

22nd National and 10th International ودهمین کنگره ملی و دهمین کنگره بین المللی Congress on Biology از پست شناسی ایر ان ۹ تا ۱۱ شهریور ماه ۱۰۶۱ BC-2022 اBC-2022 الکتاب Shahrekord University

IBC2022-202206-511

بررسی اثرات کلرید کادمیوم و نانو کلات آهن بر مراحل جوانه زنی و رشد اولیه گیاه کاهو (Lactuca sativa L.)

رقیه حیدری شاه ام محجل کاظمی نامه هوشنگ نصرتی مریم کلاهی نام موافقی الموسی عضو هیئت علمی دانشکده علوم طبیعی، دانشگاه تبریز، ایران اعضو هیئت علمی دانشکده زیست شناسی، دانشگاه شهید چمران اهواز، ایران الموسیده مسئول مکاتبات: r.heydari607@tabrizu.ac.ir

حكىدە

کادمیوم یک عنصر غیرضروری است، می تواند از طریق ناقل عناصر ضروری وارد گیاه شود و رشد و نمو گیاه را مختل می کند. در مقابل، نانو کودها از طریق کاهش جذب کادمیوم مانع از تأثیرات مخرب و منفی آنها بر شاخصهای کیفی و کمی گیاهان دارد. بسیاری از مطالعات که بر روی گیاهان انجام می گیرد از محلول غذایی با EDTA بهعنوان یک عامل کمپلکس دهنده برای آهن استفاده می شود، کادمیوم ممکن است آهن را از کمپلکس EDTA جابهجا کند و منجر به کاهش در دسترس قرار گیری آهن برای گیاهان شود. بنابراین استفاده از نانو کلات آهن می تواند سبب از بین بردن تأثیرات مخرب کادمیوم شود. جوانه زنی اولین مرحله از زندگی گیاه است که می تواند تحت تاثیر تنش قرار گیرد و در نتیجه فلزات سنگین باعث کاهش جوانه زنی و تاخیر در سبز شدن گیاهان می شود، این مطالعه با هدف تعیین تأثیر سطوح مختلف کادمیوم و نانو کلات آهن (۰، ۲، ۴، ۶ میلی مولار کادمیوم – ۱، ۱۰ گرم بر لیتر نانو کلات آهن و اثرات متقابل این دو) بر جوانه زنی و رشد گیاهچه کاهو انجام شد. آزمایش در قالب طرح بلوکهای کامل تصادفی با سه تکرار انجام شد. نتایج نشان داد که افزایش غلظت کادمیوم باعث کاهش درصد جوانه زنی، طول ریشه چه، ساقه چه بذر شد. جوانه زنی و رشد گیاهچه به شدت توسط ۶ میلی مولار کادمیوم مهار شد. علاوه بر این، استفاده از نانو کلات آهن موجب افزایش میزان جوانه زنی و رشد گیاهچه شد.

كلمات كليدى: درصد جوانه زنى، سرعت جوانه زنى، طول ريشه چه، طول ساقه چه، تيماردهى.

IBC2022-202206-511

Evaluation of the effects of cadmium chloride and iron nanochlate on the germination and early growth stages of lettuce (*Lactuca sativa* L.)

Roghayeh Heydari^{1*}, Elham Mohajelkazemi¹, Hoshang Nosrati¹, Maryam Kolahi², Ali Movafeghi¹ Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran ²Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran *Corresponding authors E-mail: r.heydari607@tabrizu.ac.ir

Abstract

Cadmium is an unnecessary element, it can enter the plant through the carrier of essential elements and disrupts the growth and development of the plant. In contrast, nanofertilizers prevent their destructive and negative effects on plant quality and quantity by reducing the uptake of cadmium. Many plant studies use nutrient solution with EDTA as a complexing agent for iron; cadmium may displace iron from the EDTA complex, reducing the availability of iron to plants. Therefore, the use of nano-iron chelate fertilizer can eliminate the destructive effects of cadmium. Germination is the first stage of plant life that can be affected by stress and as a result, heavy metals reduce germination and delay the emergence of plants. 0, 2, 4, 6 mM Cd - 0.5, 1 g / 1 iron nano-chelate and the interactions of the two) on the germination and growth of lettuce seedlings. The experiment was performed in a randomized complete block design with three replications. The results showed that increasing the cadmium concentration reduced the germination percentage, radicle length, plumule length seeds. Germination and seedling growth were strongly inhibited by 6 mM cadmium. In addition, the use of iron nanochlate increased germination and seedling growth.

Keywords: Germination percentage, germination race, radicle length., plumule length, Treatment.