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ABSTRACT

Let I be an ideal of a Noetherian ring R, N a finitely generated
R-module and let S be a multiplicatively closed subset of R.
We define the nth ðSÞ-symbolic power of I w.r.t. N as
SðI nNÞ ¼

S
s2SðI nN :N sÞ. The purpose of this paper is to show

that the topologies defined by fI nNgn�0 and fSðI nNÞgn�0 are
equivalent (resp. linearly equivalent) if and only if S is disjoint
from the quintessential (resp. essential) primes of I w.r.t. N .

3495

Copyright # 2001 by Marcel Dekker, Inc. www.dekker.com

COMMUNICATIONS IN ALGEBRA, 29(8), 3495–3506 (2001)



1. INTRODUCTION

Let R be a commutative Noetherian ring, S a multiplicatively closed
subset of R, I an ideal of R and N a finitely generated R-module. The nth
ðSÞ-symbolic power of I w.r.t. N , denoted by SðI nNÞ, is defined to be the
union of I nN :N s, where s varies in S. The I -adic filtration fI nNgn�0 and the
ðSÞ-symbolic filtration fSðI nNÞgn�0 induce topologies on N which are called
I -adic topology and ðSÞ-symbolic topology respectively. These two topolo-
gies are said to be equivalent (resp. linearly equivalent), if for every integer
m � 0, there is an integer n � 0 such that SðI nNÞ � I mN , (resp. there is an
integer h � 0 such that SðI kþhNÞ � I kN for all k � 0). In the case
S ¼ Rn [ fp 2 m SuppRðN=INÞg, where m SuppRðN=INÞ is the set of the
minimal primes of SuppRðN=INÞ, the n-th ðSÞ-symbolic power of I w.r.t. N is
denoted by ðINÞðnÞ

. Equivalence of I -adic topology and ðSÞ-symbolic
topology has been studied, in the case N ¼ R, in [4, 5, 8, 10–12, 15–17] and
has led to some interesting results.

The purpose of the present paper is to characterize the equivalence
(resp. linearly equivalence) between these topologies in terms of quintes-
sential (resp. essential) primes. Using this characterization, we show that the
topologies fI mNgm�0 and fSðI mNÞgm�0 are equivalent if and only if, for any
prime ideal p containing I with p \ S 6¼ f, the topologies defined by the
filtrations fI mNp :Np

hpigm�0 and fI mNpgm�0 are equivalent. We also show
that, for a prime ideal p 2 SuppðN=INÞnm SuppðN=INÞ, if the topology
given by the filtration fðINÞðmÞgm�0 is finer than the topology given by the
filtration fðpNÞðmÞgm�0, then p 62 QðI ;NÞ.

Throughout this paper all rings are commutative Noetherian, with
identity, unless otherwise specified. We shall use R to denote such a ring, I

an ideal of R, and N a non-zero finitely generated module over R. We denote
by R the Rees ring R½u; It� :¼

L
n2Z I ntn of R w.r.t. I , where t is an inde-

terminate and u ¼ t�1. Also, the graded Rees module N ½u; It� :¼
L

n2Z I nN

over R is denoted by N , which is a finitely generated R-module. If ðR;mÞ is
local, then R� (resp. N�) denotes the completion of R (resp. N ) w.r.t. the m-
adic topology. In particular, for any p 2 Spec R, we denote R�

p and N �
p the

pRp-adic completion of Rp and Np, respectively. For any submodule M of N ,
the submodules

S
s2SðM :N sÞ and

S
n�0ðM :N InÞ of N are denoted by

SðMÞ and M :N hIi respectively, where S is a multiplicatively closed subset
of R. In the case S ¼ Rn

S
fp 2 m SuppRN=INg, the submodule SðI mNÞ is

denoted by ðINÞðmÞ
. In particular if p is a prime ideal of R, then

ðpNÞðmÞ
:¼

S
s2RnpðpmN :N sÞ. For any ideal J of R, the radical of J , denoted

by RadðJÞ, is defined to be the set fa 2 R : an 2 J for some n 2 Ng. Finally,
for any R-module L, we shall use m AssRL to denote the set of minimal
elements of AssRL.
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In the second section we will study some basic results which will be
needed in the Sections 3 and 4. Some of these results has been established, by
S. McAdam and L. J. Ratliff, Jr, in [7], in certain case when N ¼ R. In this
section, among other things, we prove the following theorem.

