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The Mexican bean beetle, Epilachna varivestis Mulsant (Coleoptera: Coccinellidae), is a key pest of beans, and 
early detection of bean damage is crucial for the timely management of E. varivestis. This study was conducted 
to assess the feasibility of using drones and optical sensors to quantify the damage to field beans caused by 
E. varivestis. A total of 14 bean plots with various levels of defoliation were surveyed aerially with drones 
equipped with red-blue-green (RGB), multispectral, and thermal sensors at 2 to 20 m above the canopy of bean 
plots. Ground-validation sampling included harvesting entire bean plots and photographing individual leaves. 
Image analyses were used to quantify the amount of defoliation by E. varivestis feeding on both aerial images 
and ground-validation photos. Linear regression analysis was used to determine the relationship of bean defo-
liation by E. varivestis measured on aerial images with that found by the ground validation. The results of this 
study showed a significant positive relationship between bean damages assessed by ground validation and 
those by using RGB images and a significant negative relationship between the actual amount of bean defoli-
ation and Normalized Difference Vegetation Index values. Thermal signatures associated with bean defoliation 
were not detected. Spatial analyses using geostatistics revealed the spatial dependency of bean defoliation by 
E. varivestis. These results suggest the potential use of RGB and multispectral sensors at flight altitudes of 2 
to 6 m above the canopy for early detection and site-specific management of E. varivestis, thereby enhancing 
management efficiency.
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Introduction

The Mexican bean beetle, Epilachna varivestis Mulsant (Coleoptera: 
Coccinellidae), is a phytophagous ladybeetle species that invaded 
the United States in the late 1800s (Nottingham et al. 2016). Beans 
of the genus Phaseolus, including snap beans, lima beans, and pole 
beans, serve as primary host crops of E. varivestis. Larvae and adults 
feed primarily on the undersides of the leaves, with a high larval 
density capable of rapidly defoliating an entire bean field; each larva 
can consume 30 to 70 cm2 of bean foliage before pupation (Turner 
1932, Bernhardt and Shepard 1978). The signature of defoliation 
becomes visually detectable when the upper leaf surface dries out, 
showing a lace-like, skeletonized appearance. Subsequent damage 
may extend to the reproductive stage, affecting pods and flowers. 
Snap beans can usually withstand at least 20% defoliation at the 
vegetative stage (Nottingham et al. 2016), but this amount varies 

depending on the growth stage, variety of beans, and environmental 
conditions. Beans are more sensitive to insect feeding at the flow-
ering and pod fill stages, and yield loss can occur when defoliation 
exceeds 10% of beans at the reproductive stage (Fan et al. 1993, 
Nottingham et al. 2016).

Early detection and assessment of crop damage are critical 
for timely pest management decisions and quick response to pest 
outbreaks. Management decision for E. varivestis is generally made 
based on mean defoliation level (Bellinger et al. 1981) and larval 
densities (Higley and Pedigo 1996), with recommended treatment 
thresholds at 20% and 10% defoliation before flowering and at the 
pod stage, respectively (Nottingham et al. 2016). Economic thresholds 
vary, ranging from 1 to 1.5 larvae per bean plant, necessitating 
adaptability based on bean variety and growing conditions (Michels 
and Burkhardt 1981, Barrigossi et al. 2003). Predicting bean damage 
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based on the number of E. varivestis egg masses is also suggested as 
an alternative sampling strategy because sampling egg masses would 
allow time for preparing and applying control measures before ac-
tual damage occurs (Barrigossi et al. 2003).

