. The 

objective of interpolating a set of tuples (𝑥𝑠 , 𝑦𝑠)with 𝑥𝑠 ∈ 𝑅𝑑  is to 

find a function 𝐹: 𝑅𝑑 → 𝑅 with 𝐹 𝑥𝑠 = 𝑦𝑠 for all𝑠 = 1,… , 𝑁. In the 
RBF approach, the interpolating function F is a linear combination 
of basis functions: 
 

𝐹 𝑥 =   𝑤𝑠Φ  𝑥 − 𝑥𝑠  + 𝑝(𝑥)

𝑁

𝑠=1

,                                 (16) 

 

Where  .   denotes Euclidean norm, 𝑤1,…, 𝑤𝑁 are real numbers,  a 

real valued function, and 𝑝 ∈  .𝑑𝑛   a polynomial of degree at most n 
(fixed in advance) in d variables. The interpolation problem is to 
determine the real coefficients 𝑤1,…, 𝑤𝑁 and the polynomial term 

𝑝 =  𝑎1𝑝𝑗
𝐷
𝑙=1  where𝑝1,…,𝑝𝐷  , is the standard basis of  .𝑑𝑛  and 

𝑎1,…,𝑎𝐷  are real coefficients. The interpolation conditions are: 
 

𝐹 𝑥𝑠 = 𝑦𝑠 , 𝑠 = 1, … ,𝑁,                                                       (17) 
 

And 
 

 𝑤𝑠𝑝𝑗  𝑥
𝑠 = 0, 𝑗 = 1,… ,𝐷,                                              (18)

𝑁

𝑠=1

 

 

The function is called a radial basis function if the interpolation 

problem has a unique solution for any choice of data point. In some 
cases the polynomial term in Equation (18) can be omitted, and by 
combining it with Equation (17), one obtains: 
 

Φ𝑤 = 𝑦,                                                                                    (19) 
 

Where  w  = (𝑤1,…,𝑤𝑁), 𝑦 =  𝑦1, … , 𝑦𝑁 ,   and      is   a 𝑁 × 𝑁matrix 
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defined by: 
 

Φ = (Φ  𝑥𝑘 − 𝑥𝑠  ),                                                                       (20) 
 

Provided the inverse of exists, the solution w of the interpolation 

problem can be explicitly calculated and has the form:  𝑤 = Φ
−1
𝑦. 

The most popular and widely used radial basis function is the 
Guassian basis function: 
 

Φ( 𝑥 − 𝑐 = 𝑒
− 

 𝑥−𝑐 
2𝜎2  

,                                                                  (21) 
 

With peak at centre 𝑐 = 𝑅𝑑and deceasing as the distance from the 
centre increases.  

The solution of the exact interpolating RBF mapping passes 

through every data point ((𝑥𝑠 , 𝑦𝑠). In the presence of noise, the 
exact solution of the interpolation problem is typically a function 
oscillating between the given data points. An additional problem 
with the exact interpolation procedure is that the number of basis 
functions is equal to the number of data points and so calculating 

the inverse of the 𝑁 × 𝑁 matrix becomes intractable in practice. 

The interpretation of the RBF method as an artificial neural network 
consists of three layers: a layer of input neurons feeding the feature 
vectors in to the network; a hidden layer of RBF neurons, 
calculating the outcome of the basis functions and a layer of output 
neurons, calculating a linear combination of the basis function 
(Taurino et al., 2003). The RBF method does not perform the 
parameters learning as in the MLP networks, but just performs 
linear adjustment of the weights for the radial basis. This 
characteristic of the RBF method gives the advantage of very fast 
convergence without local minima, since its error function is always 
convex (Poggio and Girosi, 1990; Lee and Change, 2003). 
 
 

Sediment rating curves (SRC) 
 

A rating curve consists of a graph or equation, relating sediment 
discharge or concentration to stream discharge, which can be used 
to estimate sediment loads from the stream flow record. The 
sediment rating curve generally represents a functional relationship 
of the form: 
 

𝑠 = 𝑎𝑄𝑏 ,                                                                                              (22) 
 

In which Q is stream discharge and S is either suspended sediment 
load (Sandy, 1990). Values of a and b for a particular stream are 
determined from data via a linear regression between (logs) and 
(logQ). After log- transformation to the arithmetic domain and 
application of the Ferguson (1986) correction factor, the sediment 
load occurring at a specific discharge can be estimated using the 
following expression: 
 

𝑆 = 𝐶𝐹. 𝑎. 𝑄𝑏 ,                                                                                    (23) 
 

Where CF is the log- transformation bias correction factor. 
Specifically, 
 

𝐶𝐹 = 𝑒2.65𝜎2,   ,                                                                                  (24) 
 

Where e is the exponential function and 𝜎 is the standard error of 
the regression equation.  
 