Theorem 1.1. Let ðR;mÞ be a complete ring. Then; with the above notations;
the following conditions are equivalent:

(i) There is a p 2 AssRN such that RadðI þ pÞ ¼ m.
(ii) There is an integer k � 1 such that; for all integers m � 1;

I mN :Nhmi 6� mkN .

In the third section we examine the equivalence of the topologies
defined by fI nNgn�0; fðINÞðnÞgn�0 and fSðI nNÞgn�0 by using the quintes-
sential primes of I . Some of these results has been established, by P. Schenzel
in [11,12] and S. McAdam in [8], in certain case when N ¼ R. A typical result
in this direction is the following:

Theorem 1.2. The following conditions are equivalent:

(i) QðI ;NÞ ¼ m AssRðN=INÞ.
(ii) The topologies fðINÞðnÞgn�0 and fI nNgn�0 are equivalent.

The proof of Theorem 1.2 is given in 3.7. Finally in the fourth section, we
study the linearly equivalence of the I -adic and ðSÞ-symbolic topologies in
terms of essential primes of I . The main result of this section is:

Theorem 1.3. Let S be a multiplicatively closed subset of R. Then the I-adic
and ðSÞ-symbolic topologies; on N ; are linearly equivalent if and only if S is
disjoint from the essential primes of I.

2. SOME BASIC RESULTS

The purpose of this section is to establish some results which will
be needed later. The aim goal of this section is Theorem 2.6, which plays a
key role in this paper. The following lemma is needed in the proof of that
theorem.

Lemma 2.1. ðiÞ ðcf: ½7; ð2:1Þ LEMMA�Þ. Let ðR;mÞ be local and
p 2 AssRN . Then there exists a non-zero element y in N such that; for every
submodule M of N with RadðM :R N þ pÞ ¼ m; either y 2 M or
m 2 AssRN=M .
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(ii) ðcf: ½7; ð2:2Þ COROLLARY�Þ. Let p 2 Spec R and q 2 AssRN be
such that q � p. Then there is an integer k � 1 such that p 2 AssRN=M for
any submodule M of N with M � ðpNÞðkÞ

and that p 2 m AssR

ðR=M :R N þ qÞ.

Proof. Let p 2 AssRN , then there is a non-zero element y 2 N such that
p ¼ 0 :R y. Let M be any submodule of N such that RadðM :R N þ pÞ ¼ m
and m 62 AssRN=M . It is enough to show that y 2 M . To this end, let
Q1 \ � � � \ Qn ¼ M be an irredundant primary decomposition of the sub-
module M , with Qi is pi-primary submodule. Then m 6¼ pi, for all i ¼ 1;
2; . . . ; n. Since ðM :R NÞ � pi with 1 � i � n, we have p 6� pi for every i ¼ 1;
2; . . . ; n. Therefore, because of py ¼ 0, we have py � Qi for all i ¼ 1; 2; . . . ; n.
Thus y 2 Q1 \ � � � \ Qn. Therefore y 2 M , so that (i) holds.

