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Abstract

In the present study, the grafting of acrylamide (AAm) onto the carboxymethyl cellulose (CMC) backbone was performed using
the free radical polymerization method to eliminate methylene blue (MB) from water media. Biochar (BC) was produced from
tea waste by pyrolysis and doped with Fe304 nanoparticles. Magnetic biochar (MTWBC) nanoparticles were incorporated
in CMC-g-P(AAm) hydrogel (HG) for the first time to enhance its adsorption properties. FTIR, XRD, TGA, VSM, BET, and
SEM-EDS techniques characterized synthesized nanoparticles and adsorbents. The BET surface area for HG, HG/BC, and
HG/MTWBC was obtained at 1.74, 2.011, and 3.58 m2/g, respectively, demonstrating how BC and MTWBC nanoparticles
can enhance the surface area of HG. The magnetic saturation of MTWBC and HG/MTWBC was 15.45 and 1.85 emu/g,
respectively. The maximum removal performance of HG, HG/BC, and HG/MTWBC nanocomposite hydrogels under optimum
conditions of pH =28, adsorbent dose 1.5 g/L, contact time 70 min, initial concentration 10 mg/L, and temperature 25 °C was
obtained 83.22, 92.57, and 94.27%, respectively showing the effectiveness of BC and MTWBC nanoparticles in promoting
removal performance of HG. Kinetic and equilibrium data followed Langmuir and pseudo-second-order models, respectively.
The monolayer adsorption capacity for HG, HG/BC, and HG/MTWBC nanocomposite hydrogels was computed to be 12.3,
14.2, and 20.79 mg/g, respectively. The thermodynamic study showed that the MB elimination process is spontaneous and
exothermic. The adsorption mechanisms of MB onto HG/MTWBC include hydrogen bonding, electrostatic interaction, and -x
interactions. Finally, it can be inferred that HG/MTWBC nanocomposite hydrogel can be applied as a novel, easy-separable,
and efficient adsorbent to decontaminate MB from water media.
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1 Introduction

One of the side effects of industrial development is the
reduction of the quality of water sources. Yearly, industries'
wastewater releases many pollutants into water bodies,
affecting human health and organisms. Industries wastewa-
ter contains high levels of dyes, heavy metals, pesticides,
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and organic materials that enter the human body through the
food chain. Methylene blue (MB) is an organic dye with a
cationic nature widely applied in the leather, printing, paper,
and textile industries. The excess amount of this dye in water
resources leads to potentially harmful effects on human
health, such as cyanosis, enhanced heartbeat rate, shock,
tissue necrosis, vomiting, and jaundice, amongst others [1].

Researchers have always been looking for the best and
most economical methods to remove pollutants from water
sources, which have led to the development of the adsorp-
tion process, membrane filtration [2], oxidation [3], pho-
tocatalytic degradation [4], and coagulation [5] methods.
Adsorption as an economical method without secondary pol-
lution can be applied to solve this problem. Low cost, ease of
operation, and simplicity of design are the main advantages
of this method in comparison to other proposed ones [6].
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Hydrogels are three-dimensional, hydrophilic, and porous
polymeric materials with wide applications in wastewater
treatment, drug delivery, tissue engineering, and wound
dressing. They can be applied as an efficient adsorbent with
tunable properties in wastewater treatment applications. Due
to low toxicity, low cost, and biodegradability, biopolymers
such as Chitin [7], chitosan (CS) [8], carboxymethyl cel-
lulose (CMC) [9], alginate (Alg) [10], and gelatin (GEL)
[11] can be used to synthesis of hydrogels. For example,
Algethami et al. extracted chitin from crab shells to synthe-
size chitin@metakaolin composite to decontaminate Cr(VI)
ions. The single-layer adsorption capacity of the composite
was found to be 278.88 mg/g [7]. Alqarni et al. chitosan-
Alginate @Fe/Mn mixed oxide nanocomposite to remove
Cr(VI) ions. They showed that electrostatic interaction is
the main mechanism of eliminating Cr(VI) ions [12]. Billah
et al. prepared chitosan/Zn doped hydroxyapatite to remove
methyl orange (MO) from water media. Also, they inves-
tigated the antibacterial activity of synthesized adsorbents
towards Gram-positive and Gram-negative bacteria [13].

Also, abundant functional groups such as carboxyl and
hydroxyl groups in these biopolymers' structures have made
them promising candidates for preparing hydrogels as adsor-
bents. As a significant derivate of cellulose, CMC has been
applied in diverse fields such as wastewater treatment, drug
delivery, tissue engineering, and the food industry [14,
15]. This biopolymer is non-toxic, water-soluble, cheap,
and pH-dependent due to the presence of a carboxyl group
[6]. CMC-based hydrogels can react with cationic pollut-
ants through electrostatic interaction and hydrogen bonding
mechanisms.