 

APPLICATION AND RESULTS 
 

Model performance 
 

Some conventional evaluations such as correlation
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Table 2. The final architectures and RMSE and R2 statistics of the NDE model. 
 

NDE model inputs NDE structure RMSE (mg/l) R
2
 

𝑄𝑟𝑡  NDE (1,3,1) 187 0.9621 

𝑄𝑟𝑡  𝑎𝑛𝑑 𝑄𝑟𝑡−1 NDE (2,2,1) 208 0.9267 

𝑄𝑟𝑡  𝑎𝑛𝑑 𝑆𝑟𝑡−1 NDE (2,2,1 219 0.8439 

𝑄𝑟𝑡 , 𝑄𝑟𝑡−1  𝑎𝑛𝑑 𝑆𝑟𝑡−1 NDE (3,2,1) 228 0.8226 

 
 
 
coefficient (𝜌), coefficient of determination R

2
, sum of 

square error, and root mean square error (RMSE) were 
critically reviewed by Legates and McCabe (1999). They 
indicated that the correlation coefficient is unsuitable for 
model evaluation. Legates and McCabe proposed that a 
perfect evaluation of model performance should contain 
at least one good-of-fit or relative error measure for 
example R

2
 and at least one absolute error measure for 

example RMSE. Nash and Sutcliffe (1970) described R
2
, 

which has e range of minus infinity to 1, with higher 
values describing better agreement. In this paper, the 

performance of the models was evaluated utilizing 𝑅2 and 
RMSE. In brief, the models predictions are optimum if 
𝑅2  and RMSE are found to be close to 1 and 0, 

respectively. The 𝑅2 parameter clarifies relation between 
observed and predicted values and RMSE evaluates the 
residual between observed and predicted suspended 
sediment concentration. The RMSE are defined as 
follows: 
 

𝑅𝑀𝑆𝐸 =  
1

𝑁
  𝑆𝑡 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑆𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  

2
𝑁

𝑖=1

,          (25) 

 
 
Suspended sediment concentration estimation using 
neural differential evolution (NDE) 
 
The input combinations used in this application to 
estimate suspended sediment values for Givi Chay River 
are 𝑖 𝑄𝑟𝑡 ,,  𝑖𝑖 𝑄𝑟𝑡 , 𝑄𝑟𝑡−1 ,  𝑖𝑖𝑖 𝑄𝑟𝑡  𝑎𝑛𝑑 𝑆𝑟𝑡−1; 𝑎𝑛𝑑  𝑖𝑣 𝑄𝑟𝑡 , 𝑄𝑟𝑡−1𝑎𝑛𝑑 𝑆𝑟𝑡−1, 

where 𝑄𝑟𝑡  and 𝑆𝑟𝑡  represent, respectively, the stream 
flow and sediment concentration at day t. 

A program code was written in MATLAB language for 
the NDE model simulations. Different NDE architectures 
were tried using this code and appropriate model 
structures were determined for each input combination. 
Then, the NDE models were tested and the results were 
compared by mean of RMSE and R

2
 statistics. The 

RMSE and R
2
 statistics of each NDE model in test period 

are given in Table 2. The final architectures of the NDE 
model found after many trials are also provided in this 
table. For the last input combination, the NDE (3.2.1) has 
3, 2 and 1 nodes for the input, hidden and output layers, 
respectively. According to the results, it can be observe 

that by first combined entry NDE model has lowest 
RMSE (187) and the highest R

2
 (0.9621) values. 

 
 
Comparisons of different models versus NDE 
 
In the second part of the study, in order to assess the 
ability of NDE model in relative to different ANN 
computing techniques, RBF and MLP models are 
developed using the best input combination selected in 
the first application. The other model considered in the 
study for comparison is SRC. 

Pre-processing of the data is usually required before 
presenting the data samples to the neural network 
models when the neurons have a transfer function with 
bounded range. The reasons for scaling of the data 
samples can be described as to initially equalize the 
importance of variables and to improve interpretability of 
network weights (Masters, 1993; Goh, 1995). In this 
study, the data are scaled in the range of 0.01 and 0.99 
by using the following equation: 

 

𝑥𝑠 =
0.99(𝑥𝑖 − 𝑥𝑚𝑖𝑛 )

(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛 )
+ 0.01,                                  (26) 

 
In Equation (26), 𝑥𝑠 is the scaled input value, 𝑥𝑖  is the 

actual unscaled observed input value, 𝑥𝑚𝑖𝑛  and 𝑥𝑚𝑎𝑥  refer 
to the minimum and maximum values of the data, 
respectively. 