In order to prove (ii), we may assume that ðR; pÞ is local. Then
ðpNÞðkÞ ¼ pkN . Let y be as in (i). Using Krull’s Intersection Theorem, there
exists an integer k � 1 such that y 62 pkN . Now, it is straightforward to check
that the assertion follows from (i). u

Remark 2.2. Let M be a submodule of N . The increasing sequence of
submodules

M � M :N I � M :N I2 � � � � � M :N In � � � �

becomes stationary. Denote its ultimate constant value by M :N hIi. Note
that M :N hIi ¼ M :N In for all large n. Let M ¼ Q1 \ � � � \ Qr apQrþ1

\ � � � \ Qs be an irredundant primary decomposition of M with
I � RadðQi :R NÞ exclusively for r þ 1 � i � s. Then, from the definition, it
easily follows that M :N hIi ¼ Q1 \ � � � \ Qr. Therefore

AssRN=M :N hIi ¼ fp 2 AssRN=M : I 6� pg ¼ AssRðN=MÞnVðIÞ:

In the case N ¼ R, the following lemma was proved by Chevalley. The
proof given in [9, Theorem 30.1] can be easily carried over to a module, (see,
[2, Ch. IV. Section 2.5, Corollary 4]).

Lemma 2.3. Let ðR;mÞ be a complete local ring and let fNn : n ¼ 1; 2; . . .g
be a decreasing sequence of submodules of N such that

T
n�0 Nn ¼ 0. Then for

all integers r � 1 there exists nðrÞ � 1 such that NnðrÞ � m rN .

Remark 2.4. (see, [9, Theorem 18.1]). Let T be a ring which is a flat
R-module and let N1;N2 be submodules of N . Then

ðN1 :R N2Þ �R T ¼ ðN1 �R T :T N2 �R TÞ:

In particular, if ðR;mÞ is local, then ðN1 :R N2ÞR� ¼ ðN�
1 :R� N �

2 Þ.
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The following lemma is almost certainly known, but I could not find a
reference for it. So it is explicitly stated and proved here.

Lemma 2.5. Let y be an element of N. Then there is an integer r � 0 such
that; for all m � r;

ImN :R Ry ¼ Im�rðI rN :R RyÞ þ ð0 :R RyÞ:
Proof. By the Artin-Rees Lemma, there exists an integer r � 0 such that,
for all m � r,

ImN \ Ry ¼ Im�rðI rN \ RyÞ:

It is easy to see that, I mN \ Ry ¼ ðI mN :R RyÞy. Consequently, when
m � r, we have

ðImN :R RyÞy ¼ Im�rðI rN :R RyÞy:

Let a 2 I mN :R Ry and suppose that m � r. Then ay belongs to ðI mN :R RyÞy

and therefore ay ¼ a0y for some a0 2 I m�rðI rN :R RyÞ. It follows that
a 2 I m�rðI rN :R RyÞ þ ð0 :R RyÞ. Accordingly I mN :R Ry � I m�rðI rN :R RyÞþ
ð0 :R RyÞ. As the opposite inclusion is obvious, the result follows. u

Now we are prepared to prove the main theorem of this section, which
is a comparison of the topologies defined by certain decreasing families of
submodules of a finitely generated module over a commutative Noetherian
complete local ring.

Theorem 2.6. ðcf: ½7; ð2:5Þ LEMMA�Þ. Let ðR;mÞ be local. Consider the
following conditions:

(i)
T1

m¼0ðI mN� :N� hmiÞ 6¼ 0:
(ii) There is a k > 0 such that; for all m > 0; I mN :N hmi 6� mkN .
(iii) There is a p 2 AssRN with RadðI þ pÞ ¼ m.

Then ðiÞ , ðiiÞ ( ðiiiÞ; and these conditions are equivalent; whenever R
is complete.

Proof. The equivalence of conditions (i) and (ii) is proved in [13, Lemma
2.2]. In order to prove the implication (iii)) (i), suppose there is an asso-
ciated prime ideal p of N such that RadðI þ pÞ ¼ m. By [6, Theorem 23.2]
there exists q 2 AssR� N� with q \ R ¼ p. Now, it is easy to see that
RadðIR� þ qÞ ¼ mR�. If RadðIN� :R� N�Þ ¼ mR�, then one easily sees that
RadðI nN� :R� N �Þ ¼ mR�, for all n � 1; and so I nN� :N� hmi ¼ N�. ThereforeT

n�0ðI nN� :N� hmiÞ ¼ N � 6¼ 0, as desired. Accordingly, we may assume that
RadðIN � :R� N�Þ �

6¼
mR�. Then we have

I nR� � I nN� :R� N� � ðI nN� :N� hmiÞ :R� N� � mR�;
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for all n � 1. So RadððI nN � :N� hmiÞ :R� N� þ qÞ ¼ mR�. Therefore, because
of mR� 62 AssR� N �=I nN � :N� hmi, (i) follows from Lemma 2.1 (i).

