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Let R be a commutative Noetherian ring, and let N be a non-zero finitely
generated R-module. In this paper, the main result asserts that N is locally
unmixed if and only if, for any N-proper ideal � of R generated by ht �N

Ž .Žn.elements, the topology defined by � N , n � 0, is equivalent to the �-adic
topology. � 2001 Academic Press

1. INTRODUCTION

Throughout this paper, all rings considered will be commutative and
Noetherian and will have non-zero identity elements. Such a ring will be
denoted by R and a typical ideal of R will be denoted by �. Let N be a
non-zero finitely generated module over R. We denote by RR the Rees ring

� � n nR u, � t � � � t of R w.r.t. � , where t is an indeterminate andn� �
�1 � � nu 	 t . Also, the graded Rees module N u, � t � � � N over RR isn� �

Ž .denoted by NN, which is a finitely generated RR-module. If R, � is local,
� Ž � . Ž .then R resp. N denotes the completion of R resp. N w.r.t. the

�-adic topology. In particular, for any � � Spec R, we denote R� and N�
� �

the � R -adic completion of R and N , respectively. For any multiplica-� � �

Ž .tively closed subset S of R, the nth S -symbolic power of � w.r.t. N,
Ž n . ndenoted by S � N , is defined to be the union of � N : s where s variesN

� n 4 Ž .in S. The �-adic filtration � N and the S -symbolic filtrationn� 0
� Ž n .4S � N induce topologies on N which are called the �-adic topologyn� 0

Ž .and the S -symbolic topology, respectively. These two topologies are said
to be equivalent if, for every integer m � 0, there is an integer n � 0 such
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Ž n . m � 4that S � N 
 � N. In particular, if S 	 R� � � � m Ass N�� N ,R
where m Ass N�� N denotes the set of minimal prime ideals ofR

Ž .Ass N�� N, the nth S -symbolic power of � w.r.t. N is denoted byR

Ž .Žn. �Ž .Žn.4� N , and the topology defined by the filtration � N is called the
symbolic topology. The purpose of the present paper is to show that N is
locally unmixed if and only if, for each N-proper ideal � that is generated
by ht � elements, the �-adic and the symbolic topologies are equivalent.N

� �Schenzel has characterized unmixed local rings 8, Theorem 7 in terms of
�comparison of the topologies defined by certain filtrations. Also, Katz 4,

� � �Theorem 3.5 and Verma 11, Theorem 5.2 have proved a characterization
of locally unmixed rings in terms of s-ideals. Equivalence of �-adic

Ž .topology and S -symbolic topology has been studied, in the case N 	 R,
� �in 4, 6�10 , and has led to some interesting results.

Ž .Let � � Supp N . Then the N-height of � , denoted by ht � , is definedN
Ž .to be the supremum of lengths of chains of prime ideals of Supp N

terminating with �. We have ht � 	 dim N . We shall say that an idealN R ��

� of R is N-proper if N�� N � 0, and, when this is the case, we define the
Ž .N-height of � written ht � to beN

inf ht � : � � Supp N  V �� 4Ž . Ž .N

	 inf ht � : � � Ass N�� N .� 4Ž .Ž .N R

Ž .For any N-proper ideal � of R, denote by grade � , N the maximum
length of all N-sequences contained in �. Suppose for the moment that
Ž .R, � is local. It follows from Nakayama’s lemma that every proper ideal

Žof R is N-proper. N is said to be a Cohen�Macaulay module abbreviated
. Ž .as CM module if and only if grade � , N 	 ht �.N

More generally, if R is not necessarily local and N is non-zero and
finitely generated, N is said to be CM if and only if N is a CM�

Ž .R -module in the above sense for each maximal ideal � � Supp N . In�
� �the following we refer to 2, 3, 5 for the basic results about CM modules.

