Bull. Korean Math. Soc. 42 (2005), No. 2, pp. 369-378

WEIGHTED COMPOSITION OPERATORS BETWEEN L^p-SPACES

M. R. JABBARZADEH

ABSTRACT. In this paper we will consider the weighted composition operator $W = uC_{\varphi}$ between two different $L^p(X, \Sigma, \mu)$ spaces, generated by measurable and non-singular transformations φ from X into itself and measurable functions u on X. We characterize the functions u and transformations φ that induce weighted composition operators between L^p -spaces by using some properties of conditional expectation operator, pair (u,φ) and the measure space (X, Σ, μ) . Also, Fredholmness of these type operators will be investigated.

1. Preliminaries and notations

Takagi in [9] has characterized the boundedness of multiplication and composition operators on $L^p(\Sigma)$ spaces in $1 \leq p < q$ and $1 \leq q < p$ cases. In [4], boundedness of weighted composition operators has been investigated in $1 \leq q \leq p < \infty$ case. In the next section we will give the necessary and sufficient condition for boundedness of weighted composition operators in $1 \leq p < q < \infty$ case. In section 3 we investigate a necessary and sufficient condition for a weighted composition operator $W = uC_{\varphi}$ to be Fredholm. Fredholm weighted composition operators have been studied by H. Takagi[8] in the $L^p(\Sigma)$ setting. By using some properties of conditional expectation operator we omit the continuity hypothesis of M_u . In other words, we do not require that $u \in L^{\infty}(\Sigma)$. This is stated as a hypothesis in [8].

Let (X, Σ, μ) be a σ -finite measure space. By L(X), we denote the linear space of all Σ -measurable functions on X. When we consider any sub- σ -algebra \mathcal{A} of Σ , we assume they are completed; i.e., $\mu(A) = 0$ implies $B \in \mathcal{A}$ for any $B \subset A$. For any σ -finite algebra $\mathcal{A} \subseteq \Sigma$ and

Received March 8, 2004.

²⁰⁰⁰ Mathematics Subject Classification: Primary 47B20; Secondary 47B38.

Key words and phrases: weighted composition operator, conditional expectation, multiplication operator, Fredholm operator.

 $1 \leq p \leq \infty$ we abbreviate the L^p -space $L^p(X, \mathcal{A}, \mu|_{\mathcal{A}})$ to $L^p(\mathcal{A})$, and denote its norm by $\|\cdot\|_p$. We define the support of a measurable function f as $\sigma(f) = \{x \in X; f(x) \neq 0\}$. We understand $L^p(\mathcal{A})$ as a subspace of $L^p(\Sigma)$ and as a Banach space. All comparisons between two functions or two sets are to be interpreted as holding up to a μ -null set. An atom of the measure μ is an element $A \in \Sigma$ with $\mu(A) > 0$ such that for each $F \in \Sigma$, if $F \subset A$ then either $\mu(F) = 0$ or $\mu(F) = \mu(A)$. It is easy to see that every \mathcal{A} -measurable function $f \in L(X)$ is constant μ -almost everywhere on an atom A. So for each $f \in L(X)$ and each atom A we have $\int_A f d\mu = f(A)\mu(A)$. A measure with no atoms is called non-atomic. We can easily check the following well known facts (see [11]):

(a) Every σ -finite measure space (X, Σ, μ) can be decomposed into two disjoint sets B and Z, such that μ is a non-atomic over B and Z is a countable union of atoms of finite measure. So we can write $X = B \cup (\bigcup_{n \in N} A_n)$, where $\{A_n\}_{n \in N}$ is a countable collection of disjoint atoms and B is a non-atomic set.

(b) Suppose $1 \leq p < q < \infty$. If an \mathcal{A} -measurable set K is nonatomic and that $\mu(K) > 0$, there exists a function $f_0 \in L^p(\mathcal{A})$ such that $\int_K |f_0|^q d\mu < \infty$.