Finally, assume that R is complete and that (i) holds. We show that (iii)
is true. To this end, let y be a non-zero element of

T
n�0ðI nN :N hmiÞ. Then,

by Lemma 2.5, there exists an integer r � 0 such that, for all m � r,

ImN :R Ry � Im�r þ ð0 :R RyÞ � Im�r þ p;

where p is an associated prime ideal of N with p � ð0 :R RyÞ. Now, for any
m � 0 there is an integer n � 0 with m n � I mN :R Ry � I m�r þ p. So
RadðI þ pÞ ¼ m, as required. u

3. QUINTESSENTIAL PRIMES AND COMPARISON OF

TOPOLOGIES

The purpose of this section is to establish a relationship between the
topologies defined by the filtrations fI nNgn�0; fðINÞðnÞgn�0 and fSðI nNÞgn�0,
by using the quintessential primes of I w.r.t.N . Themain results are Theorems
3.5 and 3.6.

Definition. A prime ideal p of R is called a Quintessential prime ideal of I
w.r.t. N precisely when there exists q 2 AssR�

p
N�
p such that RadðIR�

p þ qÞ ¼
pR�

p. The set of Quintessential prime ideals of I w.r.t. N is denoted by QðI ;NÞ.

Lemma 3.1. Let S be a multiplicatively closed subset of R. Then

(i) For any prime ideal p of R disjoint from S; p 2 QðI ;NÞ if and only
if S�1p 2 QðS�1I ; S�1NÞ.

(ii) mAssRN=IN � QðI ;NÞ.
(iii) If J is a second ideal of R with RadðJÞ ¼ RadðIÞ; then QðJ ;NÞ ¼

QðI ;NÞ.
(iv) ½1; 3:5� If q 2 AssRN ; then mAssRR=ðI þ qÞ � QðI ;NÞ.

Proof. (i), (ii) and (iii) follow immediately from the definition. To prove
(iv) use [6, Theorem 23.2] and the fact that dimT ¼ dimT� for any local
ring T . u

Remark 3.2. Before bringing the next result we fix a notation, which is
employed by P. Schenzel in [14] in the case N ¼ R. Let S be a multiplicatively
closed subset of R. For a submodule M of N , we use SðMÞ to denote the
submodule

S
s2SðM :N sÞ. Note that the primary decomposition of SðMÞ

consists of the intersection of all primary components of M whose asso-
ciated prime ideals do not meet S. In other words
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AssRN=SðMÞ ¼ fp 2 AssRN=M : p \ S ¼ fg

In particular, if S ¼ Rn [ fp 2 mAssRN=INg then, for every
n 2 N; SðI nNÞ is denoted by ðINÞðnÞ

. The following theorem is originally
shown by S. McAdam and L. J. Ratliff, Jr. in [7, (3.2) PROPOSITION] in
the case N ¼ R. Our approach is shorter than given in [1, 3.12].

Theorem 3.3. Let p be a prime ideal containing I. Then the following con-
ditions are equivalent:

(i) p 2 QðI ;NÞ.
(ii) There is an integer k � 1 such that p 2 AssRN=M for any sub-

module M of N with RadðM :R NÞ ¼ RadðIN :R NÞ and M �
ðpNÞðkÞ

.
(iii) There is an integer k � 0 such that I mN :N hpi 6� ðpNÞðkÞ

for all
m � 0.