The main drawbacks of biopolymers that need them to
be treated by synthesized monomers such as itaconic acid
(IA), acrylamide (AAm), acrylic acid (AA), and meth-
acrylic acid (MAA), and their copolymer are low mechani-
cal strength and adsorption capacity [16—18]. Besides using
chemical methods such as grafting, embedding nanomate-
rials such as carbon-based materials, clays, metal oxides,
and metal-organic frames (MOFs) is another way to solve
this problem [19-22]. Carbon-based nanomaterials such as
biochar, activated carbon, carbon nanotube, and graphene
oxide (GO) have wide applications in wastewater treatment,
sensors, electronics, catalysts, and energy storage. Biochar
is a low-cost, biocompatible adsorbent with high porosity,
surface area, and abundant functional groups. It is produced
from the thermal decomposition of carbon-rich biomass
substances such as lignocellulosic waste, municipal solid
wastes, and sewage sludge in the absence of oxygen [23, 24].

Separating adsorbents from water media is one of the
main issues that must be considered in adsorption. In
conventional mode, adsorbents were separated from the
water media using centrifuging, which is expensive and
requires more energy. To solve this problem, the magnetic
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separation method was developed and gained the attention
of researchers in the last two decades [25]. This method
allows magnetic adsorbents to be easily isolated from
water media using a magnetic field [26]. Algethami et al.
synthesized hydrochar-grafted chitosan to eliminate MG
from water media. The results showed hydrochar-grafted
chitosan removed 96.47% MG under optimum conditions
[27].

Several studies applied clay and GO nanoparticles to
wastewater treatment in HG. However, studies still need
to be performed on using BC or magnetic BC as a low-
cost nanomaterial in this hydrogel system. This work
synthesized an innovative nanocomposite hydrogel to
decontaminate MB from water media. Tea waste was used
as a natural and abundant source to synthesize BC via
pyrolysis and doped with magnetic nanoparticles (Fe;0,)
by the chemical co-precipitation method. MTWBC was
incorporated into CMC-g-P(AAm) hydrogel for the first
time to elevate removal performance and ease separation
from water media, which is performed by a magnetic field.
The optimal adsorption process conditions were identified
by assessing influencing variables in batch mode. More
information on the mechanism of the adsorption process
was obtained using kinetic, isotherm, and thermodynamic
studies.

2 Materials and methods
2.1 Materials

CMC and potassium persulfate (KPS, 99.0%) were bought
from Samchun, Korea. Acrylamide (AAm, 99.9%), methyl-
ene bisacrylamide (MBA, 99.0%), Iron (I) chloride tetrahy-
drate (FeCl,-4H,0, 99.9%), Iron (III) chloride hexahydrate
(FeCl;-6H,0, 99.9%), sodium hydroxide (NaOH, 99.0%),
methylene blue (MB, 99.0%) and hydrochloric acid (HCI,
38%) were purchased from MERCK, Germany. Tea was
bought from a local shop, and deionized (DI) water was used
throughout the experiments.

2.2 Biochar (BC) synthesis

First, the tea pulp was washed with hot water repeatedly
until it lost color, and then it was dried in an oven at
100 °C for 2 h. The dried tea pulp was placed in the fur-
nace for 2 h at 500°C under an N, atmosphere to obtain
BC. The obtained BC was powdered using the mill and
meshed by sieves to ensure their size was lower than 125
pm. Finally, the obtained biochar was stored in a con-
tainer for further use.
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2.3 Magnetic biochar (MTWBC) synthesis

MTWBC was prepared using the co-precipitation method.
Firstly, FeCl,-4H,0 and FeCl;-6H,0O with a molar ratio of
1:2 were dissolved in 50 mL DI water, then 1 g of BC was
added to it and stirred for 20 min. Then, 35 mL of NaOH
with a concentration of 3 M was slowly mixed at 80-90 °C
for 50 min. After the mentioned time, a magnet separated the
magnetic composite from the aqueous solutions and washed
it with water several times to make it completely neutral
(pH=6-7). MTWBC was placed in an oven at a tempera-
ture of 90°C for 24 h to dry completely.

2.4 Synthesis of nanocomposite hydrogel

Firstly, a determined amount of CMC (0.33 g) was dissolved
in hot DI water. A suspension solution of AAm (1.2 g), KPS
(0.3 g), MBA (0.03 g), and MTWBC (10 wt. %) was pre-
pared and sonicated for 30 min. The prepared suspension
was added to the cold CMC solution and degassed for 5 min
via N, gas. Then, the reaction bottle was put in the water
bath at 65 °C. After 5 min, a gel was formed in the bottle
and was kept in the water bath for 2 h to ensure complete
polymerization. The prepared nanocomposite hydrogel was
cut into small pieces and washed with DI water several times
to remove unreacted components. Then, pieces of nanocom-
posite hydrogel were dried in a 60 °C oven for 24 h. The
dried pieces were powdered using a mill and sieved via a
40-60 mesh sieve. Different nanocomposite hydrogel sam-
ples were prepared by varying the amount of MTWBC, and
10 wt.% was selected as the optimum value.

