Oth Iranian Conference of Plant Physiology

دورەكنفرانسملىفيزيولوژىگياھىايران سىسمىيى

23 & 24 October 2019 Yazd University, Department of Biolog

محمدعلی دکترزاده*۱، علی موافقی۱، هوشنگ نصرتی۱، سیدیحیی صالحی لیسار۱ و محمدعلی حسینپور فیضی۲

بررسی میزان فعالیت و بیان ژن BADH در پاسخ به تنش شوری در گیاه

گروه علوم گیاهی، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز، ایران گروه علوم جانوری، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز، ایران *doktorzadeh@tabrizu.ac.ir

چکیده

شوری یکی از مهمترین عوامل غیرزیستی محدودکننده رشد و تولید گیاهان است. یکی از مهمترین سازوکارهای گیاهان در پاسخ به تنش شوری، انباشتن ترکیبات سازگار است که با فرآیند تنظیم اسمزی، سلولها را حفظ کرده و امکان رشد و نمو را فراهم می-نماید. گیاهان هالوفیت به عنوان گیاهان سازگار با خاکهای دارای غلظت بالای نمک شناخته شدهاند و بنابراین می توانند نمونه مناسبی برای شناخت کامل سازوکارهای فیزیولوژیک و ژنتیک تحمل شوری باشند. ترکیبات سازگار اسمزی یا محافظت کننده اسمزی معمولا دارای وزن مولکولی پایین و محلول در آب هستند. گلایسین بتائین یکی از شناخته شده ترین ترکیبات سازگار اسمزی در گیاهان اسمزی در گیاهان می باشد و مهمترین آنزیم درگیر در تولید آن، آنزیم بتائین آلدئید دهیدروژناز (BADH) است که در گیاهان مختلفی شناسایی شده است. توانایی بالای برخی گونههای هالوفیت در انباشتگی مقادیر بالای گلایسینبتائین به خوبی به اثبات رسیده است. گیاه Salsola aucheri بومی شمال ایران، ارمنستان، ترکمنستان و مناطق اطراف میباشد. شناخت راهکار سازش این گونه می تواند زمینه شناسایی سازوکارهای گیاهان هالوفیت در شرایط تنش شوری را فراهم نماید. در این تحقیق، اثر غلظتهای مختلف کلریدسدیم بر میزان فعالیت و بیان ژن BADH در گیاه Salsola aucheri این آنزیم در غلظتهای میای مولار کلریدسدیم مشاهده گردید. بیشترین و کمترین میزان بیان ژن BADH نیز به ترتیب در غلظتهای ۵۰۰ میلی مولار کلریدسدیم مشاهده گردید.

واژگان کلیدی: تنش شوری، Salsola aucheri ، بتائین آلدئید دهیدروژناز

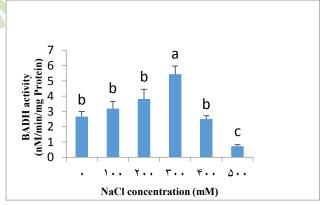
مقدمه

از واژه تنش شوری برای بیان وجود بیش از حد یونها به ویژه یونهایی مانند کلر و سدیم استفاده می شود (Tanna, 2017 & (Mishra فر شدن زمینهای کشاورزی دارای عواقب بسیار ناگواری است تا جایی که این زمینها در نهایت قابل استفاده برای تولید نخواهند بود (Tanna, 2017 بیش از ۵۰ درصد زمینهای زراعی شور خواهند بود (Tanna, 2017 & (Mishra گونههای هالوفیت با شرایط شور سازش یافتهاند و لذا نمونههای خوبی برای شناسایی سازوکارهای فیزیولوژیکی و ژنهای درگیر در تحمل تنش شوری هستند (Hassine et al., 2008). اسمولایتهای آلی تعادل یونی و تنظیم اسمزی سیتوزل سلولها را تحت تنشهای مختلف از جمله خشکی، سرما و شوری تنظیم می کنند. تصور می رود که در بین اسمولیتهای آلی، پرولین و گلایسین بتائین به عنوان محافظت کننده اسمزی نیز عمل می نمایند. در مناطق شمال غرب ایران از جمله استان آذربایجان شرقی، به دلیل افزایش خشکسالی، کاهش بارندگی و خشکشدن دریاچه ارومیه، میزان شوری خاکها درحال افزایش است. رشد گیاهان به که با غلظت بالای نمک در خاک سازش یافتهاند، در این مناطق در حال افزایش می باشد و شناسایی سازگاریهای این گیاهان به شوری، از جمله ژنهای درگیر در سازش به شوری می تواند زمینه را برای افزایش مقاومت گیاهان زراعی به شوری از طریق شوری، از جمله ژنهای درگیر در سازش به شوری می تواند زمینه را برای افزایش مقاومت گیاهان زراعی به شوری از طریق

O_{th} Iranian Conference of Plant Physiology

دورهکنفرانسملیفیزیولوژی گیاهیایران مستشمیری

23 & 24 October 2019 Yazd University, Department of Biolog

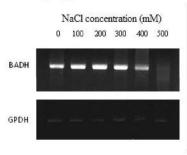

دستکاریهای ژنتیکی فراهم نماید. از اینرو در این پژوهش تاثیر تنش شوری ناشی از غلظت های مختلف کلرید سدیم بر فعالیت آنزیم بتائین آلدئید دهیدروژناز و همچنین بیان ژن آن مورد بررسی قرار گرفته است.

