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A NOTE ON WEIGHTED COMPOSITION
OPERATORS ON Lp-SPACES

M. R. JABBARZADEH AND E. POURREZA

Abstract. In this paper we will consider the weighted com-
position operators uCϕ between two different Lp(X, Σ, µ)
spaces, generated by measurable and non-singular transforma-
tions ϕ from X into itself and measurable functions u on X.
We characterize the functions u and transformations ϕ that
induce weighted composition operators between Lp-spaces by
using some properties of conditional expectation operator, pair
(u, ϕ) and the measure space (X, Σ, µ). Also, some other prop-
erties of these types of operators will be investigated.

1. Preliminaries And Notation

Let (X, Σ, µ) be a sigma finite measure space. By L(X), we de-
note the linear space of all Σ-measurable functions on X. When we
consider any subsigma algebra A of Σ, we assume they are com-
pleted; i.e., µ(A) = 0 implies B ∈ A for any B ⊂ A. For any sigma
finite algebra A ⊆ Σ and 1 ≤ p ≤ ∞ we abbreviate the Lp-space
Lp(X,A, µ|A) to Lp(A), and denote its norm by ‖.‖p. We define the
support of a measurable function f as σ(f) = {x ∈ X; f(x) 6= 0}.
We understand Lp(A) as a subspace of Lp(Σ) and as a Banach
space. Here functions which are equal µ-almost everywhere are
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identical. An atom of the measure µ is an element B ∈ Σ with
µ(B) > 0 such that for each F ∈ Σ, if F ⊂ B then either µ(F ) = 0
or µ(F ) = µ(B). A measure with no atoms is called non-atomic.
We can easily check the following well known facts (see [9]):

(a) Every sigma finite measure space (X, Σ, µ) can be decom-
posed into two disjoint sets B and Z, such that µ is a non-atomic
over B and Z is a countable union of atoms of finite measure.

(b) For each f ∈ Lr(Σ), there exist two functions f1 ∈ Lp(Σ) and
f2 ∈ Lq(Σ) such that f = f1f2 and ‖f‖r

r = ‖f1‖p
p = ‖f2‖q

q where
1
p

+ 1
q

= 1
r
.

Associated with each sigma algebra A ⊆ Σ, there exists an op-
erator E(·|A) = EA(·), which is called conditional expectation op-
erator, on the set of all non-negative measurable functions f or for
each f ∈ Lp for any p, 1 ≤ p ≤ ∞, and is uniquely determined by
the conditions

(i) EA(f) is A- measurable, and
(ii) if A is any A- measurable set for which

∫
A fdµ exists, we have∫

A fdµ =
∫
A EA(f)dµ.

This operator is at the central idea of our work, and we list here
some of its useful properties:

E1. EA(f.g ◦ T ) = EA(f)(g ◦ T ).
E2. EA(1) = 1.
E3. |EA(fg)|2 ≤ EA(|f |2)EA(|g|2).
E4. If f > 0 then EA(f) > 0.

Properties E1. and E2. imply that EA(·) is idempotent and
EA(Lp(Σ))
= Lp(A). Suppose that ϕ is a mapping from X into X which is
measurable, (i.e., ϕ−1(Σ) ⊆ Σ) such that µ ◦ϕ−1 is absolutely con-
tinuous with respect to µ (we write µ◦ϕ−1 � µ, as usual). Let h be

the Radon-Nikodym derivative h = dµ◦ϕ−1

dµ
. If we put A = ϕ−1(Σ),

it is easy to show that for each non-negative Σ-measurable func-
tion f or for each f ∈ Lp(Σ) (p ≥ 1), there exists a Σ-measurable

function g such that Eϕ−1(Σ)(f) = g ◦ ϕ. We can assume that the
support of g lies in the support of h, and there exists only one g
with this property. We then write g = Eϕ−1(Σ)(f) ◦ϕ−1, though we
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make no assumptions regarding the invertibility of ϕ (see [2]). For
a deeper study of the properties of E see the paper [6].

2. Some Results On Weighted Composition Operators
Between Two Lp-Spaces

Let 1 ≤ q ≤ p < ∞ and we define Kp,q or Kp,q(A, Σ) as follows:

Kp,q = {u ∈ L(X) : uLp(A) ⊆ Lq(Σ)}.

Kp,q(A, Σ) is a vector subspace of L(X). Also note that if 1 ≤ q =
p < ∞, then L∞(Σ) ⊆ Kp,p(A, Σ) and Kp,p(Σ, Σ) = L∞(Σ) (see [3];
problem 64, 65).