2.5 Characterization

The chemical structure of prepared samples was determined
using FTIR spectroscopy (Tensor 27, Bruker, Germany)
operating at a wavenumber of 400 to 4000 cm-1. X-ray dif-
fraction (XRD) pattern of BC, MTWBC, HG, HG/BC, and
HG/MTWBC adsorbents was recorded in an X-ray Diffrac-
tometer (Krisallofex D500, Siemens, Germany) equipped
with Cu-Ka (A=1.54 A) radiation. The surface morphology
of BC, MTWBC, HG, HG/BC, and HG/MTWBC adsor-
bents was analyzed by scanning electron microscopy (SEM,
MIRA3, TESCAN, Brno, Czech Republic) operating at a
voltage of 15 kV. Thermal study of prepared samples was
determined using a thermogravimetric analyzer (TGA-PL,
TGA 1500, Canada) operating at a heating rate of 10 °C/
min and temperature range of 25-900 °C under N, atmos-
phere. Specific surface area, mean pore diameter, and total
pore volume of samples were calculated by gas sorption
instrument (Asap 2020, Micro-metrics, USA).

2.6 Adsorption studies

The effect of adsorption parameters such as adsorbent dose
(0.5-4 g/L), pH (2-10), initial concentration (10-50 mg/L),
contact time (50-120 min), and temperature (25-50 °C)
on removal performance of BC, MTWBC, HG and HG/
MTWBC adsorbents was studied to determine optimum
condition. For this purpose, the pH of the MB solution was
adjusted using 0.1 M HCI or NaOH solution, and 0.045 g
of adsorbent was added to 30 mL of it and stirred at 500
rpm. After ending adsorption time, adsorbents were sepa-
rated from the solution using a centrifuge and magnetic field.
The concentration of remaining MB was determined using
UV-Visible spectrophotometer (Shimazdu-1800, Japan) at
Amax =620 nm. The removal percentage (R%) and equilib-
rium adsorption capacity (q,) were calculated using the fol-
lowing equations:

R = MBi—MB 100
* =45 (1)
(MB,—MB,)
g =——"""2Y 2)
m

where MB, (mg/L), MB, (mg/L), V (mL), and m (g) are the
initial and equilibrium MB concentration, volume of dye
solution, and mass of adsorbent, respectively.

3 Results and discussion
3.1 Characterizations

The FTIR spectra of BC, MTWBC, HG, HG/BC, and HG/
MTWBC adsorbents before MB adsorption were depicted
in Fig. 1a. In the FTIR spectra of BC, 3437, 2996, 1725,
1625, and 1073 cm™! peaks, can be assigned to stretching
vibrations of -OH, -CH, -C =0, C=C, and —-C-O, respec-
tively. FTIR spectra of MTWBC show that the intensity of
some BC peaks was changed after integrating Fe;O,, show-
ing good interaction of these nanoparticles with BC. Also,
the observed sharp peak at 581 cm™' can be related to the
—Fe-O bond, which confirms the successful formation of
Fe;0, nanoparticles on BC [28]. In the spectra HG, HG/
BC, HG/MTWBC adsorbents nanocomposite hydrogel,
peaks of -OH and —NH groups were overlapped around a
wavenumber of 3500 cm™' and also observed peaks around
1729, 1624, 1280, and 1072 cm™! corresponded to stretch-
ing vibrations of -C =0, -N-H, -C-0, and -C-O—C bonds,
respectively.

XRD pattern of BC, MTWBC, HG, HG/BC, and HG/
MTWBC adsorbents was depicted in Fig. 1b. In the XRD
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Fig.1 a) FTIR analysis, b) XRD patterns, ¢) VSM, d) TGA, and e-g) BET of BC, MTWBC, HG, HG/BC, and HG/MTWBC nanocomposite

hydrogel

pattern of BC, the observed wide peak centered at 25° can
be related to the crystal plane index C(002) [29]. In the
XRD pattern of MTWBC, characteristic peaks of Fe;0,
nanoparticles located at 35.8, 43.5, 57.8, and 64° were
observed, showing the presence of these nanoparticles on
BC [30]. Also, it shows that the crystalline structure of
Fe;0, nanoparticles is preserved after integration with
BC [31]. In the XRD pattern of HG, HG/BC, and HG/
MTWBC adsorbents, a wide broad peak was observed at
20.5°, showing an amorphous structure.