Current sampling for detecting and rating crop damage by in-
sect pests largely relies on ground-based surveys, which is hard to 
achieve in large-scale farming or when resources are limited. To 
overcome the limitation, alternative methods such as remote sensing 
and image analysis become popularly used as low-cost and rapid 
pest survey tools in the context of precision agriculture or smart 
farming (Subramanian et al. 2021, Park et al. 2023). Remote sensing 
can be used to detect the signs of insects, such as feeding damage 
(Riley 1989) and nest structures (Mujinya et al. 2014) because insect 
feeding activity generally causes loss of biomass, changes in vegeta-
tion structure, or plant stress responses. Therefore, such signs could 
be detected from their spectral reflectance and by calculating vege-
tation indices (Senf et al. 2017, Meng et al. 2018). Specifically, small 
unmanned aircraft systems (sUAS; a.k.a., drones) can fly at very low-
flight altitudes which allows the acquisition of high-resolution aerial 
images, making them an ideal tool for early detection and meas-
urement of insect pest damage (Hunt Jr and Rondon 2017, Park 
et al. 2023). In addition, drones are highly maneuverable and can 
be equipped with automatic flight control to conduct aerial surveys 
repeatedly without human intervention. Therefore, in recent years 
the use of drones has been increased in pest management programs 
including surveillance and monitoring for the detection of plant 
diseases (Cai et al. 2023, Chin et al. 2023, Qin et al. 2023), insect 
pest damage (Hunt and Rondon 2017, Subramanian et al. 2021, 
Park et al. 2023), and weeds (Esposito et al. 2021, Ercolini et al. 
2022, Miller et al. 2022). In addition, drones have been used for 
applying pesticides (Özyurt et al. 2022, Paul et al. 2023, Vitória et 
al. 2023), delivering pheromone-based mating disruption products 
(Qin et al. 2023), releasing sterile insects (Garcia et al. 2022, Marina 
et al. 2022), and biological control agents (Park et al. 2018, Kim et 
al. 2021, Lake et al. 2021, Martel et al. 2021).

Recent advances in image processing and analysis tools, coupled 
with high-resolution imagery obtained by drones, provide a unique 
opportunity for field image processing capability (Bernaola and Holt 
2021). For surveillance of crop damage, drones equipped with op-
tical cameras and sensors acquire high-resolution hyperspectral, 
multispectral, or red-blue-green (RGB) imagery. Stressed plants re-
flect light differently compared with healthy ones, especially in the 
visible (380 to 700 nm) and infrared (700 to 2,500 nm) wavelengths 
(Carter 1993). For example, healthier leaves absorb more red light 
and reflect more infrared, and thus spectral reflectance ratios calcu-
lated from reflected red and infrared lights can be used potentially 
to evaluate the condition of canopy cover (Board et al. 2007). In 
addition, it may be possible to identify areas in a field experiencing 
damage by insects by calculating canopy reflectance ratios (Hunt 
and Rondon 2017) such as Normalized Difference Vegetation 
Index (NDVI), Soil Adjusted Vegetation Index (SAVI), simple ratio 
(SR), green NDVI (GNDVI), Normalized Difference Infrared Index 
(NDII), red mode (RM), and Enhanced Vegetation Index (EVI). 
Among the indices, NDVI is the most widely used (Board et al. 
2007, Filho et al. 2020, Xulu et al. 2024). Previous studies used 
such indices derived from multispectral aerial imagery for water 
stress detection and yield prediction under different sowing periods 
and irrigation treatments of common bean (Lipovac et al. 2022, 
Saravia et al. 2023), rapid and accurate estimation of faba bean 
yield (Cui et al. 2023), characterization of drought stress in soybean  
(Zhou et al. 2020), and detection of Colorado potato beetle and 
potato cyst nematode on potato (Hunt Jr and Rondon 2017, Jindo 

et al. 2023). Although these studies provided excellent insights into 
using drones equipped with spectral sensors and image analysis, 
there still are some challenges because physiological stressors may 
depend on the growing stages of the crop and can be affected by en-
vironmental conditions and agricultural practices. Even, early detec-
tion of pest damage may not be feasible unless high-resolution aerial 
images are obtained with low-altitude remote sensing.