Ž .For any ideal � of R, the radical of � , denoted by Rad � , is defined to be
� n 4the set x � R : x � � for some n � � . For any R-module L, we denote

by m Ass L the set of minimal prime ideals of Ass L.R R
In the second section, we characterize the CM property of a non-zero

n Ž .Žn.finitely generated R-module N in terms of the equalities � N and � N
for certain N-proper ideals � of R. More precisely we prove the following
result:

THEOREM 1.1. The following conditions are equi�alent:

Ž .i N is CM.
Ž .ii For any N-proper ideal � of R that is generated by ht � elements,N

n Ž .Žn.� N 	 � N for all n � �.
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Ž .The result of 1.1 is proved in 2.3. Let R, � be local and let N be a
non-zero finitely generated R-module. N is said to be an unmixed module
if for any � � Ass � N� , dim R��� 	 dim N.R

More generally, if R is not necessarily local and N is non-zero finitely
Ž .generated, N is a locally unmixed module if for any � � Supp N , N is�

an unmixed R -module. As the main result of Section 3 we characterize the�

locally unmixed property of a non-zero finitely generated R-module N in
� n 4terms of the equivalence of the topologies defined by � N andn� 0

�Ž .Žn.4� N , for certain N-proper ideals � of R. More precisely we shalln� 0
show that:

THEOREM 1.2. The following conditions are equi�alent:

Ž .i N is locally unmixed.
Ž .ii For each N-proper ideal � of R that is generated by ht � ele-N

�Ž .Žn.4ments, the topology gi�en by � N is equi�alent to the �-adic topologyn� 0
on N.

The proof of Theorem 1.2 is given in 3.12.

2. COHEN�MACAULAY MODULES AND
SYMBOLIC POWERS

Let N be a non-zero and finitely generated R-module and let � be an
N-proper ideal of R. The following theorem is well known when N 	 R.

� �The proof in 2, 5 can be easily carried over to a module, so we omit the
proof.

THEOREM 2.1. Let N and � be as abo�e. Then the following hold:

Ž . Ž .i ht � 	 ht � � Ann N�Ann N .N R R

Ž . Ž .ii Krull’s principle ideal theorem If xx 	 x , . . . , x is a sequence1 n
of elements of R, then ht � � n for all � � m Ass N�xxN. Furthermore, ifN R
xx is an N-sequence, then any minimal element of Ass N�xxN has N-heightR
n. In particular, ht xx 	 n.N

Ž . Žiii If ht � 	 n, then there exist x , . . . , x in � such that ht x ,N 1 n N 1
.. . . , x 	 i for i 	 1, 2, . . . , n.i

Ž . Ž .iv N is CM if and only if ht � 	 grade � , N for any N-properN
ideal � of R.

PROPOSITION 2.2. Let N be a non-zero finitely generated R-module. Then
the following conditions are equi�alent:

Ž .i N is CM.
Ž .ii For e�ery N-proper ideal � of R generated by ht � elements,N

Ž . Ž .m Ass N�� N 	 Ass N�� N .R R
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Ž . Ž . Ž .Proof. i � ii Let ht � � n and let � 	 x , . . . , x . Suppose thatN 1 n
� , � � Ass N�� N, and let � be a maximal ideal of R such thatR
� 
 � 
 �. It is enough to show that � 	 �. To this end, we have

� R , � R � Ass N �� N .Ž .m m R � ��

� �ht � 	 n and N is CM 2, Theorem 2.1.2 imply that x , . . . , x is anN � 1 n
� � Ž .N -sequence. Therefore by 2, Theorem 2.1.3 N � x , . . . , x N is a CM� � 1 n �

R -module. When � R 	 � R and so � 	 � , as required.� � �
Ž . Ž .In order to prove the implication ii � i assume that � is an arbitrary

Ž .N-proper ideal of R. In view of Theorem 2.1 iv , it is enough to show that
Ž .ht � 	 grade � , N . To achieve this, suppose x , . . . , x in � are suchN 1 n

Ž .that ht x , . . . , x 	 i for all 1 � i � n, where n 	 ht �. Thus we haveN 1 i N

x � � � � m Ass N� x , . . . , x N , for all 1 � i � n.� 4Ž .i R 1 i�1

Ž . � Ž . 4So the condition ii implies that x � � � � Ass N� x , . . . , x N fori R i i�1
all 1 � i � n. That is, x , . . . , x in � is an N-sequence. Now the assertion1 n
follows.