VSM analysis was applied to assess the magnetic
properties of MTWBC and HG/MTWBC nanocomposite
hydrogel at room temperature. As demonstrated in Fig. lc,
the magnetic saturation of MTWBC and HG/MTWBC
nanocomposite hydrogel is 15.45 and 1.85 emu/g, respec-
tively. The decrease in the magnetic value of HG/MTWBC
compared to MTWBC can be related to the low concen-
tration of Fe;O, nanoparticles in nanocomposite hydrogel
[25].
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The thermal stability of HG, HG/BC, and HG/MTWBC
adsorbents was investigated by TGA analysis in the 25-800
°C temperature range. As demonstrated in Fig. 1d, the
weight loss of samples happened in three stages. In the first
stage, decomposition and the weight loss of HG, HG/BC,
and HG/MTWBC adsorbents occurred in the temperature
range of 45-263, 45-267, and 45- 268 °C, respectively and
related to loss of moisture. The second weight loss can be
ascribed to dehydration of the saccharide ring and happened
in the temperature range of 263-501 °C, 267-503 °C, and
268-504 °C for HG, HG/BC, and HG/MTWBC adsorbents,
respectively. The third stage of significant weight loss occurs
in the temperature range of 501-800, 503—-800, and 504-800
°C for HG, HG/BC, and HG/MTWBC adsorbents, respec-
tively. In the third stage, polymer chains and crosslinked
network destruction occur [21]. The total weight loss for
HG, HG/BC, and HG/MTWBC adsorbents was found to be
94.98, 86.9, and 79.34%, respectively, showing the effec-
tiveness of BC and MTWBC nanoparticles in promoting
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Fig.1 (continued)

the thermal stability of hydrogel. These nanoparticles act
as thermal barriers and limit heat diffusion to hydrogel
structure.

To investigate the textural properties of BC, MTWBC,
HG, HG/BC, and HG/MTWBC adsorbents, BET analysis
was performed at a temperature of 77 K. The isotherm
curves of N, ad(de)sorption for BC, MTWBC, HG, HG/
BC, and HG/MTWBC adsorbents were depicted in Fig. le-
g. According to the IUPAC classification, the isotherm
curves for MTWBC, HG, HG/BC, and HG/MTWBC
adsorbents are type V, while BC is type IV [32]. The

textural properties of BC, MTWBC, HG, HG/BC, and HG/
MTWBC adsorbents, such as surface area, total pore vol-
ume, and mean pore diameter, were tabulated in Table 1.
The results showed that modification of BC with Fe;0,
nanoparticles significantly enhances the surface area and
total pore volume. Also, adding BC and MTWBC to HG
promotes surface area, so higher removal performance was
expected from nanocomposite hydrogels than neat hydro-
gels. The mean pore diameter of all samples is 2-50 nm,
so they are classified as mesopore materials.

Table 1 Textural properties of BC, MTWBC, HG, HG/BC, and HG/MTWBC

Parameters Adsorbent
BC MTWBC HG HG/BC HG/MTWBC
BET area (m%/g) 4.53 51.92 1.74 2.011 3.58
Total pore volume (cm?/g) 1.042 11.92 0.4 0.46 0.48
Mean pore size (nm) 16.24 11.51 12.54 10.06 4.36
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SEM-EDS analysis assessed the morphology of BC,
MTWBC, HG, HG/BC, and HG/MTWBC adsorbents
before and after MB sorption. As depicted in Fig. 2a-c,
biochar has an irregular surface. The morphology of BC
was changed after modification with Fe;O, nanoparticles
in such a way that some pores were formed, facilitating the
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diffusion of MB molecules to interact with internal adsorp-
tion sites. Small spherical particles confirm the successful
formation of Fe;O, nanoparticles on the BC surface (Fig. 2d-
f). A comparison of hydrogel and nanocomposite hydrogel
morphology showed that the roughness and porosity of
the hydrogel’s surface were enhanced significantly after

SEM HV: 15.0 kV WD: 4.41 mm
View field: 25.4 ym Det: InBeam
SEM MAG: 5.00 kx | Date(m/dly): 07/06/22

1um

SEM HV: 15.0 kV WD: 5.80 mm
View field: 12.7 ym Det: InBeam
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SEM HV: 15.0 kV WD: 5.83 mm
View field: 15.9 ym Det: InBeam
SEM MAG: 8.00 kx | Date(m/dly): 06/25/22

2pm

Fig.2 FESEM images of a-¢) BC, d-f) MTWBC, g-i) HG, j-1) HG/BC, and m—0) HG/MTWBC with different magnification
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Fig.2 (continued)

embedding BC and MTWBC nanoparticles (Fig. 2g-o0). The
chemical composition of BC, MTWBC, HG, HG/BC, and
HG/MTWBC adsorbents was assessed by analysis. As dem-
onstrated in Fig. 3a-d, the EDS spectra of samples showed
the presence of C (74.8%) and O (25.2%) elements in BC, C
(32%), O (33.63%), and Fe (34.37%) elements in MTWBC,
C (42.69%), O (34.89%), and N (22.41%) elements in HG, C
(49.67%), O (31.48%), and N (18.06%) elements in HG/BC,
and C (29.96%), O (22.26%), Fe (15.745%), and N (6.62%)
elements in HG/MTWBC nanocomposite hydrogel. Inves-
tigation of the morphology of BC, MTWBC, HG, HG/BC,
and HG/MTWBC adsorbents after MB adsorption showed
that the surface of adsorbents gets smoother and most of the
pores were filled by MB molecules (Fig. 4a-e).

