HYERS-ULAM STABILITY OF WEIGHTED COMPOSITION OPERATORS ON L^p -SPACES

M. R. JABBARZADEH

Communicated by Heydar Radjavi

ABSTRACT. For weighted composition operator $uC_{\varphi}: f \longmapsto u.(f \circ \varphi)$ on $L^p(\Sigma)$, we give a necessary and sufficient condition to have the Hyers-Ulam stability.

1. Preliminaries and notations

Let (X, Σ, μ) be a complete σ -finite measure space. All comparisons between two functions or two sets are to be interpreted as holding up to a μ -null set. Let φ be a measurable transformation from X into X. If $\mu(\varphi^{-1}(A)) = 0$ for all $A \in \Sigma$ with $\mu(A) = 0$, then φ is said to be non-singular. Let h be the Radon-Nikodym derivative $d\mu \circ \varphi^{-1}/d\mu$. We will always assume that h is almost everywhere finite-valued or equivalently, $(X, \varphi^{-1}(\Sigma), \mu)$ is σ -finite. As usual, Σ is said to be φ -invariant if $\varphi(\Sigma) \subseteq \Sigma$, where $\varphi(\Sigma) = \{\varphi(A) : A \in \Sigma\}$. The measure μ is said to be normal if $\mu(A) = 0$ implies that $\varphi(A) \in \Sigma$ and $\mu(\varphi(A)) = 0$. To examine the weighted composition operators efficiently, Lambert [6] associated with each transformation φ , the so-called conditional expectation operator $E(.|\varphi^{-1}(\Sigma)) = E(.)$. In fact E(f) is defined for each non-negative

MSC(2000): Primary 47B33; Secondary 47B38, 34K20

Keywords: Weighted composition operator, Conditional expectation, Hyers-Ulam stability Received: 16 May 2006, Accepted: 16 January 2007

^{© 2006} Iranian Mathematical Society.

58 Jabbarzadeh

measurable function f or for each $f \in L^p(\Sigma)$, and is uniquely determined by the following two conditions:

(i) E(f) is $\varphi^{-1}(\Sigma)$ -measurable.

(ii) If A is any $\varphi^{-1}(\Sigma)$ -measurable set for which $\int_A f d\mu$ converges, then we have

 $\int_A f d\mu = \int_A E(f) d\mu.$

It is easy to show that if f is any non-negative Σ -measurable function or if $f \in L^p(\Sigma)$, then there exists a Σ -measurable function g such that $E(f) = g \circ \varphi$. We can assume that the support of g, $\sigma(g) = \{x \in X : g(x) \neq 0\}$, lies in $\sigma(h)$ and there exists only one g with this property. We then write $g = E(f) \circ \varphi^{-1}$ though we make no assumptions regarding the invertibility of φ (see [2]). For further discussions on the conditional expectation operators see the interesting papers [1], [5] and [6]. If $u: X \to \mathbb{C}$ is a measurable function, the weighted composition operator uC_{φ} on $L^p(\Sigma)$ induced by φ and u is given by

$$uC_{\varphi}(f) = u.f \circ \varphi, \quad f \in L^p(\Sigma).$$

Here, the non-singularity of φ guarantees that uC_{φ} is well defined as a mapping of equivalence classes of functions on $\sigma(u)$. Boundedness of weighted composition operators on $L^p(\Sigma)$ spaces has already been studied in [5]. Namely, uC_{φ} is bounded if and only if $hE(|u|^p) \circ \varphi^{-1} \in L^{\infty}(\Sigma)$.

Let \mathcal{B} be a Banach space and let T be a mapping from \mathcal{B} into itself. We say that T has the Hyers-Ulam stability, if there exists a constant K such that:

(*) For any $g \in T(\mathcal{B})$, $\varepsilon > 0$ and $f \in \mathcal{B}$ satisfying $||Tf - g|| \le \varepsilon$, we can find $f_0 \in \mathcal{B}$ such that $Tf_0 = g$ and $||f - f_0|| \le K\varepsilon$.