Associated with each σ -algebra $\mathcal{A} \subseteq \Sigma$, there exists an operator $E(\cdot|\mathcal{A}) = E^{\mathcal{A}}(\cdot)$ on the set of all non-negative measurable functions f or on the set of all functions $f \in L^p(\Sigma)$, $1 \leq p \leq \infty$, that is uniquely determined by the conditions

- (i) $E^{\mathcal{A}}(f)$ is \mathcal{A} -measurable, and
- (ii) if A is any \mathcal{A} -measurable set for which $\int_A f d\mu$ exists, we have $\int_A f d\mu = \int_A E^{\mathcal{A}}(f) d\mu$.

The operator $E^{\mathcal{A}}$ is called the conditional expectation operator. This operator is at the central idea of our work, and we list here some of its useful properties:

- E1. If g is \mathcal{A} -measurable then $E^{\mathcal{A}}(fg) = E^{\mathcal{A}}(f)g$.
- E2. $E^{\mathcal{A}}(1) = 1.$
- E3. $|E^{\mathcal{A}}(fg)|^2 \le E^{\mathcal{A}}(|f|^2)E^{\mathcal{A}}(|g|^2).$
- E4. If f > 0, then $E^{\mathcal{A}}(f) > 0$.

The properties E1 and E2 imply that $E^{\mathcal{A}}(\cdot)$ is an idempotent and $E^{\mathcal{A}}(L^p(\Sigma)) = L^p(\mathcal{A})$. So when $\mathcal{A} = \Sigma$, we have $E^{\Sigma} = I$ where I is the identity operator. Suppose that φ is a mapping from X into X which is measurable, (i.e., $\varphi^{-1}(\Sigma) \subseteq \Sigma$) and $\mu \circ \varphi^{-1}$ is absolutely continuous with respect to μ ($\mu \circ \varphi^{-1} \ll \mu$). Let h be the Radon-Nikodym derivative,

 $h = d\mu \circ \varphi^{-1}/d\mu$. If we put $\mathcal{A} = \varphi^{-1}(\Sigma)$, it is easy to show that for each non-negative Σ -measurable function f or for each $f \in L^p(\Sigma)$ $(p \ge 1)$, there exists a Σ -measurable function g such that $E^{\varphi^{-1}(\Sigma)}(f) = g \circ \varphi$. We can assume that the support of g lies in the support of h, and there exists only one g with this property. We then write $g = E^{\varphi^{-1}(\Sigma)}(f) \circ \varphi^{-1}$, though we make no assumption regarding the invertibility of φ (see [2]). For a deeper study of the properties of E see the paper [6].

Take a function u in L(X) and let $\varphi : X \to X$ be a non-singular measurable transformation; i.e. $\mu(\varphi^{-1}(A)) = 0$ for all $A \in \Sigma$ such that $\mu(A) = 0$. Then the pair (u, φ) induces a linear operator uC_{φ} from $L^{p}(\Sigma)$ into L(X) defined by

$$uC_{\varphi}(f) = u.f \circ \varphi, \quad (f \in L^p(\Sigma)).$$

Here, the non-singularity of φ guarantees that uC_{φ} as a mapping of equivalence classes of functions on support u is well defined. If uC_{φ} takes $L^{p}(\Sigma)$ into $L^{q}(\Sigma)$ or uC_{φ} is equivalently bounded, then we say that uC_{φ} is a weighted composition operator from $L^{p}(\Sigma)$ into $L^{q}(\Sigma)$ $(1 \leq p, q \leq \infty)$. When $u \equiv 1$, we just have the composition operator C_{φ} defined by $C_{\varphi}(f) = f \circ \varphi$. For more details see [7].

2. Boundedness of weighted composition operators in $1 \le p < q < \infty$ case

Let $1 \leq p < q < \infty$. In this section we characterize the functions uand transformations φ that induce weighted composition operators uC_{φ} : $L^p(\Sigma) \to L^q(\Sigma)$ by using some properties of conditional expectation operator, pair (u, φ) and the measure space (X, Σ, μ) .