Small drones equipped with obstacle avoidance sensors can be 
flown at extremely low-flight heights and thus provide opportunities 
for directly detecting insects from the sky. Park et al. (2021a) 
conducted a pioneering investigation into the direct detection 
of insects from aerial surveys using drone imagery. Cocoons of 
Monema flavescens (Lepidoptera: Limacodidae) on the branches 
of the Japanese zelkova tree could be detectable when the drone 
was flown at 3 m above the canopy. Tetila et al. (2020) used drone 
images to detect and classify various soybean pests and successfully 
identified them when the drone was flown at 2 m above the canopy. 
In addition, Park et al. (2021b) reported that flying insects could be 
detected with thermal sensors because the temperature of the thorax 
increased due to the heavy use of flight muscles when flying.

The goal of this study was to improve current ground-based field 
sampling methods for E. varivestis on beans by using drones for 
quantifying bean defoliation by E. varivestis. Our specific objectives 
were to (i) evaluate the feasibility of using RGB, multispectral, and 
thermal sensors carried by drones and image analysis for the assess-
ment of bean damage by E. varivestis, (ii) investigate the possibility 
of direct detection of E. varivestis eggs, larvae, pupae, and adults on 
aerial images acquired with drones, and (iii) determine the possi-
bility of mapping spatial pattern of bean damage by E. varivestis and 
evaluate the potential of site-specific management of E. varivestis. 
Specifically, the investigation delves into the efficacy of low-altitude 
drone flights in detecting bean damage caused by E. varivestis.

Materials and Methods

Study Site, Crop, and Weather Conditions
This study was conducted in two bean fields located at the Organic 
Research Farm of West Virginia University in Morgantown, WV 
(39.64422N, 79.93507W). The field was naturally infested with 
E. varivestis. Fourteen plots, each measuring 0.5 m × 0.5 m and 
containing 3 to 4 plants, exhibiting various levels of bean damage 
caused by E. varivestis were selected. Aerial surveys and ground 
samplings were conducted in July and August during the flow-
ering (10%) and pod fill (90%) stages of the beans when different 
levels of bean damage caused by E. varivestis were observed in the 
field. The prevailing wind speed ranged from 5 to 12 kph, with air 
temperatures between 26 and 28 °C, and clear skies during both 
drone flights and field sampling.

Aerial Surveys with Drones and Sensors
Aerial images were obtained using three different drones that 
carried three different sensors: the DJI Mavic Mini 3 Pro carrying a 
48-megapixel RGB camera (SZ DJI Technology Co., Ltd., Shenzhen, 
China), DJI Mavic 2 Enterprise Advanced carrying a 3.3-megapixel 
thermal camera measuring 8 to 14 μm with 640 × 512 resolution 
at 30 Hz and a 48-megapixel RGB camera, and DJI Phantom 3 
Advanced carrying a multispectral sensor (NDVI Single Sesnor, 
Sentera, St. Paul, MN) measuring red band (wavelength at 625 nm) 
and near-infrared band (wavelength at 850 nm). Further details on 
the specification of the drone and sensor can be found at: DJI Mavic 
Mini 3 (https://www.dji.com/mini-3/specs), DJI Mavic 2 Enterprise 
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Advanced (https://enterprise.dji.com/mavic-2-enterprise-advanced/
specs), and multispectral sensor (https://sentera.com/hardware/
sensors/single/). Because different drones generate different amounts 
of downward wind which can increase the blurriness of aerial 
images, we tested what flight height of each drone can blow bean fo-
liage. We found that the Mavic Mini Pro 3 could be flown as low as 2 
m above the bean canopy to obtain clear still aerial images. Based on 
these preliminary test results, Mavic Mini Pro 3 was used to obtain 
aerial images of bean plots at 2, 3, 4, 5, and 6 m above the canopy, 
and Mavic 2 Enterprise Advanced was flown at 4 to 20 m above the 
canopy to capture RGB and thermal images every 1 m. Multispectral 
images were captured at 2 m above the canopy.