We call K a HUS constant for T, and denote the infimum of all HUS constants for T by K_T . A subspace M of \mathcal{B} is said to be proximinal, if for any $f \in \mathcal{B}$, there exists $g \in M$ such that ||f - g|| = ||f + M||. We refer the reader for the Hyers-Ulam stability of substitution operators on function spaces to [3], [4], [8], [9], [10] and [11].

From now on, by an operator we will mean a non-zero linear operator. The linearity of T implies that the condition (*) is equivalent to stating that for any $\varepsilon > 0$ and $f \in \mathcal{B}$ with $||Tf|| \le \varepsilon$ there exists $f_0 \in \mathcal{B}$ such that $Tf_0 = 0$ and $||f - f_0|| \le K\varepsilon$. For a bounded operator $T : \mathcal{B} \to \mathcal{B}$, we

denote the null space of T by $\mathcal{N}(T)$ and the range of T by $\mathcal{R}(T)$. When T is not one-to-one, one may consider the operator \widetilde{T} from $\mathcal{B}/\mathcal{N}(T)$ into \mathcal{B} defined by $\widetilde{T}(f+\mathcal{N}(T))=Tf$, for all $f\in\mathcal{B}$. Clearly \widetilde{T} is a one-to-one operator and $\mathcal{R}(\widetilde{T})=\mathcal{R}(T)$.

Takagi, Miura and Takahasi [11] investigated the relation of the Hyers-Ulam stability of T and the inverse operator \tilde{T}^{-1} from $\mathcal{R}(T)$ into $\mathcal{B}/\mathcal{N}(T)$ in the following sense.

Theorem A ([11], Theorem 2). For a bounded linear operator T on a Banach space, the following statements are equivalent:

- (a) T has the Hyers-Ulam stability.
- (b) T has closed range.
- (c) \widetilde{T}^{-1} is bounded.

Moreover, in this case $K_T = \|\widetilde{T}^{-1}\|$.

2. Main results

In this section for a weighted composition operator $uC_{\varphi}: L^p(\Sigma) \to L^p(\Sigma)$, we give a necessary and sufficient condition for uC_{φ} to have the Hyers-Ulam stability and then we show that $K_{uC_{\varphi}}$ is a HUS constant for uC_{φ} .

Theorem 2.1. Let $1 \le p < \infty$ and let Σ be φ -invariant. If μ is normal and uC_{φ} is a bounded weighted composition operator on $L^p(\Sigma)$, then the following assertions are equivalent:

- (i) uC_{φ} has the Hyers-Ulam stability.
- (ii) uC_{φ} has closed range.
- (iii) There exists r > 0 such that $J(x) := (h(x)E(|u|^p) \circ \varphi^{-1}(x))^{1/p} \ge r$ for μ -almost all $x \in \sigma(J)$.
- (iv) There exists r > 0 such that $\varphi(\sigma(u)) \subseteq \{x \in X : J(x) \ge r\}$.
- (v) There exists K > 0 such that $||f + \mathcal{N}(uC_{\varphi})|| \leq K||uC_{\varphi}f||$, for all $f \in L^p(\Sigma)$.

For the proof of this theorem, we need the following lemma.

70 Jabbarzadeh

Lemma 2.2. Let $1 \leq p < \infty$ and Σ be φ -invariant. If uC_{φ} is a bounded weighted composition operator on $L^p(\Sigma)$, then we have

$$||f + \mathcal{N}(uC_{\varphi})||^p = \int_{\varphi(\sigma(u))} |f|^p d\mu.$$

Proof. Put $S = \varphi(\sigma(u))$ and $S^c = X \setminus S$. Then we can write

$$L^p(X, \Sigma, \mu) = L^p(S, \Sigma_1, \mu) \oplus L^p(S^c, \Sigma_2, \mu),$$

where $\Sigma_1 = \Sigma \cap S$ and $\Sigma_2 = \Sigma \cap S^c$. Here

$$\mathcal{N}(uC_{\varphi}) = \{ f \in L^p(\Sigma) : f = 0 \text{ on } S \} = L^p(\Sigma_2).$$