For u ∈ L(X), let Mu from Lp(A) into L(X) defined by Muf =
u.f be the corresponding linear transformation. An easy conse-
quence of the closed graph theorem and the result guaranteeing a
pointwise convergent subsequence for each Lp convergent sequence
assures us that for each u ∈ Kp,q(A, Σ), the operator Mu : Lp(A) →
Lq(Σ) is a multiplication operator (bounded linear transformation).

We shall find the relationship between a sigma finite algebra A ⊆
Σ and the set of multiplication operators which map Lp(A) into
Lq(Σ). Our first task is the description of the members of Kp,q in
terms of the conditional expectation induced by A.

Theorem 1.1. Suppose 1 ≤ q < p < ∞ and u ∈ L(X). Then

u ∈ Kp,q if and only if (EA(|u|q))
1
q ∈ Lr(A), where 1

p
+ 1

r
= 1

q
.

Proof. To prove the theorem, we adopt the method used by Axler

[1]. Suppose (EA(|u|q))
1
q ∈ Lr(A), so EA(|u|q) ∈ L

r
q (A). For each

f ∈ Lp(A), we have |f |q ∈ L
p
q (A). Since q

p
+ q

r
= 1, Hölder’s

inequality yields

‖u.f‖q =
{∫

|u|q|f |qdµ
} 1

q

=
{∫

EA(|u|q)|f |qdµ
} 1

q
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≤
{(∫ (

EA(|u|q)
) r

q dµ
) q

r
(∫

(|f |q)
p
q dµ

) q
p

} 1
q

= ‖(EA(|u|q))
1
q ‖r‖f‖p.

Hence u ∈ Kp,q. Now suppose only that u ∈ Kp,q. So the operator
Mu : Lp(A) → Lq(Σ) given by Muf = u.f is a bounded linear
operator. Let ϕ be a nonnegative integrable simple function then∫

EA (|u|q) ϕdµ ≤ ‖Mu‖q
(∫

ϕ
p
q dµ

) q
p

= ‖Mu‖q ‖ϕ‖ p
q

It follows that EA (|u|q) ∈ L( p
q )

′

(X,A, µ|A) ' L
r
q (X,A, µ|A). 2

Corollary 2.2. Suppose 1 ≤ q < p < ∞ and u ∈ L(X). Then
Mu from Lp(Σ) into Lq(Σ) is bounded linear operator if and only if

u ∈ L
pq

p−q (Σ). In this case ‖Mu‖ = ‖u‖ pq
p−q

.

Proof. Put A = Σ in the previous theorem. Then we will have
EA = I (identity operator). Then the proof holds.

Let u ∈ L(X) and 1
p

+ 1
r

= 1
q
. If p = q then r must be ∞.

So Mu(L
p(Σ)) ⊆ Lp(Σ) if and only if u ∈ L∞(Σ). In this case

‖Mu‖ = ‖u‖∞. This fact is well-known. For the direct proof, see
[3].

Take a function u in L(X) and let ϕ : X → X be a non-singular
measurable transformation; i.e. µ(ϕ−1(A)) = 0 for all A ∈ Σ such
that µ(A) = 0. Then the pair (u, ϕ) induces a linear operator uCϕ

from Lp(Σ) into L(X) defined by

uCϕ(f) = u.f ◦ ϕ (f ∈ Lp(Σ)).

Here, the non-singularity of ϕ guarantees that uCϕ is well defined as
a mapping of equivalence classes of functions on support u. If uCϕ

takes Lp(Σ) into Lq(Σ), then we call uCϕ a weighted composition
operator Lp(Σ) into Lq(Σ) (1 ≤ q ≤ ∞).

Boundedness of composition operators in Lp(Σ) spaces (1 ≤
p ≤ ∞) where measure spaces are sigma finite appeared already
in Singh paper [7] and for two different Lp(Σ) spaces in the pa-
per [8]. Also boundedness of weighted composition operators on
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Lp(Σ) spaces has already been studied in [4]. Namely, for a non-
singular measurable transformation ϕ and complex valued mea-
surable weight function u on X, uCϕ is bounded if and only if

hEϕ−1(Σ)(|u|p) ◦ ϕ−1 ∈ L∞(Σ). In the following theorem we give
a necessary and sufficient condition for boundedness of weighted
composition operators from Lp(Σ) into Lq(Σ), where p > q as fol-
lows:

Theorem 2.3. Suppose 1 ≤ q < p < ∞ and 1
p

+ 1
r

= 1
q
. Let u ∈

L(X) and ϕ : X → X be a non-singular measurable transformation.
Then the pair (u, ϕ) induces a weighted composition operator uCϕ

from Lp(Σ) into Lq(Σ) if and only if J = hEϕ−1(Σ)(|u|q) ◦ ϕ−1 ∈
L

r
q (Σ).