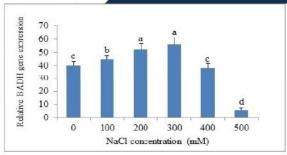
مواد و روشها

بذر گیاه از منطقه جلفا، حاشیه رود ارس واقع در شمال استان آذربایجان شرقی جمع آوری گردید. پس از گزینش بذرهای یک دست و سالم در زیر لوپ آزمایشگاهی، بذرها به مدت ۱۵ دقیقه در محلول هیپوکلریت سدیم ۵٪ به منظور سترون کشدن قرار گرفتند و در نهایت با آب مقطر شستشو داده شدند. بذرهای سترون بر روی کاغذ صافی مرطوب منتقل شدند و تیمار شوری در ۵ سطح ۲۰۰، ۲۰۰، ۳۰۰ و ۵۰۰ میلیمولار NaCl اعمال شد. دانهرستهای دو روزه، برای سنجش فعالیت آنزیم و بررسی میزان بیان ژن مورد استفاده قرار گرفتند. برای بررسی میزان فعالیت آنزیم BADH از روش BADH و همکاران (۲۰۰۱) استفاده گردید. برای بررسی میزان بیان ژن BADH پس از استخراج RNA با استفاده از RNXplus، و ساخت CDNA، به منظور تکثیر قطعهی مورد نظر با استفاده از پرایمرهای اختصاصی طراحی شده، واکنش PCR روی محصول انجام گرفت. برای بررسی بیان کمی شده، با شدت ژن GPDH که به عنوان کنترل داخلی استفاده شد، با استفاده از نرم افزار ImageL مقایسه شدند. سپس شدت بیان نسبی هر ژن به صورت میانگین و انحراف از میانگین گزارش شد.

نتايج

افزایش غلظت کلریدسدیم به میزان ۱۰۰ و ۲۰۰ میلیمولار، موجب افزایش در میزان فعالیت آنزیم بتائین آلدئیددهیدروژناز گردید ولی این افزایش، معنیدار نبود. در غلظت ۳۰۰ میلیمولار، میزان فعالیت آنزیم بتائین آلدئیددهیدروژناز نسبت به شاهد افزایش معنیداری نشان داد و بیشترین میزان فعالیت آنزیم در این تیمار مشاهده گردید. با افزایش غلظت کلریدسدیم به ۴۰۰ و ۵۰۰ میلیمولار، میزان فعالیت آنزیم کاهش معنیداری داشت، به طوری که کمترین میزان فعالیت آنزیم در تیمار ۵۰۰ میلیمولار کلریدسدیم مشاهده گردید (شکل ۱). بررسی شدت باندهای حاصل از تکثیر ژن BADH در دانهرستهای تیمارشده با غلظتهای مختلف نمک، نشاندهنده افزایش میزان بیان ژن BADH بود، به طوری که در غلظت ۳۰۰ میلیمولار کلریدسدیم، افزایش بیان این ژن نسبت به شاهد، ۸۸۳٪ بود. با افزایش غلظت کلریدسدیم، میزان بیان ژن کاهش یافت و در غلظت ۵۰۰ میلیمولار کلریدسدیم، کمترین میزان بیان ژن مشاهده شد که نسبت به شاهد و سایر تیمارها اختلاف معنیداری داشت (شکل ۲).


شکل ۱. میزان فعالیت آنزیم BADH در دانه رستهای گیاه $Salsola\ aucheri$ در دانه کاریدسدیم. $p \leq 0.05, N=4, Test\ Tukey$ معنی دار میباشد ($p \leq 0.05, N=4, Test\ Tukey$).


Oth Iranian Conference of Plant Physiology

دورەكنفرانسملى فيزيولوژى گياھى ايران لىكىنىگىيىن

23 & 24 October 2019 Yazd University, Department of Biolog

 $Salsola\ aucheri$ شکل ۲. میزان بیان ژن BADH در دانهرستهای گیاه $p \leq 0.05, N=4, Test\ Tukey). تفاوت بین مقادیر مربوط به هر ستون که با حروف متفاوت نشان داده شدهاند، معنی دار میباشد$

