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1. INTRODUCTION

The notion of integral closure of an ideal I of a commutative
Noetherian ring R has proved useful in many situations both in commu-
tative algebra and algebraic geometry. This concept is extended to modules
by D. Rees [1]. Similar to the theory of integral closure of ideals, it is natural
to expect many interesting applications for notion of integral closure of
modules. In fact, a lot of articles are concerned with this notion and its
applications (see e.g. [12, 13, 10, 5, 4 and 6]). In this paper we investigate
further applications of this concept. In particular we extend some of the
main results of McAdam [9] to finitely generated modules.

Let I denote an ideal of the commutative Noetherian ring R. The set
�Q�ðIÞ, quintasymptotic prime ideals of I, was systematically studied by
S. McAdam in [9] and S.H. Ahn in [1] extended this notation to finitely
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generated R-modules. For a finitely generated R-module N, the set of
quintasymptotic prime ideals of I with respect to N is defined as

�Q�ðI;NÞ ¼ fp 2 VðIÞj there is a z 2 MinR�
p
N�

p

with RadðIR�
p þ zÞ ¼ pR�

pg:

Ahn’s paper contains no notion of integral closure on an R-module, so that
the techniques related to integral closure of an ideal are not available on
modules. Therefore the counterparts of [9, Theorem 1.5 and Proposition 3.5]
for finitely generated modules are not proved in [1].

We prove the counterparts of these results for finitely generated
modules in certain cases .

Let R be a Noetherian domain and K be its field of fractions. Let N be
a finitely generated torsion-free R-module. The (Rees) integral closure of N
is defined as �N ¼ \NV, where V ranges over all DVR’s of K which contain
R. For a submodule M of N, we define the integral closure of M in N as
Ma ¼ �M \N. We denote the submodule

S
n�0ðM :N InÞ of N by M :M< I >.

In section two, we examine the behaviour of integral closure of modules
with respect to localization and completion. The main result of this section
asserts that if, R is a normal domain, N a finitely generated torsion-free
R-module and M is an integrally closed submodule of N with
rankR M ¼ rankR N, then M has a primary decomposition each primary
component of which is integrally closed.

In the third section, we focus on locally analytically normal domains.
Let R be a locally analytically normal domain. For a finitely generated
torsion-free R-module N, it follows that N�

p is a torsion-free R�
p-module for

all p 2 SpecR, and hence �Q�ðI;NÞ coincides with MinRðR=IÞ. Thus
Theorems 3.3 and 3.4 may be considered as generalizations of the above
mentioned results of McAdam. Let N be an R-module and S a multi-
plicatively closed subset of R. For a submodule M of N, we put
SðMÞ ¼

S
s2SðM :N sÞ. In Theorem 3.4, we provide a criterion for compa-

rison of the topologies defined by the filtrations fSðI nNÞgn�0 and
fðI nNÞagn�0. Namely, we show that over a locally analytically domain R, the
S-symbolic topology fSðI nNÞgn�0 is finer than the topology given by the
integral closure filtration fðI nNÞagn�0 if and only if S is disjoint of each
minimal prime ideal of I.

In the end of this section, we give some applications to local co-
homology.

All rings considered in this paper are assumed to be commutative with
non-zero identities. For a module N over a commutative Noetherian ring R,
we denote by MinRN, the set of minimal elements of AssR N. If ðR;mÞ is a
local ring, the m-adic completion of an R-module N is denoted by N�.
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By a locally analytically normal domain, we mean a Noetherian domain R
such that R�

p is a normal domain for each prime ideal p of R. For a domain
R, we let KR denote its field of fractions.

2. INTEGRAL CLOSURE IN MODULES

This section is devoted to examining of integral closure of modules as
developed by Rees in [12]. The theory of reductions and integral closure of
modules can be developed for torsion-free modules over an arbitrary
Noetherian domain without assumptions of locality or regularity. So, we let
R be a Noetherian domain with the field of fractions KR, and let N be a
finitely-generated torsion-free R-module. By NK we denote the finite-
dimensional KR-vector space N�R KR. If M is a submodule of N, then MK

is naturally identified with a subspace of NK. For any birational overring S
of R, we use the notation NS to be the S-submodule of NK generated by N.
In this section, the birational overring of R that we will focus on are the
discrete valuation rings of KR containing R.