RGB sensors captured natural color images, the thermal sensor 
generated images with heat signatures, and the multispectral sensor 
calculated NDVI values. NDVI values were calculated by using 
a raster calculator in ArcGIS Pro (ESRI, Redland, CA) (Fig. 1). 
These values were then correlated with bean damage caused by E. 
varivestis. The temperature on aerial images was measured using DJI 
Thermal Analysis Tool 3 (DJI, Shenzhen, China) (Fig. 2) and plotted 
against actual bean damage to establish their correlation.

Ground Validation with Whole-Plot Sampling
After acquiring aerial images with drones, all bean plants in each 
plot were covered carefully with a large plastic bag to prevent E. 
varivestis from escaping. The plants were then cut, and bags were 
transferred to the laboratory for measuring the amount of defoli-
ation and counting E. varivestis. Individual leaves were removed 
from the plants and spread on a light illuminator to take photos 
with a camera (NEX-5R, Sony Cop., Chonburi, Thailand) mounted 

at 60 cm above the illuminator. These photos were used for image 
analysis to measure the amount of bean defoliation by E. varivestis.

Ability of Aerial Surveys and Image Analysis to 
Assess Bean Damage
Before image analyses, background elements (i.e., soil and non-bean 
foliage) were removed from aerial images using Adobe Photoshop 
CS4 (Adobe Inc., San Diego, CA). ImageJ (National Institutes of 
Health, Bethesda, MD) was used to measure the total leaf area and 
defoliated area on each leaf. Different thresholds were selected based 
on their ability to provide optimal visual differentiation between 
defoliated and undefoliated pixels on each image. The classification 
thresholds of RGB images were set for hue of 0–255, saturation of 
0–255, and brightness of 0–244 for measuring the total leaf area, and 
hue of 0–58, saturation of 0–78, and brightness of 0–250 for meas-
uring damaged leaf area (Fig. 3). Although these threshold values were 
used for most images, a slight modification in values was necessary 
for some aerial images acquired at different flight heights. We used 
the same method described above for the analysis of images acquired 
from the ground-validation sampling except for color thresholds: hue 
(0–255), saturation (0–255), and brightness (0–224) for measuring 
leaf area, and hue (0–255), saturation (0–255), and brightness (0–84) 
(Fig. 4). Wavelengths for red, green, and blue in this study represented 
610–760, 500–570, and 450–500 nm, respectively.

Linear regression analysis was conducted to check the ability 
of aerial surveys and image analysis to assess bean damage. We 
determine the relationship between actual bean damage measured 
from ground-validation photos and damage measured from aerial 
images obtained with different sensors. The regression analysis was 
conducted with SAS (SAS Institute 2009) to determine the statistical 
significance of the relationship at α = 0.05.

Direct Detection of E. varivestis on Aerial Images
We examined individual aerial images taken from different altitudes 
to determine if E. varivestis eggs, larvae, pupae, or adults could be 
detected visually on the images acquired with RGB, NDVI, and 
thermal sensors. All detectable E. varivestis on images in each plot 
were counted and plotted against the actual number of E. varivestis 
counted from the ground-validation photos. Linear regression anal-
ysis was used to determine the statistical significance of their rela-
tionship at α = 0.05 by using SAS. In addition, the number of pixels 
representing individual E. varivestis was counted.