We are now ready to state and prove the main theorem of this section.

THEOREM 2.3. Let N be a non-zero finitely generated R-module. Then the
following conditions are equi�alent:

Ž .i N is CM.
Ž .ii For any N-proper ideal � of R generated by ht � elements,N

Ž .Žn. n� N 	 � N for all n � �.

Ž . Ž .Proof. i � ii Suppose N is CM and let � be an arbitrary N-proper
ideal of R generated by ht � elements. Then by Proposition 2.2, we haveN

Ž . �Ass N�� N 	 m Ass N�� N. Thus, by assumption i and 3, TheoremR R
� n n125 and Exercise 13, p. 103 , it follows that Ass N�� N 	 m Ass N�� NR R

Ž n .for any n � �. Note that m Ass N�� N 	 m Ass N�� N. Now, byR R
considering a normal primary decomposition for � nN and using the

Ž .Žn. Ž .Žn. ndefinition of � N , it is straightforward to check that � N 	 � N for
all n � �, as required.

Ž . Ž .ii � i Let � be an ideal of R generated by ht � elements. InN
view of Proposition 2.2, it is enough to show that the associated prime
ideals of N�� N are minimal. Suppose this is not the case and let � be an
element of Ass N�� N which does not belong to m Ass N�� N. ThenR R

� 4� 	 � N : x for some x � N �� N and q � � � � m Ass N�� N . LetR R
� 4s � � be such that s � � � � m Ass N�� N . Then sx � � N and, soR

Ž .x � � N : s. Now, the condition ii provides a contradiction.N
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3. LOCALLY UNMIXED MODULES AND COMPARISON
OF TOPOLOGIES

The purpose of this section is to prove that a non-zero finitely generated
module over a Noetherian ring R is locally unmixed if and only if, for any
N-proper ideal � of R that can be generated by ht � elements, theN
topologies �-adic and symbolic, on N, are equivalent. We begin with

DEFINITION 3.1. Let N be a non-zero finitely generated R-module and
let � be an ideal of R. A prime ideal � of R is called a quintessential prime
ideal of � w.r.t. N precisely when there exists � � Ass � N� such thatR ��

Ž � . �Rad � R � q 	 � R . The set of quintessential primes of � w.r.t. N is� �

Ž . Ž . Ž .denoted by Q � , N . It is easy to see that Q � , N 	 Q � � Ann N, N .R

LEMMA 3.2. Let N be a non-zero finitely generated R-module and let � be
Ž . Ž .an ideal of R. Suppose � � Supp N�� N � m Ass N�� N is such that theR

Ž .Žn.topology defined by � N , n � 1, is finer than the topology defined by
Ž .Žn. Ž .� N , n � 1. Then � � Q � , N .

Ž . �Proof. Suppose the contrary; i.e., � � Q � , N . Let k � 1 be as 1,
�Proposition 3.12 . Then, for such k, there exists an integer n � 1 such that

Ž .Žn. Ž .Žk . � �� N 
 � N . Again, from 1, Proposition 3.12 , it follows that � �
Ž Ž .Žn.. Ž .Žn. � nAss N� � N . Since Ass N� � N 	 q � Ass N�� N : �  S 	R R R

4 � 4� , where S 	 R� � � � m Ass N�� N , it yields � 
 � for some � �R
m Ass N�� N. Consequently, � 	 � , and so � � m Ass N�� N, which isR R
a contradiction.

PROPOSITION 3.3. Let N and � be as abo�e. Then the following condi-
tions are equi�alent:

Ž . Ž .i Q � , N 	 m Ass N�� N.R

Ž .ii The symbolic topology is equi�alent to the �-adic topology.