Proof. Let f ∈ Lp(Σ). We will have

‖uCϕf‖q
q =

∫
|u.f ◦ ϕ|qdµ =

∫
hEϕ−1(Σ)(|u|q) ◦ ϕ−1|f |qdµ

=
∫
| q
√

Jf |qdµ = ‖M q√
Jf‖q

q.

So by Corollary 2.2, uCϕ is a weighted composition operator from

Lp(Σ) into Lq(Σ) if and only if q
√

J ∈ Lr(Σ) or equivalently J ∈
L

r
q (Σ). 2

Corollary 2.4. Suppose 1 ≤ p ≤ ∞, u ∈ L(X) and ϕ : X → X
be a non-singular measurable transformation. Then the pair (u, ϕ)
induces a weighted composition operator uCϕ from Lp(Σ) into Lp(Σ)

if and only if hEϕ−1(Σ)(|u|p) ◦ ϕ−1 ∈ L∞(Σ).

Corollary 2.5. Under the same assumptions as in theorem 2.3, ϕ
induces a composition operator Cϕ : Lp(Σ) → Lq(Σ) if and only if

h ∈ L
r
q (Σ).

Remark 2.6. One of the interesting features of a weighted com-
position operator is that the composition operator alone may not
define a bounded operator between two Lp(Σ) spaces. As an ex-
ample, let X be [0, 1], Σ the Borel sets, and µ Lebesgue measure.
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Let ϕ be the map ϕ(x) = x3 on [0, 1]. A simple computation
shows that h = 1/3x−2/3 /∈ L3(Σ). Then Cϕ dos not define a
bounded operator from L3(Σ) into L2(Σ). However with u(x) = x,
we have ϕ−1(Σ) = Σ (so E = I) and J = 1/3 ∈ L3(Σ). Hence
uCϕ = Mu ◦ Cϕ is bounded operator from L3(Σ) into L2(Σ).

The procedure which Axler has used for the case p < q in [1],
when X is the interval [−π, π], can also be used here.

At this stage we investigate a necessary and sufficient condition
for a multiplication operator to be fredholm. For a bounded linear
operator A on a Banach space, we use the symbols N (A) and R(A)
to denote the kernel and the range of A, respectively. We recall
that A is said to be a Fredholm operator if R(A) is closed and if
dimN (A) < ∞ and codimR(A) < ∞. Now we attempt to prove a
theorem which is likely to be found elsewhere.

Theorem 2.7. Suppose that µ is a non-atomic measure on L2(Σ).
Then the following conditions are equivalent:

(a) Mu is an invertible operator.
(b) Mu is a Fredholm operator.
(c) R(Mu) is closed and codimR(Mu) < ∞.
(d) |u| ≥ δ almost everywhere on X for some δ > 0.

Proof. The implications (d) =⇒ (a) =⇒ (b) =⇒ (c) are obvious.
We show (c) =⇒ (d).

Suppose that R(Mu) is closed and codim R(Mu) < ∞. Then
there exists a δ > 0 such that |u| ≥ δ on σ(u). So it is enough
to show that µ(σ(u)c) = 0. First of all we prove that Mu is onto.
Let 0 6= f0 ∈ R(Mu)

⊥, therefore, for any f ∈ L2(Σ) we have
(Muf, f0) = 0. Now we choose t > 0 such that the set

Zt = {s ∈ X : |f0|2(x) ≥ t}

is of positive measure. Since µ is a non-atomic measure we may
choose a sequence of disjoint subsets Zn of Zt such that 0 < µ(Zn) <
∞. Now let gn = χZn .f0. It is clear that each gn is non-zero element
of L2(Σ), and for n 6= m, (gn, gm) = 0. Therefore, for f ∈ L2(Σ)
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we have

(f, M∗
ugn) = (Muf, χZnf0) = (MuχZnf , f0) = 0.

So gn ∈ N (M∗
u) for any n. Therefore, {gn} is a linearly indepen-

dent subset of N (M∗
u), which is a contradiction to dim N (M∗

u) =
codim R(Mu) < ∞. If µ(σ(u)c) > 0, then there exists a set
Z ⊂ σ(u)c such that 0 < µ(Z) < ∞, so we conclude that χZ ∈
L2(Σ)\R(Mu), which contradicts the fact that Mu is onto. There-
fore µ(σ(u)c) = 0. 2

Corollary 2.8. Mu is a Fredholm operator if and only if Mn
u (=

Mun) is also Fredholm.
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