Case: $1 \le q \le p < \infty$

Let $1 \leq q \leq p < \infty$. In [4] we examined the set

$$\mathcal{K}_{p,q} = \mathcal{K}_{p,q}(\mathcal{A}, \Sigma) = \{ u \in L(X) : uL^p(\mathcal{A}) \subseteq L^q(\Sigma) \}.$$

 $\mathcal{K}_{p,q}(\mathcal{A}, \Sigma)$ is a vector subspace of L(X). Also note that if $1 \leq q = p < \infty$, then $L^{\infty}(\Sigma) \subseteq \mathcal{K}_{p,p}(\mathcal{A}, \Sigma)$ and $\mathcal{K}_{p,p}(\Sigma, \Sigma) = L^{\infty}(\Sigma)$.

For $u \in L(X)$, let M_u from $L^p(\mathcal{A})$ into L(X) defined by $M_u f = u.f$ be the corresponding linear transformation. An easy consequence of the closed graph theorem and the result guaranteeing a pointwise convergent subsequence for each L^p convergent sequence assures us that for each $u \in$ $\mathcal{K}_{p,q}(\mathcal{A}, \Sigma)$, the operator $M_u : L^p(\mathcal{A}) \to L^q(\Sigma)$ is a bounded multiplication operator. Boundedness of weighted composition operators on $L^p(\Sigma)$

spaces has already been studied in [3]. Namely, for a non-singular measurable transformation φ and complex valued measurable weight function u on X, uC_{φ} is bounded if and only if $hE^{\varphi^{-1}(\Sigma)}(|u|^p)\circ\varphi^{-1} \in L^{\infty}(\Sigma)$. The following two results are established in [4].

THEOREM 2.1. Suppose $1 \leq q and <math>u \in L(X)$. Then $u \in \mathcal{K}_{p,q}$ if and only if $(E^{\mathcal{A}}(|u|^q))^{\frac{1}{q}} \in L^r(\mathcal{A})$, where $\frac{1}{p} + \frac{1}{r} = \frac{1}{q}$.

THEOREM 2.2. Suppose $1 \leq q and <math>\frac{1}{p} + \frac{1}{r} = \frac{1}{q}$. Let $u \in L(X)$ and $\varphi : X \to X$ be a non-singular measurable transformation. Then the pair (u, φ) induces a weighted composition operator uC_{φ} from $L^{p}(\Sigma)$ into $L^{q}(\Sigma)$ if and only if $J = hE^{\varphi^{-1}(\Sigma)}(|u|^{q}) \circ \varphi^{-1} \in L^{\frac{r}{q}}(\Sigma)$.

Case: $1 \le p < q < \infty$

In this case we shall find the relationship between a σ -finite algebra $\mathcal{A} \subseteq \Sigma$ and the set of multiplication operators which map $L^p(\mathcal{A})$ into $L^q(\Sigma)$. Our first task is the description of the members of $\mathcal{K}_{p,q}$ in terms of the conditional expectation induced by \mathcal{A} .

THEOREM 2.3. Suppose $1 \leq p < q < \infty$ and $u \in L(X)$. Then $u \in \mathcal{K}_{p,q}$ if and only if u satisfies the following two conditions:

(i) $E^{\mathcal{A}}(|u|^q) = 0$ on B.

(ii)
$$\sup_{n \in N} \left(E^{\mathcal{A}}(|u(A_n)|^q) \right)^{\frac{q}{q}} / \mu(A_n) < \infty$$
, where $\frac{1}{q} + \frac{1}{s} = \frac{1}{p}$.