Two different ANN models, namely RBF and MLP are 
developed for estimating sediment concentration. For this 
purpose, two different program codes, including neural 
networks toolbox, were written in MATLAB language for 
the RBF and MLP simulations. Different ANN 
architectures were tried using these codes and the 
appropriate model structures were determined. Different 
number of hidden layer neurons and spread parameters 
was tried for the RBF model in the study. The number of 
unit for the single hidden layer and the spread parameter 
value providing the best testing performance of the RBF 
was found to be 17 and 0.39, respectively. The optimum 
hidden nodes numbers of the MLP was found to be four 
after employing trial and error method. 

The SRC techniques were applied to the training data 
set. The following formulas were found to offer the best 
statistical measures for fit of training dataset,
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Table 3. The testing performance of the NDE, MLP, RBF and SRC. 
 

Models NDE RBF MLP SRC 

RMSE (mg/L) 187 318 330 404 
R

2
 0.9621 0.9114 0.90003 0.8447 

 
 
 

respectively: 
 

𝑆𝑡 = 1.327 × (4.268𝑄𝑡
0.845 ),                 (27) 

 

In which Q is stream discharge and S is suspended 
sediment concentration. 

The NDE model is compared with the MLP, RBF and 
SRC models in Table 3. The table indicates that the NDE 
whose input is the current discharge has the smallest 
RMSE (187 mg/L) and highest R

2
 (0.9621). It is obvious 

from Table 3 that the NDE model performs better than 
the MLP, RBF and SRC models. 

A comparison of the observed and estimated 
suspended sediment concentration in the test period is 
shown in Figures 2 and 3, in hydrograph and scatter plot 
form. It can be seen from the hydrographs that the NDE 
estimates closely follow the observed values. 

This is also confirmed by the scatter plots. It can be 
clearly seen from the scatter plots that the NDE has a 
higher R

2
 value (0.9621) than the MLP, RBF and SRC 

models. 
The sediment peak- estimates of the models are 

compared in Table 4. In general, the NDE model gave 
better estimates of peak sediment concentration values 
than the other models. The NDE, RBF, MLP and SRC 
models predicted the maximum peak as 6549, 5982, 
5732 and 5329 with underestimations of 10, 18, 21 and 
27%, respectively. As can be seen from Table 4 the SRC 
give poor estimate for the other peak, too. 

The estimation of total sediment load obtained from the 
estimated suspended sediment concentration values is 
also considered for comparison due to its importance in 
reservoir management. The total estimated sediment 
amounts in test period are given in Table 5. The 
estimates of the NDE, RBF, MLP and SRC are 26, 35, 52 
and 66% lower than the observed value (76842 ton), 
respectively. 

To evaluate the robustness of the NDE, MLP, RBF and 
SRC models using Akaike information criterion (AIC) 
defined by Akaike (1974) is utilized: 
 

𝐴𝐼𝐶 = 𝑁 × ln 𝑅𝑀𝑆𝐸 + 2𝑘,                   (28) 
 

Where N is the number of samples in the testing set and 
k is the number of model parameters or weights. 
Equation (28) indicates that the values of AIC increases 
as the number of model parameters (k) increases, but if 
the RMSE of the model is much lower than that of 
another models, its AIC may be lower despite its 
relatively layer network size. The AIC values of the 

models for the test period are given in Table 6. Table 6 
shows that NDE has the lowest AIC values for the Givi 
Chay River. 

Despite the number of model weights being higher than 
SRC, SRC estimates gave worse AIC values. The AIC 
values of NDE model was slightly lower than the values 
of the other models. 

Overall, the NDE models which combine the two 
methods, ANN and DE, seem to perform better than the 
RBF, MLP and SRC models in establishing a rating 
relationship between suspended sediment and flow. Such 
problems frequently arise in a non linear manner. 
However, the SRC technique assumes a linear 
relationship between the log of sediment and the log of 
stream flow values since the SRC is obtained by 
establishing linear regression between the logarithm 
transformation of the sediment and flow data. This model 
requires that the variable be normally distributed. It is 
clear from Table 1 that the stream flow and sediment 
data have quite a scattered distribution. In view of the 
complexity of the problem, therefore, the SRC technique 
is not adequate. The main advantages of using ANN 
models are their flexibility and ability to model nonlinear 
relationships. However, the ANN models use back 
propagation methodology for adjusting the membership 
function parameters and weights, respectively (Jang, 
1993). In back propagation methodology, it is very easy 
for the training process to get trapped in a local minimum 
(Kumar et al., 2002; Sudheer et al., 2003). The 
evolutionary algorithms (EA) belong to a class of search 
methods with remarkable balance between exploitation of 
the best solutions and exploration of the search space. 
They combine elements of stochastic and directed search 
and, therefore, are more robust than existing direct 
search methods, providing the global optimum without 
becoming trapped in local optima (Mantoglu et al., 2004; 
Karterakis et al., 2007). The NDE proposed in this study 
uses DE. Unlike conventional evolutionary 
algorithmswhich depend on a predefined probability 
distribution function for the mutation process, DE uses 
the differences of randomly sampled pairs of objective 
vectors for its mutation process. Consequently, the object 
vectors differences will pass the objective functions 
topographical    information    toward   the     optimization 
process, and therefore provide more efficient global 
optimization capability (Storn et al., 1995, 1997). 
 