Spatial Patterns of Bean Damage by E. varivestis
The possibility of detecting bean damage by using drones and 
sensors provided an opportunity to generate spatial data on insect 
pests and conduct spatial analyses. To determine spatial patterns 
of bean damage by E. varivestis, we used the Mavic 2 Enterprise 
Advanced to conduct aerial surveys in the two bean fields on the 
Organic Research Farm of West Virginia University. The drone was 
flown 6 m above the canopy with autopilot function and aerial 
images were taken with 80% image overlap between two consec-
utive aerial images. A total of 46 and 24 aerial images were taken 
from fields 1 and 2, respectively. The aerial images were downloaded 
from the drone and stitched using Pix4DMapper software (Pix4D, 
Prilly, Switzerland) to generate a geo-referenced composite image. 
The composite image was then processed with Photoshop CS4 to 
remove background (i.e., soils and non-vegetation) and weeds. Then, 
image analysis was used to detect damage by E. varivestis throughout 
the fields by using color thresholds in ImageJ (hue values of 0–255, 
saturation values of 0–76, and brightness values of 191–231).

Fig. 1. An example bean plot A) and corresponding NDVI image B) obtained 
with drones flown at 2 m above the canopy. The higher value of NDVI 
indicates a healthier bean canopy.

Fig. 2. An example bean plot A) and corresponding thermal image B) obtained 
with drones flown at 6 m above the canopy.
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Pixels on the composite images were reclassified into two 
classes (i.e., damaged and undamaged) using ArcGIS Pro. Using 
the processed composite image showing pixels for bean damage, 
we conducted geostatistics analyses to characterize the spatial dis-
tribution pattern of bean damage caused by E. varivestis. For spa-
tial analysis, the composite image of each field was divided into 
500-by-500-pixel grids, and the number of pixels representing E. 
varivestis damage in each grid was counted. A total of 546 and 234 
grids were created for fields 1 and 2, respectively. Geostatistical anal-
ysis was conducted using the Geostatistical Analysis Extension of 
ArcGIS Pro, and semivariograms were used to measure the degree of 
spatial dependency among the number of pixels for defoliation using 
the formula (Shayestehmehr and Karimzadeh 2019):

Degree of spatial dependency = [C/(C0 + C)]× 100,

where C is sill and C0 is the nugget of the semivariogram. Spatial de-
pendency is considered weak, moderate, and strong when the degree of 
spatial dependency is ≤25%, 26–75%, and ≥76%, respectively. Once 
the spatial dependency or autocorrelation was determined, it was used 
to produce interpolation maps of bean damage by using kriging.

Results

Ability of Aerial Surveys and Image Analysis to 
Assess Bean Damage
RGB sensors could detect the feeding signs of E. varivestis and bean 
defoliation up to 6 m above the canopy, although images taken at 

lower flight heights provided higher resolution as expected (Fig. 5). 
The actual amount of damage measured from the ground-validation 
sampling ranged from 2% to 23%, and the damage measured 
from areal RGB images ranged from 0.9% to 21% among plots. 
The mean of damage measured from the ground-validation sam-
pling was 8.1 ± 1.63%, and the mean defoliation levels measured 
on areal RGB images were 6.9 ± 1.60%, 6.1 ± 1.38%, 5.8 ± 1.32%, 
6.2 ± 1.42%, and 6.0 ± 1.42% for 2, 3, 4, 5, and 6 m above the 
canopy, respectively.

The results of regression analysis showed that there was a signif-
icant positive relationship between actual bean damage and damage 
assessed from aerial images, and the slope of the linear regression 
model indicated that 69–85% of actual damage was detected by 
images obtained with Mavic Mini Pro 3 (Table 1). However, the 
damage was not detected at flight heights of >6 m with Mavic 2 
Enterprise Advanced (R2 = 0.074–0.440, F1,12 = 0.198–0.041, 
P = 0.148–0.848). As expected, since E. varivestis feeding causes 
defoliation and vegetation losses, we found a significant negative 
relationship between NDVI values and the amount of bean defoli-
ation (R2 = 0.763, F1,12 = 38.588, P < 0.0001). There was no signif-
icant difference in temperature between damaged and undamaged 
bean foliage (R2 = 0.111, F1,4 = 0.4986, P = 0.5190) according to the 
thermal image analysis, and the thermal signature of bean defolia-
tion by E. varivestis was not detected visually either.