Definition. With the previous notation, an element v 2 NK is said to be
integral over N if v 2 NV for every discrete valuation ring (DVR for short) V

of KR containing R. The Rees integral closure of N is the set of all elements of
NK that are integral over N , and it is denoted by �N . Moreover, for a submodule
M of N , the integral closure of M in N is the submodule Ma :¼ �M \ N . We say
that M is integrally closed if M ¼ Ma.

Example 2.1. (i) Let R be a DVR and N a finitely generated torsion-free
R-module. Then any submodule of N is integrally closed.

(ii) Let R be a normal domain (i.e. integrally closed in the field of
fractions KR) and let N be a finitely generated torsion-free R-module. Then,
by using [6, Corollary 3.5], it follows that every projective submodule P of N

is integrally closed.
Let R be a Noetherian domain. Let N be a finitely generated torsion-

free R-module of rank r, and let F be a free R-submodule of NK containing
N with rankRðF Þ ¼ r. Then the symmetric algebra SymRðF Þ ¼ SðF Þ is equal
to R½T1; . . . ;Tr� ¼ R½T�, a polynomial ring over R with r variables. Suppose
N is generated by b1; . . . ; bt 2 F, with bi ¼ ðbi1; . . . ; birÞ. We denote by IN, the
ideal of SðF Þ generated by N, that is IN ¼ ðb1T; . . . ; btTÞSðF Þ, where
biT ¼ bi1T1 þ � � � þ birTr.

The following result will be served as the spring board for our inves-
tigations into the properties of the integral closure in modules. We shall use
it in Lemmas 2.3 and 2.4 and Theorem 2.6.
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Lemma 2.2. With the previous notation, let R be a normal domain. Then
�N ¼ ðIN Þa \ F, where ðIN Þa denotes the integral closure of the ideal IN in SðF Þ.

Proof. See [6, Proposition 3.6]. u

Lemma 2.3. Let R a normal domain. Let N be a finitely generated torsion-
free R-module and M a submodule of N . If U is a multiplicatively closed subset
of R, then U�1Ma ¼ ðU�1MÞa.

Proof. By the definition Ma ¼ �M \ N , where �M denotes the Rees integral
closure of M . Hence U�1Ma ¼ U�1 �M \ U�1N . Therefore it is enough to
show that U�1 �M ¼ U�1M . To this end, first note that by Lemma 2.2,
�M ¼ ðIM Þa \ F, where F is a free R-submodule of MK containing M with
rankR F ¼ rankR M , and IM denotes the ideal of SðF Þ generated by M . It is
easy to see that U�1ðSðF ÞÞ ffi SðU�1F Þ naturally and that the image of
U�1IM under this isomorphism is IU�1M . By [15, Lemma 2.3],
ðU�1IM Þa ¼ U�1ðIM Þa and hence

U�1 �M ¼ U�1ðIMÞa \U�1F ¼ ðU�1IMÞa \U�1F

¼ ðIU�1MÞa \U�1F:

Now, the fieldKR is also the field of fractions ofU
�1R.MoreoverU�1F is a free

U�1R-submodule of ðU�1MÞKR
containing U�1M with rankU�1RðU�1F Þ ¼

rankU�1RðU�1MÞ. Therefore U�1 �M ¼ U�1M. u

Lemma 2.4. Let R be a locally analytically normal domain and let N be a
finitely generated torsion-free R-module. For any submodule M of N with
rankR M ¼ rankR N ,

ðM�
pÞa \Np ¼ ðMpÞa

for all p 2 SpecR.

Proof. First of all, it is easy to see that over a domain T , a T -module C is
torsion-free if and only if AssT C ¼ f0g. Having kept this in mind and using
[7, Theorem 23.2], we deduce that N �

p is a torsion-free R�
p-module for all

p 2 SpecR. Hence, it is enough to show that over a local normal domain R,
we have ðM �Þa \ N ¼ Ma. Since N is a finitely generated torsion-free
R-module, there is a free R-submodule F of NK containing N such that
rankR N ¼ rankR F. Let K� denote the field of fractions of R�. Because
M � M � � F�, it follows that F� is a free R�-submodule of M � �R� K�

containing M � and that rankR� M � ¼ rankR� F�. Note that the R�-module
MK �R R� can be naturally embedded in M � �R� K�. It is easy to establish the
following facts:
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(i) SðF�Þ ffi SðF Þ �R R�,
(ii) the natural homomorphism SðF Þ �! SðF Þ �R R� ¼ SðF�Þ is

faithfully flat (see [7, P. 53, Exercise 7.1]), and,
(iii) IM SðF �Þ ¼ IM� .