If uC_{φ} is one-to-one, then $\mu(S^c)=0$ and hence there is nothing to prove. Choose $h \in \mathcal{N}(uC_{\varphi})$ arbitrarily. For each $f \in L^p(\Sigma)$ we have

$$\int_{S} |f|^{p} d\mu = \int_{S} |f + h|^{p} d\mu \le \int_{X} |f + h|^{p} d\mu = ||f + h||^{p}.$$

Hence $\int_S |f|^p d\mu \le ||f + \mathcal{N}(uC_\varphi)||^p$. On the other hand, put $h = -\chi_{S^c} f$. Clearly, $h \in \mathcal{N}(uC_\varphi)$. Then we have

$$||f + \mathcal{N}(uC_{\varphi})||^p \le ||f + h||^p = ||f(1 - \chi_{S^c})||^p = ||f\chi_S||^p = \int_S |f|^p d\mu,$$

for all $f \in L^p(\Sigma)$. Thus the lemma is proved.

Proof of Theorem 2.1. The implications $(i)\Rightarrow(ii)$ and $(v)\Rightarrow(i)$ are direct consequences of Theorem A and definition of the Hyers-Ulam stability. We show $(ii)\Rightarrow(iii)\Rightarrow(iv)\Rightarrow(v)$.

(ii) \Rightarrow (iii) Let $f \in L^p(\Sigma)$. Applying the properties of the conditional expectation and using the change of variable formula we have

$$||uC_{\varphi}f||^{p} = \int_{X} |u.f \circ \varphi|^{p} d\mu = \int_{X} E(|u|^{p})|f|^{p} \circ \varphi d\mu$$

$$= \int_{X} E(|u|^{p}) \circ \varphi^{-1}|f|^{p} d\mu \circ \varphi^{-1} = \int_{X} (hE(|u|^{p}) \circ \varphi^{-1})|f|^{p} d\mu$$

$$= \int_{X} |Jf|^{p} d\mu = ||M_{J}f||^{p},$$

where $J^p = hE(|u|^p) \circ \varphi^{-1}$. Hence we conclude that the pair (u, φ) induces a weighted composition operator $uC_{\varphi}: L^p(\Sigma) \to L^p(\Sigma)$ if and only if J induces a multiplication operator $M_J: L^p(\Sigma) \to L^p(\Sigma)$ and $||uC_{\varphi}|| = ||M_J|| = ||J||_{\infty}$. It is a well-known fact that the bounded multiplication operator M_{θ} on $L^p(\Sigma)$ has closed range if and only if θ is

bounded away from zero on $\sigma(\theta)$ (for example see[7]). Therefore, uC_{φ} on $L^p(\Sigma)$ has closed range if and only if there exists r > 0 such that $J \geq r$ a.e. on $\sigma(J)$.

(iii) \Rightarrow (iv) Suppose $J \geq r$ on $\sigma(J)$ for some r > 0. It is enough to prove that $S \subseteq \sigma(J)$. If uC_{φ} is one-to-one, then $\sigma(J) = X$ and hence there is nothing to prove. If $S \not\subseteq \sigma(J)$, then we can choose $A \subseteq \sigma(u)$ with $0 < \mu(\varphi(A)) < \infty$ such that $\varphi(A) \cap \sigma(J) = \emptyset$. Then we have

$$0 = \int_X |\chi_{\varphi(A)}J|^p d\mu = \int_X \chi_{\varphi^{-1}(\varphi(A))} |u|^p d\mu.$$

Hence $\mu(A) = \mu(A \cap \sigma(u)) \le \mu(\varphi^{-1}(\varphi(A)) \cap \sigma(u)) = 0$. Since μ is normal, we have $\mu(\varphi(A)) = 0$. But this is a contradiction.