Proof. To prove the theorem, we adopt the methods used by Axler [1] and Takagi [9]. Suppose that both (i) and (ii) hold. Put $b = \sup_{n \in N} \left(E^{\mathcal{A}}(|u(A_n)|^q) \right)^{\frac{s}{q}} / \mu(A_n)$. Then, for each $f \in L^p(\mathcal{A})$ with $||f||_p \leq 1$ we have

$$\begin{split} \|u.f\|_{q}^{q} &= \int_{X} E^{\mathcal{A}}(|u|^{q})|f|^{q}d\mu \\ &= \sum_{n \in N} \int_{A_{n}} E^{\mathcal{A}}(|u|^{q})|f|^{q}d\mu \\ &= \sum_{n \in N} \left(\frac{\left(E^{\mathcal{A}}(|u(A_{n})|^{q})\right)^{\frac{s}{q}}}{\mu(A_{n})} \right)^{\frac{q}{s}} (|f(A_{n})|^{p}\mu(A_{n}))^{\frac{q}{p}} \\ &\leq b^{\frac{q}{s}} \sum_{n \in N} (|f(A_{n})|^{p}\mu(A_{n})) \\ &= b^{\frac{q}{s}} \sum_{n \in N} \int_{A_{n}} |f|^{p}d\mu \end{split}$$

Weighted composition operators between L^p -spaces

$$\leq b^{\frac{q}{s}} \int_{X} |f|^{p} d\mu$$

$$\leq b^{\frac{q}{s}} ||f||_{p}^{p}$$

$$\leq b^{\frac{q}{s}}.$$

Hence $u \in \mathcal{K}_{p,q}$. Conversely, suppose that $u \in \mathcal{K}_{p,q}$. So the operator $M_u : L^p(\mathcal{A}) \to L^q(\Sigma)$ given by $M_u f = u.f$ is a bounded linear operator on $X = B \cup (\bigcup_{n \in N} A_n)$. Assume that $\mu(\{x \in B : E^{\mathcal{A}}(|u(x)|^q) \neq 0\})$ $0\}) > 0$. Then there exists a positive number δ such that $\mu(\{x \in B :$ $E^{\mathcal{A}}(|u(x)|^q) \ge \delta\}) > 0.$ Put $K = \{x \in B : E^{\mathcal{A}}(|u(x)|^q) \ge \delta\}.$ Since K is non-atomic, by (b) we can find $f_0 \in L^p(\mathcal{A})$ such that $\int_K |f_0|^q d\mu = \infty$. Then we have

$$\infty > \|M_u f_0\|_q^q \ge \int_K E^{\mathcal{A}}(|u|^q) |f_0|^q d\mu \ge \delta \int_K |f_0|^q d\mu = \infty,$$

which is a contradiction. In other words, $E^{\mathcal{A}}(|u|^q) = 0$ on B. Now we prove that (ii) also holds. For any $n \in N$ put $f_n = (1/\mu(A_n)^{\frac{1}{p}})\chi_{A_n}$. It is clear that $f_n \in L^p(\mathcal{A})$ and $||f_n||_p = 1$. Hence we have

$$\frac{\left(E^{\mathcal{A}}(|u(A_{n})|^{q})\right)^{\frac{1}{q}}}{\mu(A_{n})^{\frac{1}{s}}} = \left\{\frac{1}{\mu(A_{n})^{\frac{q}{p}}}E^{\mathcal{A}}(|u(A_{n})|^{q})\mu(A_{n})\right\}^{\frac{1}{q}}$$
$$= \left\{\frac{1}{\mu(A_{n})^{\frac{q}{p}}}\int_{A_{n}}E^{\mathcal{A}}(|u|^{q})d\mu\right\}^{\frac{1}{q}}$$
$$= \left\{\int_{X}E^{\mathcal{A}}(|uf_{n}|^{q})d\mu\right\}^{\frac{1}{q}}$$
$$= \|M_{u}f_{n}\|_{q} \le \|M_{u}\|.$$

Since this holds for any $n \in N$, it follows that $b \leq ||M_u||^s < \infty$.