Now, we have �M� \N ¼ ðIM� Þa \ F � \N, by Lemma 2.2. Since the natural
homomorphism SðF Þ �! SðF �Þ is faithfully flat, it follows from [8, Lemma
3.15] that ðIMSðF �ÞÞa \ SðF Þ ¼ ðIMÞa, and hence

�M� \N ¼ ðIM� Þa \N ¼ ðIMSðF �ÞÞa \N

¼ ðIMSðF �ÞÞa \ SðF Þ \N ¼ ðIMÞa \N

¼ ðIMÞa \ F \N ¼ �M \N:

This completes the proof. u

Although, the part (i) of the following result (which may be considered
as an extended form of Krull’s intersection Theorem) may be deduced from
[2, p.288, Ex.15], we bring it here just for comparison with the part (ii) of
this result.

Proposition 2.5. Let I denote a proper ideal of the Noetherian ring R and let
N be a finitely generated R-module. Suppose that 0 ¼

Tk
i¼1 Qi is an irredundant

primary decomposition of the zero submodule of N with Qi belongs to pi. Then

(i)
T

n�1 I nN ¼
T
fQijpi þ I �¼= Rg. In particular if pi þ I 7-- R for each

pi 2 AssR N , then
T

n�1 I nN ¼ 0.
(ii) If R is domain and N is torsion-free, then

T
n�1ðI nNÞa ¼ 0.

Proof. (ii) It is known that Ia ¼ ð\IV Þ \ R, where the intersection is taken
over all DVR’s V of the field of fractions of R containing R. Since I is a
proper ideal and RadðIÞ ¼ RadðIaÞ, it follows that there exists a such DVR,
W such that IW 6¼ W . Then we have

T1
n¼1ðI nNÞa ¼

T1
n¼1ðI nN \ NÞ ¼T1

n¼1½
T

R�V ðI nV ÞNV \ N �, the second intersection is taken over all DVR’s V

of the field of fractions of R containing R. Thus

\1
n¼1

ðInNÞa ¼
\
R�V

\1
n¼1

ðInVÞNV

 !" #
\N

�
\1
n¼1

ðIWÞnðNWÞ
 !

\N ¼ 0: u

Theorem 2.6. Let R be a Noetherian normal domain and let M be an inte-
grally closed proper submodule of the finitely generated torsion-free R-module
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N with rankR M ¼ rankR N . Then M has a primary decomposition each pri-
mary component of which is integrally closed.

Proof. Since N is torsion-free, there is a free R-submodule F of
NK ¼ N �R K containing N such that rankR F ¼ rankR N . Because
rankR M ¼ rankR N and M ¼ Ma it follows that M ¼ ðIM Þa \ F \ N ¼
ðIM Þa \ N , by Lemma 2.2. Now, since ðIM Þa is an integrally closed ideal of
the Noetherian ring SðF Þ, by [9, Lemma 1.4], ðIM Þa has a primary decom-
position q1 \ � � � \ qs each primary component of which is integrally closed.
Hence

M ¼ ðIMÞa \N ¼ ðq1 \ q2 \ � � � \ qsÞ \N

¼ ðq1 \NÞ \ ðq2 \NÞ \ � � � \ ðqs \NÞ:
ð�Þ

For a given element a of R, consider the following commutative dia-
gram in which vertical maps are the natural monomorphisms.

It follows from this diagram that qi \N is a primary submodule of N,
whenever it is proper. Now, we show that qi \N is integrally closed sub-
module in N for each 1 � i � s. To this end, first note that for a DVR, W
with SðF Þ � W � KSðF Þ, by [11, 33.7], W \ KR is a DVR of R and clearly
R � W \ KR � KR. Thus

ðqi \NÞa ¼ ðqi \NÞ \N ¼
\

R�V�KR

ðqi \NÞV
" #

\N

�
\

SðF Þ�W�KSðF Þ

qiðW \ KRÞ

2
4

3
5 \N

�
\

SðF Þ�W�KSðF Þ

qiW

2
4

3
5 \N ¼ qi \N:

Hence ðqi \NÞa ¼ qi \N. Therefore deleting unneeded components in (*)
leaves the desired primary decomposition of M in N. u

5244 DIVAANI-AAZAR AND NAGHIPOUR



3. IDEAL TOPOLOGIES IN MODULES

In this section, we compare certain ideal topologies on finitely gener-
ated torsion-free modules over an analytically normal domain. In particular,
for a multiplicatively closed subset S of R the topologies defined by the
filtrations fSðI nNÞgn�0 and fðI nNÞagn�0 are compared.