3.2 Investigation of sorption parameters
on elimination of MB

3.2.1 Impact of ph

Due to abundant ionizable functional groups in the syn-
thesized adsorbents' structure, their removal performance
depends highly on pH. The impact of pH on the removal
performance of BC, MTWBC, HG, HG/BC, and HG/

SEM HV: 15.0 KV WD: 5.84 mm

View field: 12.7 ym Det: InBeam 2pm
SEM MAG: 10.0 Kx | Date(midly): 06125122

\ N & 5
" v i
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1um : 12, Det: InBeam

SEM MAG: 10.0 kx | Date(midly): 0625122

MTWBC adsorbents was investigated at an adsorbent dose
of 1.5 g/L, contact time of 70 min, initial concentration
of 10 mg/L, and temperature of 25 °C. As presented in
Fig. 5a, the removal performance of BC, MTWBC, HG,
HG/BC, and HG/MTWBC adsorbents was enhanced from
33.27t0 90.15%, 38.79 to 95.58%, 31.85 to 83.22%, 34.26
t0 92.57%, and 36.23 to 94.27%, respectively. In an acidic
medium, the low removal performance of synthesized
adsorbents can be related to the competition of H* ions
and MB molecules to sorption to active sites. The size of
H" ions is smaller than that of MB* molecules, so they can
diffuse more easily into the adsorbent structure and interact
with adsorption sites. By elevating pH, carboxyl groups of
adsorbents were ionized, so the removal performance was
enhanced, and most parts of MB molecules were adsorbed
through electrostatic interactions [33]. An optimum pH of
8 was selected for further adsorption experiments.

3.2.2 Impact of adsorbent dose
The impact of adsorbent dose on the removal perfor-

mance of BC, MTWBC, HG, HG/BC, and HG/MTWBC
adsorbents was assessed in the range of 0.5 to 4 g/L.
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Fig.3 EDS spectra of a) BC, b) MTWBC, ¢) HG, d) HG/BC, and ¢) HG/MTWBC
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Fig. 4 FESEM images of a) BC, b) MTWBC, ¢) HG, d) HG/BC, and ¢) HG/MTWBC after MB adsorption with magnification of 2 pm
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As depicted in Fig. 5b, the removal performance of
MTWBC and HG/MTWBC was enhanced from 68.56 and
61.28% to 99.16 and 97.39%, respectively, as the adsor-
bent dose was elevated from 0.5 to 1.5 g/L. Also, the
removal performance of BC, HG, and HG/BC hydrogel
was increased from 52.24, 47.23, and 55.26% to 93.35,
90.74, and 97.15%, respectively, when the adsorbent dose
was increased from 1.5 to 4 g/L. The surface area and the
number of binding sites were enhanced by incrementing
the adsorbent dose, increasing removal performance. The

removal performance of adsorbents remains constant with
a further increase of adsorbents’ dose from the optimum
value. These can be related to the aggregation of adsor-
bents’ particles, which restricts the achievement of MB
molecules in sorption sites.

3.2.3 Impact of contact time

To benefit more from the removal ability of adsorbents, it
is essential to assess the contact time parameter because

Fig.5 Effect of a) pH, b) 100 = — o) 100 ORES
adsorbent dose, ¢) contact
: L X 90 { wMmTWBC " MTW
time, d) initial concentration e) 90 " HG
effect of initial concentration on 80 || =HG HG/BC
equilibrium adsorption capacity 70 {| "HG/BC = HG/M
(q.(mg/g)), and f) temperature 9 60 I =HGMT < 80
on removal performance and = =
of BC, MTWBC, HG, HG/BC, z 50 £ 70
and HG/MTWBC E 40 E
~ &
30 60
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0 40
05 075 1 15 2 25 3 4
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100 100
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90 90 =EMTWBC
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80 80 'P G/BC
70 70 HG/MTWBC
g 60 g 60
g 50 g 50
=] =]
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the adsorbents must have enough time to access and inter-
act with dye molecules. From an economic perspective,
adsorbents must be able to remove pollutants from waste-
water quickly. This study investigated the effect of contact
time on the removal performance of BC, MTWBC, HG,
HG/BC, and HG/MTWBC adsorbents in the 50-120 min
range. As depicted in Fig. 5c, the rate of MB removal by
synthesized adsorbents was enhanced sharply in the first
30 min, and then it slowed down until reaching an equilib-
rium state. In the first minutes of the adsorption process,
most adsorption sites are vacant to interact with more dye
molecules through various mechanisms such as hydrogen
bonding, electrostatic interaction, and -1 interactions. By
further increase of contact time, the adsorption sites of
adsorbents got involved with MB molecules, so the rate
of the removal process was decreased, and removal per-
formance reached an equilibrium state [34]. The equilib-
rium contact time for BC, MTWBC, HG, HG/BC, and HG/
MTWBC adsorbents was obtained in 70 min.