Relationship Between Bean Defoliation and E. 
varivestis Density
A total of 168 larvae (3rd and 4th instars), 164 pupae, and 53 
adult E. varivestis were found on bean plants harvested from the 
14 plots. Regression analysis showed significant relationships of ac-
tual bean injury with the total number of E. varivestis (R2 = 0.872, 
F1,12 = 81.99, P < 0.001) and with the number of larvae (R2 = 0.686, 
F1,12 = 26.27, P < 0.001). The slope found in regression analysis in-
dicated that each E. varivestis caused 0.45% of bean defoliation. 
A significant (P < 0.05) and positive relationship was also observed 
between damage measured from aerial RGB images and the total 
number of E. varivestis at 2–6 m above the canopy (Table 2).

Direct Detection of E. varivestis on Aerial Images
We could detect larvae, pupae, and adults on the RGB images, 
but NDVI and thermal sensors could not detect the presence of  

Fig. 3. Processing aerial images acquired with drones at different flight heights to measure the amount of bean defoliation by Epilachna varivestis. Background 
removal (first row) followed by the estimation of bean defoliation (second row) was conducted by thresholding of hue, saturation, and brightness. 

Fig. 4. Processing images of leaves acquired with destructive bean sampling 
(i.e., on-ground-validation sampling) to measure the total leaf area and the 
amount of defoliation by Epilachna varivestis. Background removal A), total 
leaf area measurement B), and defoliation estimation C) were conducted by 
thresholding of hue, saturation, and brightness.
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E. varivestis. Each fully-grown E. varivestis larva or pupa on the 
aerial RGB images taken at 3 m above the canopy was represented 
by 129–153 pixels (Fig. 6). Out of all 385 E. varivestis observed in 
the plots, 20, 10, 2, 0, and 0 were identified in drone images captured 
at heights of 2, 3, 4, 5, and 6 m above the canopy, respectively. This 
suggests that the presence of E. varivestis could only be detectable in 
aerial images captured at or below 4 m above the canopy. Although 
the number of E. varivestis detected on aerial images was very low, 
we still found significant relationships between the number of E. 
varivestis found from the ground validation and that detected on 
aerial images taken at 2 m (R2 = 0.418, F1,12 = 8.607, P = 0.013) and 
3 m (R2 = 0.291, F1,12 = 4.928, P = 0.046) above the canopy.

Spatial Patterns of Bean Damage by E. varivestis
The amounts of bean damage measured by image analyses were 
4.85% and 2.02% for fields 1 and 2, respectively. The exponential 
model best fitted the spatial data for field 1 (nugget = 0; sill = 0.82; 
R2 = 0.84; RSS = 0.0085) and the Gaussian model for field 2 
(nugget = 0.39; sill = 0.79; R2 = 0.88; RSS = 0.0095). These models 
indicate the presence of spatial dependency and moderate to higher 
degrees of spatial dependence: 100% and 50% in fields 1 and 2, 
respectively. The interpolated maps of bean defoliation showed that 
bean defoliation was found across the fields with some hot spots of 
bean defoliation (Fig. 7).

Discussion

This study aimed to assess the feasibility and potential of utilizing 
drones equipped with various airborne sensors, including RGB, 
NDVI, and thermal sensors, to evaluate bean defoliation caused by 
E. varivestis. While such sensors are widely used in precision agricul-
ture for tasks like crop yield prediction and stress detection (Lipovac 

Fig. 5. Resolutions of aerial images taken 2, 3, 4, 5, and 6 m above the canopy of beans with an RGB sensor. All the aerial images represent the same area of 
the bean canopy.