Ž . Ž .Proof. i � ii Let n � 1, and let

Ž .nn� N 	 � N  Q  ���  Q where Q is � -primary in NŽ . 2 r i i

2 � i � rŽ .

n Ž .be a normal primary decomposition of � N. Then, � � Supp N�� N �i

Ž .Žk i.m Ass N�� N for all 2 � i � r. It is easy to see that � N 
 Q forR i i
Ž . Ž .sufficiently large k 2 � i � r . Furthermore, by assumption i and Lemmai
Ž .Žm i. Ž .Žk i.3.2, it follows that � N 
 � N for sufficiently large m withi i

Ž .Žm.2 � i � n. Letting m be the maximum of m , . . . , m , we see that � N2 r
Ž .Žk i. Ž . Ž .Žm n. n
 � N 2 � i � r . Thus � N 
 � N, as required.i
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Ž . Ž .In order to prove that ii � i , suppose that for any k � 1 there is an
Ž .Žm. k Ž . Ž .Žm.integer m � 1 such that � N 
 � N. Let � � Q � , N . Then � N

Ž .Žk . �
 � N . By virtue of Lemma 3.2, � � m Ass N�� N. Hence, 1, LemmaR
�3.5 yields the claim.

LEMMA 3.4. Let N be a non-zero finitely generated R-module. Suppose
Ž .that � � Supp N and let � be an N -proper ideal of R generated by ht �� � N�

elements. Then there is an N-proper ideal � of R generated by ht � elementsN
such that

� � Ann N 	 � R � Ann N .R � � R �� �

ŽŽ . .Proof. Since ht � 	 ht � � Ann N �Ann N , by Theorem 2.1N R � R �� � �

Ž . Ž .i , it follows that the ideal � � Ann N �Ann N of R �Ann NR � R � � R �� � �

ŽŽ . .is generated by ht � � Ann N �Ann N elements. According toR � R �� �

� �Verma 11, Lemma 5.1 , there is an ideal ��Ann N of R�Ann N that isR R
Ž .a generated by ht ��Ann N 	 ht � elements, andR N

� � Ann N �Ann N 	 ��Ann N R �Ann N .Ž .Ž .R � R � R � R �� � �

The result now follows.

Ž .PROPOSITION 3.5. Let R, � be local and let N be a non-zero finitely
generated R-module. Suppose that � � Ass � N� with dim R��� � 0. ThenR
there exists an N-proper ideal � of R generated by ht � elements, such thatN

Rad � R� � � 	 � R� and ht � 	 dim R��� .Ž . N

Proof. Let � � Ass � N� with dim R��� � n � 0. Using Krull’s prin-R
cipal ideal theorem and prime avoidance arguments one constructs ele-
ments x , . . . , x � � such that1 n

x � ��i ž /
Ž .��m Ass N� x , . . . , x NR 1 i�1

� ��  R ,�ž /
� � � �Ž Ž . .�� �m Ass N � �� x , . . . , x R NR 1 i�1

Ž .for all 1 � i � n. Select � 	 x , . . . , x . We need to show that ht � 	 n1 n N
and � R� � � is � R�-primary. First we show ht � 	 n. We prove this byN
induction on n. The case n 	 1 follows from the principal ideal theorem,
together with x � � �. So let n � 1 and suppose that the1 � � m Ass NR

result is true for n � 1. Let � � m Ass N�� N. Because of x � � , weR n
Ž .have � � m Ass N� x , . . . , x N. The result now follows from Krull’sR 1 n�1
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Ž �principal ideal theorem and inductive hypothesis. Now we prove Rad � R
. � � �� � 	 � R . To this end let � be a minimal prime over � R � �. Thenn

� � � Ž Ž�from x � �  R, follows that � � m Ass N � � � x , . . . ,n n n R 1

. � . � � � Ž Ž�x R N . Therefore there is a � � m Ass N � � � x , . . . ,n�1 n�1 R 1

. � . � � �x R N such that � � � , and so on. Thus we have a saturatedn�1 n�1 n

chain of primes from � to �� , as � 	 �� � ��� � �� � �� , with 1 � in 0 n�1 n
� � Ž Ž . � . � �

�� n, � � m Ass N � � � x , . . . , x R N . Because dim R �� 	 n,i R 1 i
� � � �Ž .it follows that � 	 � R , so that Rad � R � � 	 � R , as desired.n

DEFINITION 3.6. Let N be a non-zero finitely generated R-module. A
prime ideal � of R is an essential prime of � w.r.t. N, if � 	 �  R for

Ž .some � � Q u RR, NN . The set of essential primes of � w.r.t. N will be
Ž .denoted by E � , N .