Proof. (i))(ii). Let p 2 QðI ;NÞ. Then there exists q 2 AssR�
p
N�
p such that

RadðIR�
p þ qÞ ¼ pR�

p. Now, let k be as in Lemma 2.1(ii), applied to
q 2 AssR�

p
N �
p , and let M be any submodule of N such that RadðM :R NÞ ¼

RadðIN :R NÞ and M � ðpNÞðkÞ
. Then M �

p � pkN�
p ¼ ðpN�

pÞðkÞ
and, in view of

Remark 2.4, it is easy to see that IR�
p � RadðM �

p :R�
p

N�
pÞ. One can use

Nakayama’s Lemma to show that M �
p :R�

p
N�
p is a proper ideal of R�

p. There-
fore RadðM �

p :R�
p

N �
p þ qÞ ¼ pR�

p. We can now use Lemma 2.1 (ii) and [6,
Theorem 23.2] to complete the proof of (ii).

In order to prove the implication (ii)) (iii), we may assume that ðR; pÞ
is local. Then ðpNÞðkÞ ¼ pkN . Suppose, the contrary, that (iii) is not true.
Then, for any integer k � 0, there is an integer m � 0 with I mN :N hpi � pkN .
Now, by Nakayama’s Lemma, RadðIN :R NÞ 6¼ p; and hence
RadððIN :NhpiÞ : RNÞ ¼ RadðIN :R NÞ. Therefore the condition (ii) implies
that p 2 AssRN= IN :N hpi which provides a contradiction (see Remark 2.2).

Finally, in order to complete the proof, we have to show the impli-
cation (iii))(i). To do this end, suppose that there is an integer k � 0 such
that for all m � 0, I mN :N hpi 6� ðpNÞðkÞ

. Then by Remark 2.4 and [9,
Corollary 17.10] we have I mN �

p :N�
p

hpR�
pi 6� ðpN �

pÞðkÞ
. By virtue Theorem 2.6

this proves (i). u

The next lemma, which is a consequence of Krull’s Intersection The-
orem, is of assistance in the proof of the main results 3.5 and 3.6.

Lemma 3.4. Let p þ I be a proper ideal of R; for all p 2 AssRN . Then
\

n�1

I nN ¼ 0:
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Theorem 3.5. ðcf: ½8; Theorem 1:2�Þ. Let S be a multiplicatively closed
subset of R. Then the following conditions are equivalent.

(i) S � Rn [ fp 2 QðI ;NÞg:
(ii) The ðSÞ-symbolic topology is finer than the I-adic topology.
(iii) The ðSÞ-symbolic topology is finer than the topology defined by the

filtration fðpNÞðkÞgk�0 for all primes p containing I.
(iv) The ðSÞ-symbolic topology is finer than the p-adic topology for all

prime ideals p � I .

Proof. (i)) (iii). Let p 2 SpecR with I � p and let l � 1. We need to show
that there exists an integer m � 1 such that SðI mNÞ � ðpNÞðlÞ

. To this end, let
S0 be the natural image of S in Rp. Then, in view of assumption (i) and Lemma
3.1, we have S0 � Rpn [ fq 2 QðIRp;NpÞg. Also, it is easy to see that
S0ðI mNpÞ � ðpNpÞðlÞ

implies SðI mNÞ � ðpNÞðlÞ
. Therefore we may assume

that R is local at p. Now, because M � \ N ¼ M for any submodule M of N , we
may assume in addition in view of [1, Proposition 3.8] and Remark 2.4, that R

is complete. (Note that ðpNÞðlÞ ¼ plN ). Now, for any q 2 AssRN , Lemma 3.1
(iv) and the assumption (i) show that S is disjoint from I þ q. Therefore by
Lemma 3.4, we have