3.2.4 Impact of dye initial concentration

The effect of MB initial concentration on the removal
performance of BC, MTWBC, HG, HG/BC, and HG/
MTWBC adsorbents was studied in 10-50 mg/L. Accord-
ing to Fig. 5d, the removal performance of BC, MTWBC,
HG, HG/BC, and HG/MTWBC adsorbents decreased from
93.35,99.16, 90.74, 97.15, 97.39% to 50.54, 71.86, 47.78,
55.56, and 60.67%, respectively with the increase of dye
initial concentration from 10 to 50 mg/L. The saturation of
sorption sites with MB molecules is the main cause of the
decrement in removal performance. According to Fig. Se,
the equilibrium adsorption capacity of BC, MTWBC,
HG, HG/BC, and HG/MTWBC adsorbents was enhanced
from 6.22, 6.61, 6.05, 6.48, and 6.49 mg/g to 16.85, 23.95,
15.93, 18.52, and 20.22 mg/g, respectively with increase
of dye initial concentration from 10 to 50 mg/L. The mass
driving force is increased by incrementing initial concen-
tration, enhancing equilibrium adsorption capacity. The
equilibrium adsorption capacity of BC, MTWBC, HG,
HG/BC, and HG/MTWBC adsorbents was found to be
16.18, 23.02, 14.43, 18.33, and 20.12 mg/g, respectively.
The optimum value of the dye's initial concentration was
10 mg/L based on removal performance.

3.2.5 Impact of temperature

The effect of initial concentration on the removal perfor-
mance of BC, MTWBC, HG, HG/BC, and HG/MTWBC
adsorbents was studied in the 25-50 °C range. According
to Fig. 5f, the removal performance of BC, MTWBC, HG,
HG/BC, and HG/MTWBC adsorbents was decreased from
93.35, 99.16, 90.74, 97.15, 97.39% to 73.25, 91.54, 67.56,

@ Springer

81.23, and 87.23%, respectively with elevating temperature
from 25 to 50 °C. The increase in temperature has a nega-
tive effect on removal performance, showing the exother-
mic nature of the elimination process. With the increase in
temperature, the motion of MB molecules increased, the
interactions of MB molecules and sorption sites were weak-
ened, and their tendency to separate from the adsorbent was
increased, so the removal performance decreased [35].

3.3 Kinetic study

The kinetic study was performed by pseudo-first-order
(PSF), pseudo-second-order (PSO), and intra-particle
diffusion (IPD) models represented with Eqs. (3-5):

Ln(q.—q,) = Ln(q,) — k;t 3)
t ot 1

_=_+—

9 9 kyq? )
qi= ki,dto's"‘li 4)

The fitting findings were depicted in Fig. 6a-c, and
regression coefficients were tabulated in Table 2. The
findings showed that the R? value for the PSO model is
higher and closer to one, so it is the best model for fit-
ting kinetic data. Also, the amount of g, ,, is closer to g,
showing this model's high accuracy in fitting and predict-
ing kinetic data. The IPD model was used to study the
diffusion of MB molecules to synthesized adsorbents. The
results showed that diffusion of MB molecules happens in
two stages. In the first stage, MB molecules diffuse from
a thin layer called the boundary layer diffusion stage. In
the second stage, MB molecules diffuse through the pores
of adsorbents and interact with sorption sites. The rate
of the first stage is higher than the second stage, so the
second stage mainly controls MB adsorption.

q.: calculated equilibrium adsorption capacity, k;
(min~"): rate constant of quasi-first-order, k, (g/mg/min):
rate constant of quasi-second-order, K, 4: intra-particle
diffusion rate constant, and I;: a constant related to the
boundary layer.