Table 1. Results of regression analysis showing the relationship between the actual amount of bean defoliation (at %a) by E. varivestis (x) 
and that (at %) assessed by aerial RGB images (y) at five different flight heights

Flight height (m) above the canopy Regression equation Degree of freedom F P R2

2 y = 0.858 x − 0.070 1, 12 39.27 <0.0001 0.766
3 y = 0.757 x − 0.020 1, 12 48.04 <0.0001 0.800
4 y = 0.631 x + 0.725 1, 12 18.74 0.001 0.609
5 y = 0.753 x + 0.118 1, 12 33.85 <0.0001 0.738
6 y = 0.742 x + 0.016 1, 12 32.11 <0.0001 0.728

aThe actual damage percentage was calculated for each plot and plotted against the damage percentage assessed by aerial images for that plot.

Table 2. Results of regression analysis showing the relationship between the amount of bean defoliation (at %) assessed by aerial images 
(RGB) (x) in each plot and the number of E. varivestis (y) in each plot, at five different flight heights

Flight height (m) above the canopy Regression equation Degree of freedom F P R2

2 y = 0.173 x + 2.12 1, 12 11.74 0.005 0.495
3 y = 0.149 x + 2.00 1, 12 11.75 0.005 0.495
4 y = 0.112 x + 2.77 1, 12 5.19 0.040 0.302
5 y = 0.152 x + 2.03 1, 12 11.04 0.006 0.479
6 y = 0.145 x + 2.04 1, 12 9.51 0.009 0.442

Fig. 6. Direct detection of Epilachna varivestis larva A), pupae B), and adult 
C) on aerial RGB images taken at 2 m above the canopy. Note that the  
E. varivestis adult in (C) was preparing for flight by lifting its forewings.
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et al. 2022), few studies have explored the application of multispec-
tral sensors and NDVI values to detect insect damage in field crops. 
For instance, Hunt Jr and Rondon (2017) utilized a five-band mul-
tispectral sensor to identify Leptinotarsa decemlineata (Coleoptera: 
Chrysomelidae) damage on potatoes, while Park et al. (2023) em-
ployed an RGB sensor for swift detection of bean defoliation during 
an outbreak of Spodoptera exigua (Lepidoptera: Noctuidae). Our 
study stands out as the first to evaluate RGB, NDVI, and thermal 
sensors for the direct detection of various stages of E. varivestis and 
its feeding signs on beans at low-flight altitudes. The thermal sensor 
proved ineffective in detecting feeding signs and bean defoliation, 
although Park et al. (2021b) indicated that flying insects such as 
bees can be detected with thermal sensors. Both NDVI and RGB 
images obtained in this study with drones flying at low-flight heights 
followed by image analysis demonstrated the potential of the rapid 
and cost-effective detection of bean damage caused by E. varivestis 
at individual plant and field levels.

Furthermore, our study attempted to use rotary-wing drones 
equipped with high-resolution cameras at low-flight altitudes (2–4 
m above the canopy) in detecting E. varivestis larvae, pupae, and 
adults. Relatively few E. varivestis were detected on aerial images 
because most E. varivestis larvae and adults prefer to settle and feed 
on the underside of the leaf, and eggs are laid on the underside of 
the leaves. E. varivestis was the only coccinellid found in the plots 
when our destructive sampling was conducted, but the detection 
of E. varivestis with the presence of other coccinellids and similar 
insects could make the direct detection of E. varivestis less accurate.

Our ground sampling results revealed a significant correlation 
between actual bean damage and the total number of E. varivestis, 
particularly the 3rd and 4th instars responsible for 87% of bean 
defoliation (Kabissa and Fronk 1986). These findings can help 
establish or refine an economic injury level (EIL). Two major 
components for EIL calculation are I (injury) and D (damage). In 
the case of defoliators, injury is the amount of defoliation per in-
sect and damage is the economic loss per injury. Because these two 
components are hard to obtain separately, I × D is generally obtained 
with experiments (Pedigo et al. 2021). Two previous studies related 
insect densities to bean yield without knowing the relationship be-
tween defoliation and E. varivestis population density. Barrigossi 
et al. (2003) used a regression analysis to determine 113 kg/ha per 
larvae/row-m as the I × D value, and Capinera et al. (1987) indicated 

that dry beans can tolerate a population of 12–20 E. varivestis larvae 
per plant without significant yield loss. The results of our study indi-
cated that the I value would be 5 cm2 per larva from the regression 
analysis that established a significant positive relationship between 
damage measured from ground-validation RGB images and the total 
number of E. varivestis. The I value obtained from this study can 
help to establish a more realistic EIL for E. varivestis on soybeans.