T
n�1 I nS�1N ¼ 0. Consequently

T
n�1 SðI nNÞ ¼ 0. As R

is complete, Chevalleys’ theorem (see, Lemma 2.3) implies (iii).
The conclusion (ii)) (iv) is obviously true.
In order to prove that (iii)) (ii), let k � 1. Then, by considering a

primary decomposition for I kN and using hypothesis for elements of
AssRN=I kN , it is easily seen that there is an integer m � 1 such that
SðI mNÞ � pkN , as desired. Finally, we prove the implication (iv)) (i). To
this end, let p 2 QðI ;NÞ. We show that p \ S ¼ f. Suppose the contrary is
true and let s 2 S \ p. By virtue of Theorem 3.3, there is a k � 0 such that,
for all n � 0, I nN :N hpi 6� ðpNÞðkÞ

. However, the condition (iv) says that
for some m � 1, SðI mNÞ � pkN , and so for such m we have I mN :N hpi 6�
SðI mNÞ. Let y 2 I mN :N hpinSðI mNÞ. Then, for sufficiently large l,
ply � I mN . Therefore sly 2 I mN , and hence y 2 SðI mNÞ which is a contra-
diction. So p \ S ¼ f and (i) follows. u

Theorem 3.6 ðcf: ½17; LEMMA 3:1�Þ. Let p 2 SuppðN=INÞnmAssRðN=INÞ
and consider the following statements.

(i) p 2 QðI ;NÞ.
(ii) There is an integer k � 1 such that ðINÞðmÞ 6� ðpNÞðkÞ

for all
m 2 N.

(iii) There is a prime q � p such that q 2 QðI ;NÞnm AssRðN=INÞ.

Then (i)) (ii) ) (iii).
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Proof. (i)) (ii). Suppose that (i) holds and that k � 1 be as in Theorem 3.3
(ii). Assume the contrary. Then, for such k, there is an integer m � 1 such
that ðINÞðmÞ � ðpNÞðkÞ

. Next, using the definition of ðINÞðmÞ
, it is easy to see

that, RadððINÞðmÞ :R NÞ ¼ RadðIN :R NÞ. Therefore by Theorem 3.3, p 2
AssRðN=ðINÞðmÞÞ. Recall that AssRðN=ðINÞðmÞÞ ¼ fq 2 AssRðN=I mNÞ jq\
S ¼ fg, where S ¼ Rn [ fq 2 mAssRN=INg. Accordingly p � [fq 2 m

AssRN=INg; so p � q for some q 2 mAssRN=IN . It follows that p ¼ q and
hence p 2 mAssRN=IN , which is the required contradiction.

The implication (ii)) (iii) follows from (i)) (ii) of Theorem 3.5 as a
special case. u

The following corollary gives a characterization of QðI ;NÞ.

Corollary 3.7 ðcf: ½8; Remark (i) after Theorem 1:2�Þ. The following condi-
tions are equivalent:

(i) QðI ;NÞ ¼ mAssRN=IN .
(ii) The topology defined by fðINÞðmÞgm�0 is equivalent to the I -adic

topology.

Proof. This follows immediately from Theorem 3.5 and Lemma 3.1 (i),
(ii). u

Corollary 3.8. Let S be a multiplicatively closed subset of R. Then the fol-
lowing conditions are equivalent:

(i) dimR�
p=ðIR�

p þ qÞ > 0 for all prime ideals p containing I with
p \ S 6¼ f, and for all q 2 AssR�

p
N �
p .

(ii) The I -adic and ðSÞ-symbolic topologies are equivalent.
(iii) The topology given by fI nNp :Np hpRpign�0 is equivalent to the

IRp-adic topology, on Np, for all prime ideals p containing I with
p \ S 6¼ f.

Proof. The equivalence of (i) and (ii) follows from Theorem 3.5. In order
to complete the proof, let us show the equivalence between (ii) and (iii).
Firstly, suppose that (ii) holds and let p � I be a prime ideal with p \ S 6¼ f.
Let S0 be the image of S in Rp. Then, for any n � 0, there exists an integer
m � 0 such that S0ðI mNpÞ � I nNp. Therefore, since p \ S 6¼ f, we have
I mNp :Np

hpRpi � I nNp and (iii) follows.