3.4 Isotherm study

The isotherm study provides valuable information about the
interactions between adsorbents and adsorbate. Langmuir
(Eq. 6), Freundlich (Eq. 7), Temkin (Eq. 8), and Dubin-
Radeshkewinch (D-R, Eq. 9) models are widely applied to
fitting equilibrium data:
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Fig.6 Linear regression of 2
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Table 2 Kinetic parameters for BC, MTWBC, HG, HG/BC, and HG/ Ce Ce + 1 R 1 ©)
MTWBC P L=
9 9m I(Lqm I+ I<LCi
Kinetic models Adsorbent
1
BC MTWBC HG HG/BC HG/MTWBC Ln(qe) — LH(KF)+HLH(C6) 7)
Pseudo-first-order
Qocal (M) 689 7404 6 7.046  7.099 RT
k,(min™") 0.056  0.068 0.044 0.068  0.062 q.= BLn(K}) + BLn(C,),B =T ®)
R? 0.976  0.949 0978 0972  0.969
Pseudo-second-order
Qe (mgle) 7127 738 7077 7183 723 Ln(q,) = Ln(q,) - P € = R TLn<1 + L) E, = —
k, (g/mg/min)  0.009  0.0165 0.007 0.009 0.013 C, \/Eﬁ
Qoo (M/E)  6.145  6.627 5969 6504 6.554 ©)
2 g .
R 0992 0.992 0991 0.996  0.998 The results of equilibrium data fitting were demon-
Intra-particle diffusion strated in Fig. 7a-d, and coefficients of isotherm models
ki1 0.7824 05781 0.6762 0.6717 0.601 were tabulated in Table 3. Based on the fitting findings,
I12 0.2307 2.0439  0.3066 0.999  1.6588 the Langmuir model is the most appropriate for describ-
R 0987 0932 09751 0985 0978 ing the interaction of MB molecules and synthesized
kia 0.058 0.0148  0.1057 0.074  0.0364 adsorbents. It can be concluded from the governing of
L 5535 647 4.8286 5.7191 6.1643 the Langmuir model that a monolayer of MB molecules
R? 0.908 0.83 0.7697 0.682  0.9386

covers the surface of adsorbents without interactions
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between them, and the surface of adsorbents is homog-
enous [36]. The maximum adsorption capacity (q,,,c) of
BC, MTWBC, HG, HG/BC, and HG/MTWBC adsorbents
was computed to be 13.054, 24.39, 12.3, 14.2, and 20.79
mg/g, respectively. The dimensionless separation factor
(R;) value for all synthesized adsorbents is 0—1, show-
ing the desirability of MB molecules in interacting with
adsorbents [37]. The performance of synthesized adsor-
bents in removing MB molecules was consistent with
other previous studies, and the results are presented in
Table 4. It can be inferred that the synthesized adsorbents
can potentially eliminate MB molecules from wastewater.

3.5 Thermodynamic study

Thermodynamic feasibility and thermal effects of MB
sorption were studied by computing thermodynamic
parameters such as change in free Gibbs energy (AG®),
change in free enthalpy (AH®, and change in free entropy
(AS°). Van’t Hoff formula (Eq. 12) was used to calculate
AH° and AS°®, obtained from the slope and intercept of
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this equation plot, respectively. The plot of the Van’t Hoff
formula and calculated thermodynamic parameters were
presented in Fig. 8 and Table 5, respectively.

9.

Kp C. (10)
Ln(Kp) = —ARI; + ARS (11)
AG® =-RT Ln(K)) (12)

The change in free enthalpy for BC, MTWBC, HG,
HG/BC, and HG/MTWBC adsorbents were computed
to be -55.224, -80.246, -53.899, -65.339, -54.73 kJ/
mol, respectively. Hence, MB adsorption to synthesized
adsorbents is exothermic. The calculated (AS°) for BC,
MTWBC, HG, HG/BC, and HG/MTWBC adsorbents
were -19.605, -27.548, -19.308, -22.911, and -18.427 J/
mol.K, respectively. The negative values of change in
free entropy demonstrate that the randomness of MB
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Table 3 Isotherm parameters for BC, MTWBC, HG, HG/BC, and
HG/MTWBC

Isotherm Adsorbent

models

BC MTWBC HG HG/BC HG/MTWBC

Langmuir
Qax (ME/E) 13.054 24.39 12.3 14.2 20.79
K, (L/mg) 1.136 32 0.8 222 2.24
R? 0.997 0.999 0.9976  0.9998 0.9998
Freundlich
n 4.233 4.45 4255 4593 431

K (mg/eL/ 667 1574 7316 82 1197
mg)l/n)

R? 0.791 0.818 0.766  0.809  0.796
D-R

E (kJ/mol) 0.017 0.032 0.019 0.021 0.021

q,, (mg/g) 12.11 21.8 11.311 1323 19.33

R? 0.98 0.8112 0.96 0.96 0.973
Temkin

by (KJ/mol) 1.245 0.87 1.327  1.24 0.816
Ky (1/g) 35.03 218.54 28.56  80.15  74.52
R? 0.87 0.903 0.854 0.87 0.88

g, (mg/g): maximum adsorption capacity, K; (L/mg): Langmuir
adsorption constant, Ky and n: Freundlich model constants, by (J/mol)
and K (1/g): Temkin constants, R: universal constant of gases, T(K):
Absolute temperature, £: Polany coefficient and p (mol/g)*: activity
coefficient.

molecules was decreased by rising temperature. As sum-
marized in Table 5, the negative values of change in free
Gibbs energy for MB sorption by BC, MTWBC, HG, HG/
BC, and HG/MTWBC adsorbents showed spontaneous
decontamination [42].

