نویسندگان | Zeinab Ahmadnezhad- Abdorreza Vaezihir- Christoph Schuth-Gholamreza Zarrini |
---|---|
نشریه | Chemosphere |
نوع مقاله | Full Paper |
تاریخ انتشار | 2020-10-01 |
رتبه نشریه | ISI |
نوع نشریه | چاپی |
کشور محل چاپ | بریتانیا |
چکیده مقاله
Adsorption and bioremediation are effective processes for remediation of benzene, toluene, and ethylbenzene (BTE) through Permeable Reactive Barriers (PRBs). A few researches focus on adsorption of natural zeolite because of its hydrophilic property. On the other hand, PRBs need to be replaced by fresh materials after a while when all the possible absorption positions were filled up. We tried to find a way to increase the efficiency of PRB, elongation of its replacement period and of course decreasing the cost of remediation. Equipping of PRB with microbial degradation system was the idea. The present study describes the performances of natural Clinoptilolite-Heulandite Zeolite (CH-Z) and three new strains (safe and low-cost media) utilized in a PRB for removing BTE from contaminated shallow groundwater. First, batch tests were conducted to recognize the optimal removal conditions for utilization of C-HZ and strains to remediate BTE compounds. Then, an aerobic PRB system filled with a natural zeolite was designed and investigated in a continuous flow sand-tank model to assess the efficiency of combined PRBs (zeolite þ biosparging), for BTE-contaminated groundwater. Batch experiments showed that the BTE removal of zeolite was 89%, as well as, a consortium of three bacterial strains, Variovorax sp. OT16, Pseudomonas balearica OT17, and Ornithinibacillus sp. OT18 efficiently removed the BTE mixture. The process of BTE removal in the PRB under continuous-flow condition was divided into three phases: Phase I, in which the barrier was made of the only zeolite, and in Phases II and III the reactor was fed by microorganisms. This experiment revealed that in Phases I, the concentrations of BTE decrease (92%) due to zeolite adsorption. In Phase II and III, the degradation process became the principal removal mechanism (68% and 81%, respectively). Consequently, this research showed high ability of C-HZ in the BTE treatment, and a combination of Natural Zeolite, with a biological degradation system (CH-Z ePRB)