DEFINITION 3.7. A sequence xx 	 x , . . . , x of elements of R is called1 n
an essential sequence on N if the following conditions are satisfied:

Ž . � ŽŽ . .4i For all 1 � i � n, x � � � � E x , . . . , x , N .i 1 i�1

Ž .ii N�xxN � 0.

ŽAn essential sequence xx 	 x , . . . , x of elements of R contained in an1 n
. Ž .ideal � on N is maximal in � , if x , . . . , x , x is not an essential1 n n�1

Ž . Ž �sequence on N for any x � R x � � . It is shown that see 1,n�1 n�1
�.Theorem 4.16 all maximal essential sequences on N in an ideal � have

the same length. This allows us to introduce the fundamental notion of
Ž � �.essential grade see 1, Definition 4.17 .

LEMMA 3.8. Let N be a non-zero finitely generated R-module and let
xx 	 x , . . . , x be elements of R which form an essential sequence on N. Then1 n
the following hold:

Ž . Ž .i ht x , . . . , x 	 i for all 1 � i � n.N 1 i

Ž . Ž .ii If N is locally unmixed, then E xx, N 	 m Ass N�xxN.R

Ž .Proof. In order to prove i , it is sufficient to show that if � �
Ž Ž . .m Ass N� x , . . . , x N , then ht � 	 i. To this end recall thatR 1 i N

Ž .m Ass N�� N 
 E � , N , for any ideal � of R, and x , . . . , x is anR 1 i
Ž .essential sequence on N. Putting this together the proof of i follows by

Ž .induction. For the proof of ii , it is clearly sufficient to prove that
Ž . Ž . Ž .E xx, N 
 m Ass N�xxN. Let � � E xx, N . Then by virtue of i , ht �R N

� n. Thus we need only to show that ht � � n, which implies thatN
� � m Ass N�xxN. To do this, let ht � 	 k and let � � ��� � � 	 �R N 0 k

Ž .be a saturated chain of primes of Supp N with � � m Ass N. Then, by0 R
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� � Ž .1, Lemmas 4.9, 3.2, 4.11 , ht � R �� R 	 n and so n � k. This com-� 0 �

pletes the assertion.

Ž .PROPOSITION 3.9. Let R, � be local and let N be a non-zero finite-
Ž . � Ž � .ly generated R-module. Then e grade � , N 	 Min ht � R � ��� : � �

�4�Ass N .R

Ž .Proof. Let e grade � , N 	 n, and let xx 	 x , . . . , x be a maximal1 n
Ž . �essential sequence on N in �. Then � 
 � for some � � E xx, N , by 1,

� � � �Theorem 3.17 . By virtue of 1, Proposition 3.8 , there exists a prime � in
� � � Ž � � . �R such that �  R 	 � and � � E xxR , N . Furthermore, by 1,

� � � � � � �
�Proposition 3.6 , there is a � � Ass N such that � 
 � and � ��0 R 0 0

Ž � � � � � . � � �� E xxR � � �� , R �� . Now, by 1, Lemma 4.9 , x � � , . . . , x �0 0 0 1 0 n
�� is an essential sequence in the complete domain R��� . Therefore,0 0

Ž � � . � � �Lemma 3.8 shows that ht � �� 	 n. As � R � � 
 � , we have0 0
Ž � � � .ht � R � � �� � n. Now it is easy to see that the assertion follows0 0

� �from 1, Theorem 4.16 .

THEOREM 3.10. Let N be a non-zero finitely generated R-module and let
Ž . Ž .xx 	 x , . . . , x be an essential sequence on N. Then E xx, N 	 Q xx, N .1 n

� �Proof. In view of 1, Theorem 3.17 , it is sufficient to show that
Ž . Ž . Ž . � �E xx, N 
 Q xx, N . Let � � E xx, N . By 1, Lemma 3.2 , � R ��
Ž . Ž .E xxR , N , and so e grade � R , N 	 n. Thus, by virtue of Proposi-� � � �

tion 3.9, there is a � � Ass � N� such that dim R��� 	 n. Furthermore,R � ��� �by 1, Lemma 4.9 , x � � , . . . , x � � is an essential sequence on the1 n
� Žcomplete local domain R ��. So, Lemma 3.8 implies that ht x �� 1