In the case N ¼ R, the following lemma was proved by Chevalley. The
proof given in [11, Theorem 30.1], can be easily carried over to a module.
(see, [2, Ch. IV, Section 2.5, Corollary 4]).

Lemma 3.1. Let ðR;mÞ be a complete Noetherian local ring, N a finitely
generated R-module and ðNnÞn�0 a decreasing sequence of submodules of N

such that
T

n�0 Nn ¼ 0. Then, for all r > 0, there exists nðrÞ > 0 such that
NnðrÞ � mrN .

Proposition 3.2. Let ðR;mÞ be a locally analytically normal domain, which is
complete in the m-adic topology. Let N be a non-zero finitely generated tor-
sion-free R-module. Then for any proper ideal I of R, the following are
equivalent:

(i)
T1

n¼1ððI nNÞa :N< m >Þ 6¼ 0.
(ii) There is a k � 0 such that for all m � 0; ðImNÞa :N

< m > 6� ðmkNÞa.
(iii) I is m-primary.

Proof. In view of Proposition 2.5 and Lemma 3.1, it is clear that (i) and (ii)
are equivalent. Now, we show the implication (i)¼)(iii). By [13, Theorem
5.11], the set

S1
n¼1 AssRðN=ðI nNÞaÞ is finite. If m does not belong to this

union, then ðI nNÞa :N< m >¼ ðI nNÞa, for each n 2 N, which contradicts (i),
by Proposition 2.5. Thus we can choose s 2 m such that it does not belong
to any associated prime to N=ðI tNÞa; t 2 N, which is not equal to the
maximal ideal. Let S be the set of all non-negative powers of s. By considering a
minimal primary decomposition of the submodule ðI nNÞa, it easily follows
that ðI nNÞa :N< m >¼ S�1ðI nNÞa \ N for all n 2 N. But, by Lemma 2.3,
S�1ðI nNÞa ¼ ððS�1I nÞðS�1NÞÞa. Thus, in view of Proposition 2.5, (i) implies
that S�1I ¼ S�1R. That is s 2

ffiffiffi
I

p
. To prove (iii), we should show that m is a

minimal prime of I . By the choice of s, it suffices to show that if p is a
minimal prime ideal of I , then p 2 AssRðN=ðImNÞaÞ, for some m 2 N. We
may and do assume that R is local at p by Lemma 2.3. SinceT

n�1ðI nNÞa ¼ 0, there exists an integer m such that ðImNÞa 7-- N . Now, we
have p ¼ RadðIÞ � RadððImNÞa :R NÞ � p. Thus RadððImNÞa :R NÞ ¼ p and
this implies that p 2 AssRðN=ðImNÞaÞ.

INTEGRAL CLOSURE AND IDEAL TOPOLOGIES IN MODULES 5245



(iii)¼) (i). Since RadðIÞ ¼ m, for any integer n there is an integer lðnÞ
such that mlðnÞ � I n. Hence

ðInNÞa :N< m >� InN :N mlðnÞ � InN :N In ¼ N

Thus
T1

n¼1ððInNÞa :N< m >Þ ¼ N 6¼ 0. u

Let I denote a non-zero ideal of the Noetherian domain R and N a
finitely generated torsion-free R-module. Then one can check easily that
rankRðINÞ ¼ rankRðNÞ. We shall use this fact in the remainder of this sec-
tion without further comment.

Theorem 3.3. Let R be a locally analytically normal (Noetherian) domain
and I an ideal of R. Let N be a non-zero finitely generated torsion-free
R-module. For any prime ideal p � I of R, the following are equivalent:

(i) p 2 MinRR=I .
(ii) There exists an integer k � 1 such that ðImN :N< p >Þ 6�

ðpkNpÞa \ N ; for all m 2 N.
(iii) There exists an integer k � 1 such that ðIm :R< p >Þ 6�

ðpkRpÞa \ R; for all m 2 N.

Proof. The equivalence of conditions (i) and (iii) is proved in [9,
Proposition 3.5]. We have I mN :N< p >� ðpkNpÞa \ N if and only if
ImNp :Np

< pRp >� ðpkNpÞa, and p 2 MinRR=I if and only if
pRp 2 MinRp

ðRp=IRpÞ. Hence we assume that R is local at p and write ðpkNÞa

instead of ðpkNpÞa \ N .
(i)¼)(ii). Suppose that p 2 MinRR=I . Then I is p-primary. By

Proposition 2.5,
T1

n¼1ðpnNÞa ¼ 0. Since N 6¼ 0, there exists k 2 N such that
ðpkNÞa 7-- N . We show that

ImN :N< p >6� ðpkNÞa
for all m 2 N. Assume there exists m 2 N such that ImN :N< p >� ðpkNÞa.
Then

I � ðImN :N< p >Þ :R N � RadððpkNÞa :R NÞ � p:

Hence RadððImN :N< p >Þ :R NÞ ¼ p and so p 2 AssRðN=ImN :N< p >Þ
which is a contradiction as one can see easily.