The next corollary follows immediately from Theorem 2.3 and the known fact that when $\mathcal{A} = \Sigma$ then $E^{\mathcal{A}} = I$ (identity operator).

COROLLARY 2.4. Suppose $1 \le p < q < \infty$ and $u \in L(X)$. Then the operator M_u from $L^p(\Sigma)$ into $L^q(\Sigma)$ is a bounded linear operator if and only if u satisfies the following two conditions:

- (i) u = 0 on *B*,
- (ii) $\sup_{n \in N} |u(A_n)|^s / \mu(A_n) < \infty$, where $\frac{1}{q} + \frac{1}{s} = \frac{1}{p}$.

In the following theorem we give a necessary and sufficient condition for boundedness of weighted composition operators from $L^p(\Sigma)$ into $L^q(\Sigma)$, where $1 \leq p < q < \infty$.

THEOREM 2.5. Suppose $1 \leq p < q < \infty$, $u \in L(X)$ and $\varphi : X \to X$ is a non-singular measurable transformation. Then the pair (u, φ) induces a weighted composition operator uC_{φ} from $L^{p}(\Sigma)$ into $L^{q}(\Sigma)$ if and only if the following conditions hold:

(i)
$$J = 0$$
 on B ,
(ii) $\sup_{n \in N} |J(A_n)|^{\frac{s}{q}} / \mu(A_n) < \infty$, where $\frac{1}{q} + \frac{1}{s} = \frac{1}{p}$.

Proof. Let $f \in L^p(\Sigma)$. We will have

$$\|uC_{\varphi}f\|_{q}^{q} = \int hE^{\varphi^{-1}(\Sigma)}(|u|^{q}) \circ \varphi^{-1}|f|^{q}d\mu = \int |\sqrt[q]{J}f|^{q}d\mu = \|M_{\sqrt[q]{J}}f\|_{q}^{q}.$$

So by Corollary 2.4 the theorem holds.

COROLLARY 2.6. Under the same assumptions as in Theorem 2.5, φ induces a composition operator $C_{\varphi} : L^p(\Sigma) \to L^q(\Sigma)$ if and only if the following conditions hold:

(i)
$$h = 0$$
 on B ,
(ii) $\sup_{n \in N} |h(A_n)|^{\frac{s}{q}} / \mu(A_n) < \infty$, where $\frac{1}{q} + \frac{1}{s} = \frac{1}{p}$.

3. Fredholm weighted composition operators on L^p -spaces

Let $1 \leq p < \infty$, $1 \leq q < \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$. Then it is well-known fact that each $g^* \in L^q(\Sigma)$ defines a bounded linear functional F_{g^*} on $L^p(\Sigma)$ by

$$F_{g^*}(f) = \int f g^* d\mu \quad (f \in L^p(\Sigma)).$$

Moreover, the mapping $g^* \to F_{g^*}$ is an isometry from $L^q(\Sigma)$ onto $(L^p)^*(\Sigma)$, so the norm dual of $L^p(\Sigma)$ can be identified with $L^q(\Sigma)$. In the following theorem we compute the adjoint of uC_{φ} .

PROPOSITION 3.1. Let $W = uC_{\varphi}$ be a weighted composition operator on $L^p(\Sigma)$ and $\frac{1}{p} + \frac{1}{q} = 1$. Then $W^*g^* = hE(u.g^*) \circ \varphi^{-1}$ for all $g^* \in L^q(\Sigma)$.

Proof. Take $A \in \Sigma$ such that $0 < \mu(A) < \infty$. For $g^* \in L^q(\Sigma)$ consider a bounded linear functional F_{g^*} on $L^p(\Sigma)$ as above. Then we have

$$(W^*F_{g^*})(\chi_A) = F_{g^*}(W\chi_A) = \int (W\chi_A)g^* d\mu$$
$$= \int u \cdot \chi_A \circ \varphi \ g^* d\mu = \int hE(u \cdot g^*) \circ \varphi^{-1} \chi_A d\mu = F_{hE(u \cdot g^*) \circ \varphi^{-1}} \chi_A.$$

Hence, $W^*F_{g^*} = F_{hE(u,g^*)\circ\varphi^{-1}}$. After identifying $(L^p)^*(\Sigma)$ with $L^q(\Sigma)$ and g^* with F_{g^*} , we can write $W^*g^* = hE(u,g^*)\circ\varphi^{-1}$ for all $g^* \in L^q(\Sigma)$.