To prove the implication (iii)) (ii), it is enough, in view of Theorem
3.5, to show that S � Rn [ fq 2 QðI ;NÞg. To achieve this, suppose the
contrary is true. Then there is an element p 2 QðI ;NÞ such that p \ S 6¼ f.
Now, because of pRp 2 QðIRp;NpÞ, Theorem 3.3 provides a contradic
tion. u
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4. ESSENTIAL PRIMES AND LINEAR EQUIVALENCE

In this section we study the relationship between the linear equivalence
of certain topologies and essential primes of I . The I -adic and ðSÞ-symbolic
topologies on N are said to be linearly equivalent if there exists an integer
k � 0 such that SðI nþkNÞ � I nN for all integers n � 0.

Before we state the main result of this section, let us give a definition.

Definition. A prime ideal p of R is an essential prime of I w.r.t.N , if
p ¼ q \ R for some q 2 QðuR;N Þ. The set of essential primes of I w.r.t.N will
be denoted by EðI ;NÞ.

Theorem 4.1 ðcf: ½8; Corollary 1:3�Þ. Let S be a multiplicatively closed
subset of R. Then the following conditions are equivalent.

(i) S � Rn [ fp 2 EðI ;NÞg.
(ii) The I -adic and ðSÞ-symbolic topologies are linearly equivalent.

Proof. (i)) (ii). It follows from the hypothesis that S � Rn [ fq 2 QðuR;
N Þg. Hence, in view of Theorem 3.5, there exists an integer m � 0 such that
Sðu mN Þ � uN . Now, one easily sees that, for all k � 1, Sðu mþk�1N Þ � ukN .
Therefore by intersecting with N , we have SðI mþk�1NÞ � I kN , so (ii) holds
for h ¼ m � 1.

(ii)) (i). Using Theorem 3.5 and the hypothesis, we see that S is
disjoint from all the primes in QðuR;N Þ. So that, by definition of EðI ;NÞ,
we have S � Rn [ fq 2 EðI ;NÞg, as required. u

Following [3], we shall use A�ðI ;NÞ to denote the ultimately constant
values of AssRN=I nN for large n. Next, as an application of Theorems 3.5
and 4.1, we provide the following nice alternate proofs for the main
results of [1].

Consequence 4.2 (cf. [1, Theorem 3.17] and [8, Lemma 2.1]). QðI ;NÞ �
EðI ;NÞ � A�ðI ;NÞ.

Proof. For the proof of EðI ;NÞ � A�ðI ;NÞ, let p 2 EðI ;NÞ. Since both
EðI ;NÞ and A�ðI ;NÞ behave well under localization, without loss of gen-
erality, we may assume that ðR; pÞ is local. Let A�ðI ;NÞ ¼ AssRN=I nN for
large n, and set S ¼ Rn [ fq 2 A�ðI ;NÞg. Then, for all k � 0, by using a
normal primary decomposition for I nþkN and the fact that A�ðI ;NÞ ¼
AssRN=I nþkN , it is easy to see that SðI nþkNÞ ¼ I nþkN � I kN . Therefore, by
Theorem 4.1, we have S � Rn [ fp0 2 EðI ;NÞg. Consequently, [fp0 2 EðI ;
NÞg � [fq 2 A�ðI ;NÞg. Since A�ðI ;NÞ is finite, there is a q 2 A�ðI ;NÞ such
that p � q; so p ¼ q 2 A�ðI ;NÞ, as required.
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To show that QðI ;NÞ � EðI ;NÞ, let p 2 QðI ;NÞ. We may assume that
ðR; pÞ is local. Now, let S ¼ Rn [ fq 2 EðI ;NÞg. Then Theorem 4.1 shows
that Theorem 3.5(ii) is satisfied. Hence by Theorem 3.5(i), we have
S � Rn [ fp0 2 QðI ;NÞg. Therefore [fp0 2 QðI ;NÞg � [fq 2 EðI ;NÞg. As
EðI ;NÞ is finite, we have p � q for some q 2 EðI ;NÞ. Hence p ¼ q 2 EðI ;NÞ,
as desired. u
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