(iv)
$$\Rightarrow$$
(v) Put $A = \{x : J(x) \ge r\}$. By Lemma 2.2, we have $||f + \mathcal{N}(uC_{\varphi})||^p = \int_S |f|^p d\mu \le \int_A |f|^p d\mu \le \frac{1}{r^p} \int_A |Jf|^p d\mu$ $\le \frac{1}{r^p} \int_X |M_J f|^p d\mu = \frac{1}{r^p} ||M_J f||^p = \frac{1}{r^p} ||uC_{\varphi} f||^p,$

for all $f \in L^p(\Sigma)$. Hence there is a constant K = 1/r, such that $||f + \mathcal{N}(uC_{\varphi})|| \leq K||uC_{\varphi}f||$.

Theorem 2.3. Under the same assumptions as in Theorem 2.1, if $R = \sup\{r > 0 : \varphi(\sigma(u)) \subseteq \{J \ge r\}\}$, then $K_{uC_{\varphi}} = 1/R$.

Proof. Put $S=\varphi(\sigma(u))$. By theorem 2.1, if r is taken over all numbers satisfying $S\subseteq\{J\geq r\}$, we obtain $K_{uC_{\varphi}}=\|u\tilde{C}_{\varphi}^{-1}\|\leq 1/R$. For the opposite inequality, assume that $\|u\tilde{C}_{\varphi}^{-1}\|<1/r$ and $S\not\subseteq\{J\geq r\}$ for some r>0. Then we can choose $A\subseteq S$, with $0<\mu(A)<\infty$ such that $J_{|A}< r$. Put $f_0=\chi_A/\mu(A)^{1/p}$. Then we have $\|uC_{\varphi}f_0\|=\|M_Jf_0\|=\|Jf_0\|< r$. Hence we obtain

$$1 = ||f_0|| = \left(\int_S |f_0|^p d\mu\right)^{\frac{1}{p}} = ||f_0 + \mathcal{N}(uC_\varphi)|| = ||u\tilde{C}_\varphi^{-1}(uC_\varphi f_0)||$$
$$\leq ||u\tilde{C}_\varphi^{-1}|| ||uC_\varphi f_0|| < r\frac{1}{r} = 1,$$

which is a contradiction. Thus we conclude that if $\|u\widetilde{C}_{\varphi}^{-1}\| < 1/r$ then $S \subseteq \{J \ge r\}$. This implies $1/R \le \|u\widetilde{C}_{\varphi}^{-1}\|$.

72 Jabbarzadeh

Remark 2.4. (a) If we omit the φ -invarian of Σ and normality of μ in Theorem 2.1, then the implications (i) \iff (ii) \iff (iii) are still valid.

- (b) Combining Theorem 3 with Proposition 3 in [8], we see the following fact: Suppose that the measure space (X, Σ, μ) is nonatomic and let uC_{φ} be a weighted composition operator on $L^{p}(\Sigma)$ $(1 \leq p < \infty)$. Assume that $u(x) \neq 0$ for μ -almost all $x \in X$ and that a composition operator C_{φ} is invertible. Then uC_{φ} has the Hyers-Ulam stability if and only if uC_{φ} is a Fredholm operator.
- (c) Since for $1 , <math>L^p(\Sigma)$ is reflexive and $\mathcal{N}(uC_{\varphi})$ is a closed subspace of $L^p(\Sigma)$, it follows that $\mathcal{N}(uC_{\varphi})$ is proximinal. Hence $K_{uC_{\varphi}}$ is also a HUS constant for uC_{φ} . Now, consider the case p = 1. Pick $f \in L^1(\Sigma)$. Since $L^1(\Sigma) = L^1(\Sigma_1) \oplus L^1(\Sigma_2)$, so $g = f\chi_S \in L^1(\Sigma_1)$. Hence we have

$$||f + \mathcal{N}(uC_{\varphi})|| = \int_{S} |f| d\mu = \int_{X} |g| d\mu = ||g|| = ||f - (f - g)||.$$