In the following theorem we investigate a necessary and sufficient condition for a weighted composition operator $W = uC_{\varphi}$ to be Fredholm. The proof of the theorem follows a similar method of proof as was used to prove Theorem 4.2 in [5] which is similar to a theorem of Takagi[8]. We use the symbols $\mathcal{N}(W)$ and $\mathcal{R}(W)$ to denote the kernel and the range of W, respectively. We recall that W is said to be a Fredholm operator if $\mathcal{R}(W)$ is closed and if dim $\mathcal{N}(W) < \infty$ and codim $\mathcal{R}(W) < \infty$.

THEOREM 3.2. Suppose that μ is a non-atomic measure. Let $W = uC_{\varphi}$ be a weighted composition operator on $L^p(\Sigma)$. Then W is a Fredholm operator if and only if $J = hE^{\varphi^{-1}(\Sigma)}(|u|^p) \circ \varphi^{-1} \ge \delta$ almost every where on X for some $\delta > 0$.

Proof. Suppose that W is a Fredholm operator. We first claim that W is onto and takes an $f_o \in L^p(\Sigma) \setminus \mathcal{R}(W)$. Since $\mathcal{R}(W)$ is closed, we can find a functional L_{g^*} on $L^p(\Sigma)$ corresponding to $g^* \in L^q(\Sigma)$ $(\frac{1}{p} + \frac{1}{q} = 1)$ which is defined as

(1)
$$L_{g^*}(f) = \int_X fg^* d\mu$$
 such that $L_{g^*}(f_0) = 1$ and $L_{g^*}(\mathcal{R}(W)) = 0$.

Hence the set $E_{\delta} = \{x \in X : \operatorname{Re}(f_0g^*)(x) \geq \delta\}$ must have positive measure for some $\delta > 0$. Since μ is non-atomic we can choose a sequence $\{E_n\}$ of subsets of E_{δ} with $0 < \mu(E_n) < \mu(E_{\delta})$ and $E_n \cap E_m = \emptyset$ for $n \neq m$. Let $g_n^* = \chi_{E_n}g^*$. Then $g_n^* \in L^q(\Sigma)$ and is nonzero because

$$\operatorname{Re}\int_X f_0 g_n^* d\mu \ge \delta\mu(E_n) > 0.$$

Evidently for any $f \in L^p(\Sigma)$, $\chi_{E_n} f$ is in $L^p(\Sigma)$, and so the right equality of (1) yields

$$\int_X f(W^*g_n^*)d\mu = \int_X fhE(ug_n^*) \circ \varphi^{-1}d\mu = \int_{E_n} fE(ug^*) \circ \varphi^{-1}d\mu \circ \varphi^{-1}d\mu$$

$$\int_{\varphi^{-1}(E_n)} f \circ \varphi E(ug^*) d\mu = \int_{\varphi^{-1}(E_n)} ug^* f \circ \varphi d\mu = \int_X g^* u f \circ \varphi(\chi_{E_n} \circ \varphi) d\mu$$
$$\int_X g^* u(f\chi_{E_n}) \circ \varphi d\mu = \int_X g^* W(f\chi_{E_n}) d\mu = 0.$$