 

Conclusions 
 

In current study, suspended sediment concentration were
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Figure 2. A comparison of the observed and estimated suspended sediment concentration by the NDE, 
MLP, RBF and SRC models for the test period. 

 
 
 
estimated by an neural differential evolution (NDE) and 
two different neural network approach using different 
combination of hydrological variables (stream flow) and 
antecedent suspended sediment concentrations. In the 
first    part   of   the   study,  several   input   combinations 

including daily stream flow and suspended sediment 
concentration of previous days are used as inputs to the 
NDE model to estimate current suspended sediment 
concentration. It is observed that in NDE model the 
structure with one entry layer, 3 hidden layers and 1
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Figure 3. Scatter plots of observed and predicted suspended sediment by the NDE, MLP, RBF and SRC models 
for the test period. 

 
 
 

Table 4. The comparison of the NDE, MLP, RBF and SRC peak-estimation for the test phase. 
 

Observed sediment peaks 
(>3000  mg/L) 

NDE RBF MLP SRC  
Relative error (%) 

NDE RBF MLP SRC 

7300 6549 5982 5732 5329  -10 -18 -21 -27 
7036 6132 5153 4923 4617  -12 -26 -30 -38 
4743 5937 3867 3927 3364  25 -17 -18 -29 
3970 3421 3245 3128 2843  -5 -18 -21 -28 
3806 4576 1945 1837 1721  -20 48 51 54 

 
 
 

Table 5. Estimated total sediment amounts in test period. 
 

Parameters Observed NDE RBF MLP SRC 

Estimate (ton) 76842 97313 104243 117539 128042 

Relative error (%)  -26 -35 -52 -66 
 
 
 

output layer has the smallest RMSE (187 mg/l) and the 
highest R

2
 (0.9621). In the second part of the study, the 

accuracy of the NDE model was compared with two 
different ANN computing techniques, MLP and RBF for 

the best input combination obtained in the first part of the 
study. The SRC models were also considered for the 
comparison. The comparison results reveal that the NDE 
model performs better than the ANN and SRC models in
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Table 6. AIC values of NDE, RBF, MLP and SRC. 
 

Model RMSE (mg/L) k AIC 

NDE 187 7 955 

RBF 318 11 1059 

MLP 330 6 1055 

SRC 404 3 1086 
 
 
 

daily suspended sediment concentration estimation. The 
ANN models also provided better estimates than the 
SRC. After estimating the sediment load and comparing 
the results from each of the models, quantities that are 
higher than 3000 mg/L compared with each other. 
Relative error (RE) had been used for validating the 
accuracy of models and it is observed that the NDE 
model had better efficiency in estimating sediment load. 
For example, this model estimated the 7300 mg/L 
sediment amount equal to 6549 mg with relative error -
10. This is when the above quantities for the RBF, MLP 
and SRC models are estimated as -18, -21 and -27. 
Finally in order to determine the RMSE parameter ability 
the Akaike information system were used in validating 
each of the models. Investigations showed that the NDE 
model with 955 Akaike value had the best capability. 

Among the ANNs methods, in general, the RBF model 
was found to be slightly better than those of the MLP 
method in setting up suspended sediment concentration- 
hydrological relationship. In general, the NDE model can 
be considered to be relatively superior to the ANN and 
SRC models. 

The superiority of ANNs over conventional methods in 
the simulation of sediment load series is evident because 
the ANNs are able to capture the nonlinear dynamics and 
generalize the structure of the whole data set. They are a 
flexible alternative and standard ANN software can be 
used to construct intricate multi-purpose nonlinear 
solutions. The method has no limitations in the form of 
fixed assumptions or formal constraints. The neural 
network has a distributed processing structure. 

The employment of ANN algorithms other than NDE, 
RBF and MLP should also be investigated in future 
studies in order to obtain a better fit to the observed data 
and to remove the negative value production. On the 
other hand, further information about the hydrological 
data could also enrich the input data sets of ANNs. 

The prediction of suspended sediment loads carries 
significance for water resource projects like dam reservoir 
constructions. Therefore, the results of this study, which 
show ANNs are an important tool in suspended sediment 
load simulation, could be considered as progress for the 
solution of this problems. 
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