ىحث

افزایش فعالیت آنزیم بتائینآلدئیددهیدروژناز جهت تولید و انباشتگی گلایسینبتائین یکی از راهکارهای سلول برای مقابله با تنش اسمزی است. در این پژوهش، این افزایش تنها در غلظت ۳۰۰ میلیمولار کلریدسدیم معنیدار بود. وجود میزان زیاد آلدئیدها بر متابولیسم سلول اثرات مخربی دارد، بنابراین حذف انتخابی آنها برای عملکرد سلول ضروری است. آلدئیددهیدروژنازها آنزیمهای سمزدای عمومی هستند که آلدئیدهای موجود درون سلولها را حذف مینمایند. همه این آنزیمها برای انجام واکنش به +NADP نیاز دارند. مطالعات روی ژنهای آلدئیددهیدروژنازهای گیاهان در شوری بالا یا شرایط کمبود آب، پیشنهاد می کند که این ژنها در بهبود عملکرد گیاهان در تنش اسمزی نقش دارند (Kirch et al. 2005). بیان بالای تعدادی از آلدئیددهیدروژنازهای گیاهی، تحمل آنها را به انواع تنشهای غیرزیستی افزایش میدهد (2006) افزایش بیان ژن BADH در دانهرستهای گیاه هالوفیت Salsola aucheri به افزایش سطح شوری تا ۳۰۰ میلیمولار کلریدسدیم مشاهده گردید. این افزایش بیان منجر به تولید گلایسینبتائین بیشتر و تحمل بهتر دانهرستها در مقابل شوری شد. افزایش شوری به بیش از ۳۰۰ میلیمولار، با ایجاد حالت سمیت، موجب کاهش بیان ژن BADH و همچنین کاهش میزان انباشت گلایسینبتائین گردید.

منابع

Daniell, H., Muthukumar, B., Lee, S. B. (2001) Marker free transgenic plants: Engineering the chloroplast genome without the use of antibiotic selection. Current Genetics, 39: 109–116.

Hassine, A. B., Ghanem, M. E., Bouzid, S., Lutts, S. (2008) An inland and a coastal population of the Mediterranean xero-halophyte species *Atriplex halimus* L. differ in their ability to accumulate proline and glycinebetaine in response to salinity and water stress. Journal of Experimental Botany, 59: 1315-1326.

Kirch, H. H., Schlingensiepen, S., Kotchoni, S., Sunkar, R., Bartels, D. (2005) Detailed expression analysis of selected genes of the aldehyde dehydrogenase (ALDH) gene superfamily in *Arabidopsis thaliana*. Plant Molecular Bioligy, 57: 315–332.

Kotchoni, S. O., Kuhns, C., Ditzer, A., Kirch, H. H., Bartels, D. (2006) Overexpression of different aldehyde dehydrogenase genes in Arabidopsis thaliana confers tolerance to abiotic stress and protects plants against lipid peroxidation and oxidative stress. Plant Cell Environment, 29: 1033–1048.

Mishra, A., Tanna, B. (2017) Halophytes: potential resources for salt stress tolerance genes and promoters. Frontiers in Plant Science, 8: 829-837.

دورهکنفرانسملیفیزیولوژی گیاهی ایران **محسمینی**

23 & 24 October 2019
Yazd University, Department of Biolog

Activity and expression of BADH gene in response to salt stress in Salsola aucheri

Doktorzadeh Mohammad Ali*¹, Movafeghi Ali¹, Nosrati Houshang¹, Salehi Lisar Seyed Yahya¹, Hoseinpour Feizi Mohammad Ali²

- 1. Department of Plant Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
- 2. Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran.

 * doktorzadeh@tabrizu.ac.ir

Abstract

Salinity is one of the main abiotic factors limiting the growth and productivity of plants. The most widely distributed strategy of plant response to salt stress is the accumulation of compatible solutes, which involves in osmotic adaptation, protects cells and allows growth and development. Halophytes are defined as plants that are adapted to live in soils containing high concentrations of salt, and thus represent an ideal model to understand complex physiological and genetic mechanisms of salinity stress tolerance in plants. Compatible solutes or osmoprotectants usually are low molecular weight compounds with high solublity in water. The accumulation of these compounds is the fundamental mechanism to protect organisms against environmental stresses such as salinity. Glycine-betaine (GB) is well known compatible solute in plants and betaine aldehyde dehydrogenase (BADH) is main enzyme involved in its biosynthesis, which has been identified in different plant species. The high ability of many halophyte species to accumulate a large quantity of GB is well documented. Salsola aucheri is a native plant in north of Iran, Armenia, Turkmenia and neighboring areas. Understanding the adaptation strategy of this species could lead to more light on the survival mechanisms of halophytes under salt stress conditions. In this research, the effect of different NaCl concentrations on BADH expression in seedlings of Salsola aucheri were investigated. Assessing the activity of this enzyme showed that BADH activity enhanced by the increasing salinity (up to 300 mM NaCl) and decreased at the higher concentrations of NaCl. Expression of BADH gene increased by 38.88% at 300 mM of NaCl and decreased at higher concentrations compared to the control. Comparison of their expressions in treated seedlings based on the band intensity showed that BADH transcripts expression was stronger in seedlings treated by 300 mM of NaCl.

Keywords: Salsola aucheri, betaine aldehyde dehydrogenase, salinity