This implies that $g_n^* \in \mathcal{N}(W^*)$. Thus the sequence $\{g_n^*\}$ forms a linearly independent subset of $\mathcal{N}(W^*)$. This contradicts the fact that $\dim \mathcal{N}(W^*) = \operatorname{codim} \mathcal{R}(W) < \infty$. Hence W is onto. Next we put $Z(J) = \{x : J(x) = 0\}$. Now we claim that $\mu(Z(J)) = 0$. For, if $\mu(Z(J)) > 0$, there exists a subset F of Z(J) with $0 < \mu(F) < \infty$. If $\chi_F \in \mathcal{R}(W)$, then there exists $f \in L^p(\Sigma)$ such that $\chi_F = Wf$. Then

$$\mu(F) = \int_F |Wf|^p d\mu \int_F J|f|^p d\mu = 0$$

and this is a contradiction. So $\chi_F \in L^p(\Sigma) \setminus \mathcal{R}(W)$, which contradicts the fact that W is onto. Also since $\mu(Z(J)) = 0$ and $\mu \circ \varphi^{-1} \ll \mu$ we have $\mu(Z(J \circ \varphi)) = 0$. For each n = 1, 2, ..., let

$$H_n = \left\{ x \in X : \frac{\|J \circ \varphi\|_{\infty}}{(n+1)^2} < J \circ \varphi(x) \le \frac{\|J \circ \varphi\|_{\infty}}{n^2} \right\},$$

and $H = \{n : \mu(H_n) > 0\}$. Then the H_n 's are pairwise disjoint and $X = \bigcup_{n=1}^{\infty} H_n$. Define

$$f(x) = \begin{cases} (J \circ \varphi(x)/\mu(H_n))^{\frac{1}{p}} & \text{if } x \in H_n, \ n \in H, \\ 0 & \text{elsewhere.} \end{cases}$$

Then

$$\begin{split} \int_X |f|^p d\mu &= \sum_{n \in H} \int_{H_n} \frac{J \circ \varphi(x)}{\mu(H_n)} d\mu \\ &\leq \sum_{n \in H} \frac{\|J \circ \varphi\|_{\infty}}{n^2} \leq \|J \circ \varphi\|_{\infty} \sum_{n=1}^{\infty} \frac{1}{n^2} < \infty, \end{split}$$

so $f \in L^p(\Sigma)$. If $g \in L^p(\Sigma)$ is such that Wg = f, then

$$\int_X E^{\varphi^{-1}(\Sigma)}(|u|^p)|g|^p \circ \varphi d\mu = \int_X E^{\varphi^{-1}(\Sigma)}(|f|^p)d\mu.$$

It follows that

$$\int_X h E^{\varphi^{-1}(\Sigma)}(|u|^p) \circ \varphi^{-1}|g|^p d\mu = \int_X h E^{\varphi^{-1}(\Sigma)}(|f|^p) \circ \varphi^{-1} d\mu.$$

Thus $|g|^p = hE^{\varphi^{-1}(\Sigma)}(|f|^p) \circ \varphi^{-1}/J$ on off Z(J). Since $\mu(Z(J)) = 0$, it follows that

$$\int_X |g|^p d\mu = \int_X \frac{E^{\varphi^{-1}(\Sigma)}(|f|^p) \circ \varphi^{-1}}{J} d\mu \circ \varphi^{-1} = \int_X \frac{E^{\varphi^{-1}(\Sigma)}(|f|^p)}{J \circ \varphi} d\mu$$
$$= \int_X \frac{|f|^p}{J \circ \varphi} d\mu = \sum_{n \in H} \int_{H_n} \frac{d\mu}{\mu(H_n)} = \sum_{n \in H} 1.$$

This implies that H must be finite set. Thus there is an n_o such that $n \ge n_o$ implies $\mu(H_n) = 0$ and so

$$\mu\left(\left\{x \in X : J \circ \varphi(x) \le \frac{\|J \circ \varphi\|_{\infty}}{n_o^2}\right\}\right) = \mu\left(\bigcup_{n=n_o}^{\infty} H_n \cup Z(J \circ \varphi)\right) = 0.$$

Therefore we obtain $J \circ \varphi \geq \|J \circ \varphi\|_{\infty}/n_o^2$ almost everywhere on X. Since $\mathcal{N}(W) = L^p(Z(J)), \ \mu(Z(J)) = 0$ so dim $\mathcal{N}(W) = \{0\}$ and then φ is essentially surjective. Hence $J \geq \|J\|_{\infty}/n_o^2$ (= δ) almost everywhere on X.