(ii)¼)(i). In view of Lemma 2.4, the condition (ii) implies that
ðImN�Þa :N�< pR� > 6� ðpkN�Þa for all m 2 N. Hence by Proposition 3.2, the
ideal IR� is pR�-primary and so p 2 MinRR=I . u

Before bringing the next result we fix some notation. Let S be a
multiplicatively closed subset of R. For a submodule M of the Noetherian
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R-module N, we use SðMÞ to denote
S

s2SðM :N sÞ. Also, for an integer
k � 1, and a prime ideal p of R, we denote

S
s2RnpððpkNÞa :N sÞ by ðpNÞ<k>

.

Now, we are ready to prove the main result of this section.

Theorem 3.4. Let R be a locally analytically normal (Noetherian) domain, I

an ideal of R and S a multiplicatively closed subset of R. Then the following are
equivalent:

(i) S � Rn
S
fp 2 MinRR=Ig:

(ii) Let N be a finitely generated torsion-free R-module. For all
primes q � I and k � 0, there is a m � 0 with
SððImNÞaÞ � ðqNÞ<k>

.
(iii) The topology fSðI nÞgn�1 is finer than the topology defined by the

integral closure filtration fðI nÞagn�1.
(iv) The topology fSðI nNÞgn�1 is finer than the topology defined by the

integral closure filtration fðI nNÞagn�1, for any finitely generated
torsion-free R-module N .

Proof. (i)¼)(ii). Suppose that (i) holds, and let q and k be as in (ii). First,
we localize at q. If S0 is the image of S in Rq, under the natural mono-
morphism R �! Rq, then (i) implies that S0 � Rqn

S
fq0 2 MinRq

ðRq=IRqÞg.
Also it is easy, from Lemma 2.3, to see that if S0ðIm

q NqÞa � ðqNqÞ<k>, then
SðImNÞa � ðqNÞ<k>

. Therefore we may assume that R is local at q (and write
ðqkNÞa instead of ðqNÞ<k>

). Next we see that we may assume that R is
complete. To this end, first note that condition (i) holds for S and the ideal
IR� of R�. On the other hand Lemma 2.4 implies that, if SðImN�Þa � ðqkN�Þa,
then SðImNÞa � ðqkNÞa. Hence we may assume in addition that R is com-
plete. Since I is disjoint from S, by Proposition 2.5,T1

n¼1½ðI nS�1NÞa \ N � ¼ 0. Hence by Chevalley’s theorem (see, Lemma 3.1),
there is an m � 0 with ðImS�1NÞa \ N � qkN . Thus by Lemma 2.3,
S�1ðImNÞa \ N � qkN . That is SðImNÞa � qkN � ðqkNÞa. So that (ii) holds.

(ii)¼)(i). Let (ii) holds, and let p 2 MinRR=I . By Theorem 3.3, there is
k � 1 such that I nN :N< p >6� ðpNÞ<k>

for all n � 1. The condition (ii)
implies that, there is a m � 1 with SðImNÞa � ðpNÞ<k>

. For this m, we have
ImN :N< p > 6� SðImNÞa. Let x 2 ImN :N< p > but x 62 SðImNÞa, in particular
x 62 SðImNÞ. Now, there exists a n � 1 such that pnx � ImN . If p \ S 6¼ ;,
then there is a r 2 pn \ S. Hence rx 2 ImN or x 2 ImN :S r � SðImNÞ. Thus
x 2 SðImNÞ, which is a contradiction. Therefore p \ S ¼ ;, so that (i) holds.