Moreover, f - g = 0 on S, which implies $f - g \in \mathcal{N}(uC_{\varphi})$. Thus $\mathcal{N}(uC_{\varphi})$ is proximinal. Therefore by Corollary 1 of [3], $K_{uC_{\varphi}}$ is a HUS constant for uC_{φ} on $L^1(\Sigma)$. For more details see [3]. Also, we note that every bounded composition operator on $L^{\infty}(\Sigma)$ has the Hyers-Ulam stability.

Example 2.5. Let X = [0,1] with the Lebesgue measure μ , and let $\varphi : [0,1] \to [0,1]$ be defined by

$$\varphi(x) = \begin{cases} x & \text{if } 0 \le x < \frac{1}{2} \\ x - \frac{1}{2} & \text{if } \frac{1}{2} \le x \le 1. \end{cases}$$

If we consider $uC_{\varphi}:L^2(\Sigma)\to L^2(\Sigma)$ as $uC_{\varphi}f(x)=xf(\varphi(x)),$ then a simple computation gives

$$J(x) = \begin{cases} (2x^2 - x + \frac{1}{4})^{1/2} & \text{if } 0 \le x < \frac{1}{2} \\ 0 & \text{if } \frac{1}{2} \le x \le 1. \end{cases}$$

Since $J(x) \ge 1/\sqrt{8}$ on $\sigma(J) = [0, 1/2)$, uC_{φ} has the Hyers-Ulam stability and $K_{uC_{\varphi}} = \sqrt{8}$.

Acknowledgements

The author is grateful to the referee for his/her helpful suggestions regarding the proof of Theorem 2.1 ((iii)⇒(iv)) and Remark 2.4 (b).

References

- C. Burnap and A. Lambert, Reducibility of composition operators on L², J. Math. Anal. Appl. 178 (1993), 87-101.
- [2] James T. Campbell and J. Jamison, On some classes of weighted composition operators, Glasgow Math. J. 32 (1990), 87-94.
- [3] O. Hatori, K. Kobayashi, T. Miura, H. Takagi and S.-E. Takahasi, On the best constant of Hyers-Ulam stability, *J. Nonlinear Convex Anal.* 5 (2004), 387-393.
- [4] G. Hirasawa and T. Miura, Hyers-Ulam stability of a closed operator in a Hilbert space, *Bull. Korean Math. Soc.* 43 (2006), 107-117.
- [5] T. Hoover, A. Lambert and J. Quinn, The Markov process determined by a weighted composition operator, Studia Math. (Poland) LXXII (1982), 225-235.
- [6] A. Lambert, Localising sets for sigma-algebras and related point transformations, Proc. Roy. Soc. Edinburgh Sect. A 118 (1991), 111-118.
- [7] R. K. Singh and Ashok Kumar, Multiplication operators and composition operators with closed range, Bull. Austral. Math. Soc. 16 (1977), 247-252.
- [8] H. Takagi, Fredholm weighted composition operators, *Integr. Equ. Oper. Theory* **16** (1993), 267–276.
- [9] H. Takagi, T. Miura and S.-E. Takahasi, The Hyers-Ulam stability of a weighted composition operator on a uniform algebra, J. Nonlinear Convex Anal. 5 (2004), 43-48.
- [10] H. Takagi, J. Takahashi and S.-I. Ueki, The essential norm of a weighted composition operator on the ball algebra, Acta Sci. Math. (Szeged) 70 (2004), 819-829.
- [11] H. Takagi, T. Miura and S.-E. Takahasi, Essential norms and stability constants of weighted composition operators on C(X), Bull. Korean Math. Soc. **40** (2003), 583-591.

M. R. Jabbarzadeh

Department of Mathematics University of Tabriz Tabriz, Iran

e-mail: mjabbar@tabrizu.ac.ir