Conversely, suppose that $J \geq \delta$ almost everywhere for some $\delta > 0$. Since h > 0 and for each $f \in L^p(\Sigma)$, $||Wf||_p = (\int_X J|f|^p d\mu)^{1/P} \geq \delta^{1/p} ||f||_p$, it follows that W and C_{φ} are injective and $\mathcal{R}(W)$ is closed. Also since $W = M_u C_{\varphi}$ we deduce that M_u is injective and so $\mu(Z(u)) = 0$. Now let $g^* \in \mathcal{N}(W^*)$. Then $W^*g^* = hE^{\varphi^{-1}(\Sigma)}(ug^*) \circ \varphi^{-1} = 0$ and so $E^{\varphi^{-1}(\Sigma)}(ug^*) \circ \varphi^{-1} = 0$. It follows that $g^* = 0$. Thus codim $\mathcal{R}(W) = \dim \mathcal{N}(W^*) = 0$. Therefore the theorem is proved. \Box

REMARK 3.3. One of the interesting features of a weighted composition operator is that the multiplication operator alone may not define a bounded operator between two $L^p(\Sigma)$ spaces. As an example, let X be $(0, 1), \Sigma$ be the Borel sets, and μ be the Lebesgue measure. Let φ be the map $\varphi(x) = \sqrt[3]{x}$ and $u(x) = 1/\sqrt{x}$ on (0, 1). Then M_u dos not define a bounded operator from $L^1(\Sigma)$ into $L^1(\Sigma)$. However a simple computation shows that $J(x) = 3\sqrt{x} \in L^{\infty}(\Sigma)$ and so $Wf(x) = 1/\sqrt{x}f(\sqrt[3]{x})$ is bounded operator on $L^1(\Sigma)$.

ACKNOWLEDGMENT. The author would like to thank the referees for their useful comments. This work was partially supported by a grant from Tabriz university research council.

References

 S. Axler, Zero multipliers of Bergman spaces, Canad. Math. Bull. 28 (1985), 237–242.

- J. Campbell and J. Jamison, On some classes of weighted composition operators, Glasg. Math. J. 32 (1990), 87–94.
- [3] T. Hoover, A. Lambert, and J. Quinn, The Markov process determined by a weighted composition operator, Studia Math. Poland, LXXII (1982), 225–235.
- [4] M. R. Jabbarzadeh and E. Pourreza, A note on weighted composition operators on L^p-spaces, Bull. Iranian Math. Soc. 29 (2003), 47–54.
- [5] B. S. Komal and S. Gupta, *Multiplication operators between Orlicz spaces*, Integral Equations Operator Theory 41 (2001), 324–330.
- [6] A. Lambert, Localising sets for sigma-algebras and related point transformations, Proc. Roy. Soc. Edinburgh Ser. A 118 (1991), 111–118.
- [7] R. K. Singh and J. S. Manhas, Composition operators on function spaces, North-Holland, 1993.
- [8] H. Takagi, Fredholm weighted composition operators, Integral Equations Operator Theory 16 (1993), 267–276.
- [9] H. Takagi and K. Yokouchi, Multiplication and composition operators between two L^p-spaces, Contemp. Math. 232 (1999), 321–338.
- [10] A. E. Taylor and D. C. Lay, introduction to functional analysis, 2nd ed., Wiley, 1980.
- [11] A. C. Zaanen, Integration, 2nd ed., North-Holland, Amsterdam, 1967.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TABRIZ, TABRIZ, IRAN *E-mail*: mjabbar@tabrizu.ac.ir