. Ž � . �� , . . . , x � � 	 n. That is, ht xxR � ��� 	 n. Hence � R �� is mini-n � �
� Ž � . �mal over xxR � ���. Consequently, Rad xxR � � 	 � R , as required.� � �

COROLLARY 3.11. Let N be a non-zero finitely generated R-module and
Ž .let x , . . . , x in R be such that x , . . . , x N � N. Suppose N is locally1 n 1 n

Ž .unmixed and ht x , . . . , x 	 i for 1 � i � n. Then x , . . . , x is an essen-N 1 i 1 n
tial sequence on N.

Ž .Proof. First assume that n 	 1. Since E 0 , N 	 Ass N, we need toR R
�show that x � � �. Since N is locally unmixed, Ass N 	 � �1 � � Ass N RR

Ž . 4 Ž .Supp N : ht � 	 0 . Thus, since ht x 	 1, x is not a zero-divisor onN N 1 1
N. Let n � 1, and suppose that the result is true for n � 1. Let � �
ŽŽ . .E x , . . . , x , N . Then, by the inductive hypothesis and Lemma 3.8, we1 n�1

have x � �. Therefore, x , . . . , x is an essential sequence on N, asn 1 n
desired.
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We are now ready to state and prove the main theorem of this section,
which is a characterization of locally unmixed modules in terms of compar-
ison of the topologies defined by certain decreasing families of submodules
of a finitely generated module over a commutative Noetherian ring.

THEOREM 3.12. Let N be a non-zero finitely generated R-module. Then
the following conditions are equi�alent:

Ž .i N is locally unmixed.
Ž .ii For e�ery N-proper ideal � of R generated by ht � elements, theN

�-adic topology is equi�alent to the symbolic topology.

Ž . Ž .Proof. First we show i � ii . Let � be an N-proper ideal of R which
Ž .is generated by ht � elements. Suppose that � � Q � , N . We show thatN

� � m Ass N�� N. To do this, it is straightforward to check that the idealR
Ž .� R of R can be generated by ht � R elements, by Theorem 2.1 ii .� � N ��� � Ž .Therefore, by 1, Lemma 3.2 , we may assume that R, � is local. Let

Žht � 	 n. By Theorem 2.1, there exist x , . . . , x in � with ht x , . . . ,N 1 n N 1
.x 	 i for all 1 � i � n. As shown in Corollary 3.11, x , . . . , x is ani 1 n

Ž .essential sequence on N, so e grade � , N 	 n by Proposition 3.9. Now,
� �analogous to the proof of 3, Theorem 125 , it is easy to see that � can be

generated by an essential sequence of length n. Therefore by Theorem
Ž .3.10 and Lemma 3.8 ii , we have � � m Ass N�� N. We can now useR

Ž .Proposition 3.3 and the fact that m Ass N�� N 
 Q � , N to completeR
Ž .the proof of ii .

Ž . Ž . Ž .In order to prove ii � i , suppose that � � Supp N . By Lemma 3.4
Ž . Ž .and the fact that Q � , L 	 Q � � Ann L, L for any ideal � of R andR

� �any R-module L, and 1, Lemma 3.2 , we may assume without loss of
Ž . Ž .generality that R, � is local. If grade � , N 	 0, then � � Ass N. ThusR

Ž . Ž .� � Q 0 , N . Therefore by condition ii and Proposition 3.3, � �R
m Ass N. So ht � 	 0; that is, dim N 	 0. Whence N is a CM module,R N

Ž .and so N is unmixed. We may assume that grade � , N � 0. Let � �
Ass � N� be such that dim R��� 	 n. We need to show that dim N 	 n.R

Ž .Because grade � , N � 0 we have n � 0. Then, by virtue of Proposition
3.5 there exits an N-proper ideal � of R generated by ht � 	 n elementsN

Ž � . �such that Rad � R � � 	 � R . Consequently, by Proposition 3.3, � �
m Ass N�� N. Hence ht � 	 n and the claim is true.R N
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