(ii)¼)(iv). Let (ii) hold and let k � 0. Let N be a finitely generated
torsion-free R-module. We consider a primary decomposition Q1 \ � � � \ Qn

of ðI kNÞa, with Qi primary submodule to pi and ðQiÞa ¼ Qi. Note that such
primary decomposition exists by Theorem 2.6. For some ki, we have

INTEGRAL CLOSURE AND IDEAL TOPOLOGIES IN MODULES 5247



pki

i N � Qi for i ¼ 1; 2; . . . ; n, and furthermore by (ii) for some mi, SðImi NÞ �
ðpiNÞ<ki>, (note that for all 1 � i � n, I � pi). Let m ¼ maxfm1; . . . ;mng, we
see that

SðImNÞ � ðpiNÞ<ki>

for all 1 � i � n. But we have

ðpiNÞ<ki> ¼
[

s2Rnpi

½ðpki

i NÞa :N s� �
[

s2Rnpi

ðQi :N sÞ ¼ Qi:

Therefore SðImNÞ �
Tn

i¼1 Qi ¼ ðIkNÞa, and so (iv) holds.
(iv)¼)(i). Let p 2 MinRR=I . By Theorem 3.3, there exists k � 1 such

that I nN :N< p > 6� ðpNÞ<k>
for all n � 1. Since ðI kNÞa � ðpkNÞa

� ðpNÞ<k>
, it follows from condition (iv), that there is m � 1 with

SðImNÞ � ðpNÞ<k>
. For this m we have I mN :N< p > 6� SðImNÞ. Choose

x 2 ðImN :N< p >ÞnSðImNÞ. Now, we can process similar to the proof of the
implication (ii)¼)(i) to deduce that p \ S ¼ ;. Hence (i) holds.

Finally, (i)()(iii) is trivial using [9, Theorem 1.5]. u

Corollary 3.5. Let R be a locally analytically normal (Noetherian) domain, I
an ideal of R and S a multiplicatively closed subset of R. Suppose that N is a
finitely generated torsion-free R-module. Then the following are equivalent:

(i) The topology fSðI nNÞgn�0 is finer than the topology fðI nNÞagn�0.
(ii) H

htq
IRq

ðNqÞ ¼ 0 for all q 2 V ðIÞ with q \ S 6¼ ;.

Proof. (i)¼)(ii). By Theorem 3.4, S � Rn [ fp 2 MinRR=Ig. Let q 2 V ðIÞ,
with q \ S 6¼ ;, it follows that q 62 MinRR=I . Thus we have dimR�

q=IR�
q > 0.

So from the Lichtenbaum-Hartshorne vanishing Theorem [14, Theorem 1.1
(c)], it follows that H

ht q
IRq

ðNqÞ ¼ 0 and so (ii) holds.
(ii)¼)(i). Let (ii) hold, and p be any prime of MinRR=I . Then IRp

ispRp-primary and so by Grothendieck’s non-vanishing Theorem [3, Theo-
rem 6.1.2], H

htp
IRp

ðNpÞ 6¼ 0. Hence by assumption S \ p ¼ ;. Thus S � Rn[
fp 2 MinRR=Ig, which completes the proof of the corollary by Theorem 3.4.

u

Corollary 3.6. Let ðR;mÞ be a locally analytically Noetherian normal
domain, and let I be an unmixed ideal of R which is not m-primary. Suppose
that N is a finitely generated torsion-free R-module. Then

SuppR Hi
IðNÞ � fq 2 VðIÞjht q � iþ 1g

for all i with ht I < i � d, where d ¼ dim R.
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Proof. It is clear that SuppR Hi
I ðNÞ � V ðIÞ, by [3, Exercise 6.2.6]. Fur-

thermore if p 2 V ðIÞ is such that ht p < i, then by [3, Theorems 4.3.2 and
6.1.2] we have ðHi

I ðNÞÞp ¼ 0, since dimNp ¼ ht p < i. Thus

SuppR Hi
IðNÞ � fq 2 VðIÞjht q � ig:

Now, let S ¼ Rn [ fp 2 MinRR=Ig then by Theorem 3.4 and Corollary 3.5,
ðHht q

I ðNÞÞq ¼ 0 for all q 2 VðIÞ with q \ S 6¼ ;. Hence for all i with
ht I < i � d, SuppR Hi

IðNÞ � fq 2 VðIÞjht q ¼ i and q \ S ¼ ;g[ fq 2 VðIÞj
ht q � iþ 1g. Now, if q 2 VðIÞ and q \ S ¼ ;, then q 2 MinRR=I and since I
is unmixed, it follows that ht q ¼ ht I. Thus fq 2 VðIÞjht q ¼ i and
q \ S ¼ ;g ¼ ;, for all i with ht < i � d. Therefore

SuppR Hi
IðNÞ � fq 2 VðIÞjht q � iþ 1g

for all ht I < i � d as desired. u
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