The outcomes of the spatial analysis substantiated the non-
uniform distribution of bean defoliation across the fields. The 
interpolated maps, depicting bean defoliation by E. varivestis, clearly 
showed the presence of hot and cold spots, denoting areas with high 
and low defoliation, respectively (Fig. 7). In this scenario, the uni-
form application of insecticide across the entire field may result in 
unnecessary treatments in cold spots, thereby diminishing control 
efficiency. Conversely, implementing site-specific E. varivestis control 
measures in hot spots can significantly enhance efficiency while con-
currently reducing control costs. The identification of these distinct 
defoliation patterns through spatial analysis offers valuable insights 
for targeted and cost-effective pest management strategies.

While our study emphasizes the potential of RGB and NDVI 
sensors, image analysis, and spatial analysis for assessing bean 
damage caused by E. varivestis at individual plant and small-field 
levels, it also recognizes limitations in surveying large or uneven 
fields. To address these constraints, we recommend incorporating 
state-of-the-art drone technology. Firstly, rapid advancements in 
drone technology enable coverage of large areas for aerial surveys 
while providing the ability to hover over the target object (i.e., ver-
tical takeoff and landing; VTOL) (Kim et al. 2010). Drones with 
VTOL capability can serve for both identifying target pests and pre-
cisely applying control measures (Cromwell et al. 2021, Rahman et 
al. 2021). Secondly, low-altitude drone flight facilitates obtaining 
high-resolution aerial images. Although low-altitude surveys might 
pose risks, recent developments in anti-collision sensors and global 
positioning system (GPS) allow drones to be flown at extremely 
low-flight heights reliably and safely (Parshin et al. 2018, Chandran 
et al. 2023). Even if the ground is uneven, the drone can maintain 
a consistent flight altitude above the terrain with terrain-adaptive 
flight planning using autopilot drone flight with route planning 
(Silvagni et al. 2017). Lastly, drone swarming, combining advanced 
anti-collision technology and terrain-following drones, offers po-
tential applications in agriculture to cover larger areas even with 

Fig. 7. Two bean fields (A and B) for spatial analysis and mapping the distribution of the bean defoliation caused by Epilachna varivestis. The spatial distribution 
of bean defoliation in each field was mapped based on pixels representing defoliation (see “Materials and Methods” section for details), and interpolated maps 
of bean defoliation were generated by kriging in geostatistics.

D
ow

nloaded from
 https://academ

ic.oup.com
/jee/advance-article/doi/10.1093/jee/toae117/7680635 by ESA M

em
ber Access user on 17 Septem

ber 2024



7Journal of Economic Entomology, 2024, Vol. XX, No. XX

low-altitude drone flights. The coordination of multiple drones flying 
in synchronized patterns (a.k.a., formation control of drones) can be 
employed (Mahmood and Kim 2015, He et al. 2018), although this 
technology has not yet been applied in production agriculture.

In conclusion, this study highlights the potential of high-
resolution airborne sensors on drones for detecting low-level bean 
defoliation by E. varivestis and directly identifying its various life 
stages. The findings suggest the potential for generating field maps 
to guide site-specific management strategies based on defoliation 
distribution. Moreover, ongoing advancements in drone technology 
and machine learning can further enhance automated image proc-
essing and pest detection accuracy in the future (Chen et al. 2021, 
Valicharla et al. 2023).
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