3.6 Mechanism of MB adsorption

Adsorption of MB molecules to synthesized adsorbents
happens with various mechanisms, which depend on the
pH of water media, textural properties of adsorbents, and
physicochemical properties of adsorbents and adsorb-
ate. In the primary medium, synthesized adsorbents
have a negative surface charge due to the dissociation
of BC and CMC carboxyl groups; hence, they can inter-
act with cationic MB molecules via electrostatic inter-
actions. Hydrogen bonding is another effective mecha-
nism in the sorption of MB molecules, which is formed
between hydroxyl and amine groups of adsorbents and
-NH of MB molecules. The amine groups of hydrogel
and nanocomposite hydrogels are related to the presence
of poly(acrylamide). Another recommended adsorption
mechanism is 71-11 interaction between the 1 electrons of
BC and benzene rings of MB molecules [43]. Accord-
ing to the BET and SEM analysis findings, the synthe-
sized adsorbents have a porous structure, so pore filling
is another recommended mechanism for MB sorption.
FTIR analysis was performed to investigate and confirm
mechanisms of MB sorption, and the results were dem-
onstrated in the following Fig. 9a-e. In the FTIR spectra
of BC and MTWBC after MB sorption, the intensity of
the —OH peak located around 3438 cm™! was decreased
due to forming a hydrogen bond with —-NH of MB. Also,
the intensity of —-C =0 and —C-O bands located around
1732 and 1276 cm™!, respectively, was changed due to the
formation of electrostatic interaction between carboxyl
groups of BC and MTWBC and -NH?*" moieties of MB.

In the FTIR spectra of HG, HG/BC, and HG/MTWBC
after MB sorption, hydrogen bonding is formed between

Table 4 Comparison of

. . Adsorbent Initial concentra- Qm (mg/g) Ref
MB adsorption by pervious tion (mg/L
: . g/L)
literatures with the present
study N-Isopropylacrylamide 10-50 8.5 [38]
N-Isopropylacrylamide/Itaconic acid 10-50 17.52 [38]
Carboxylmethyl cellulose coated Fe;0,@ 100 17.5 [39]
Si0, magnetic nanoparticles
Carboxymethyl cellulose/k-carrageenan/ 10-500 10.75 [40]
activated montmorillonite
Ficcus Palmata leaves 5-25 6.8 [41]
BC 10-50 13.054 This work
MTWBC 10-50 24.39 This work
HG 10-50 12.3 This work
HG/BC 10-50 14.2 This work
HG/MTWBC 10-50 20.79 This work
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—NH of MB and —OH and —NH of adsorbents, which is
confirmed by the intensity change of overlapped peak
of -NH and —OH groups located around 3437 cm™'. Dz waQ
Also, the intensity change of -C =0 (~1730 cm™') and w | 22252
—C-0O (~ 1280 cm™") confirms the electrostatic interac- A
tion between cationic MB and adsorbents. The scheme of
MB sorption by HG/MTWBC is represented in Fig. 10.
v <t A
8% =
4 Conclusion Sl A A
The present study synthesized HG/MTWBC nanocom-
posite hydrogel as a novel magnetic adsorbent to eliminate o
MB from water media. The pyrolysis method synthesized s § -2a
BC from tea waste as a natural and abundant source. BC @lFT =T e
was doped successfully with Fe;O0, nanoparticles to mag-
netize the adsorbent and enhance its removal performance.
An optimum value of MTWBC (10 wt.%) was incorporated %
into HG, and the results showed an enhancement in removal =S ) 3 AR
performance and magnetic separation of the adsorbent. The 8 = S: 2 % : 2
SEM and BET results showed that HG/MTWBC nanocom- §
posite hydrogel has a fine porous structure with significant g
surface areas for the adsorption of MB. Assessment of FTIR §
results showed the presence of -OH and —COOH groups in 3 o L m o
the structure of the adsorbent and their participation in the % - % g § § §
MB removal process through hydrogen bonding and elec- L'i I I
trostatic interaction. According to experimental results, the g _
maximum removal performance of 83.22 (for HG), 92.57 g E
(for HG/BC), and 94.27% (for HG/MTWBC) was obtained at &=
optimum conditions of pH 8, dose 1.5 g/L, initial concentra- E g 9
tion 10 mg/L, contact time 70 min, and temperature 25 °C. a < =
Analyzing kinetic data showed that most parts of MB mol- é
ecules adsorb to adsorbents by chemisorption mechanism due 3 K
to the government of the PSO model. The Langmuir model : 2 O E
can be used to fit equilibrium data with high accuracy, and @ = a
the monolayer adsorption capacities of HG, HG/BC, and HG/ § =] 2 E % (:D (:D
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Fig.9 FTIR spectra of a) BC,
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MTWBC nanocomposite hydrogels were found to be 12.3,
14.2, and 20.79 mg/g, respectively. The thermodynamic
study showed that MB sorption to synthesized adsorbents
is favorable, spontaneous, and exothermic. Finally, it can
be concluded that HG/MTWBC magnetic nanocomposite

hydrogel can be applied as a promising adsorbent to eliminate
MB from water media.
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Fig. 10 Scheme of MB sorption
by HG/MTWB
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