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WEIGHTED COMPOSITION
OPERATORS BETWEEN LP-SPACES

M. R. JABBARZADEH

ABSTRACT. In this paper we will consider the weighted composi-
tion operator W = uC,, between two different L?(X,X, i) spaces,
generated by measurable and non-singular transformations ¢ from
X into itself and measurable functions © on X. We characterize
the functions w and transformations ¢ that induce weighted com-
position operators between LP-spaces by using some properties of
conditional expectation operator, pair (u,p) and the measure space
(X,%, u). Also, Fredholmness of these type operators will be inves-
tigated.

1. Preliminaries and notations

Takagi in [9] has characterized the boundedness of multiplication and
composition operators on LP(3) spacesin 1 < p < gand 1 < ¢ < p cases.
In [4], boundedness of weighted composition operators has been inves-
tigated in 1 < ¢ < p < oo case. In the next section we will give the
necessary and sufficient condition for boundedness of weighted compo-
sition operators in 1 < p < ¢ < oo case. In section 3 we investigate a
necessary and sufficient condition for a weighted composition operator
W = uC, to be Fredholm. Fredholm weighted composition operators
have been studied by H. Takagi[8] in the LP(X) setting. By using some
properties of conditional expectation operator we omit the continuity
hypothesis of M,. In other words, we do not require that u € L>®(X).
This is stated as a hypothesis in [8].

Let (X,%, 1) be a o-finite measure space. By L(X), we denote the
linear space of all ¥-measurable functions on X. When we consider any
sub-o-algebra A of ¥, we assume they are completed; i.e., u(4) = 0
implies B € A for any B C A. For any o-finite algebra A C ¥ and
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1 < p < oo we abbreviate the LP-space LP(X, A,y 4) to LP(A), and
denote its norm by ||-||,. We define the support of a measurable function
faso(f)={x € X; f(x) #0}. We understand LP(.A) as a subspace of
LP(X) and as a Banach space. All comparisons between two functions
or two sets are to be interpreted as holding up to a p-null set. An atom
of the measure p is an element A € ¥ with ©(A) > 0 such that for each
F e %, if F C A then either u(F) = 0 or u(F) = u(A). It is easy to
see that every A-measurable function f € L(X) is constant p-almost
everywhere on an atom A. So for each f € L(X) and each atom A we
have [, fdu = f(A)u(A). A measure with no atoms is called non-atomic.
We can easily check the following well known facts (see [11]):

(a) Every o-finite measure space (X,3, u) can be decomposed
into two disjoint sets B and Z, such that p is a non-atomic over
B and Z is a countable union of atoms of finite measure. So we
can write X = B U (U,cy 4n) , where {A,}nen is a countable
collection of disjoint atoms and B is a non-atomic set.

(b) Suppose 1 < p < g < oo. If an A-measurable set K is non-
atomic and that u(K) > 0, there exists a function fy € LP(A)
such that [, |fo|%dp < cc.

Associated with each o-algebra A C X, there exists an operator
E(-|A) = EA(-) on the set of all non-negative measurable functions
f or on the set of all functions f € LP(X), 1 < p < oo, that is uniquely
determined by the conditions

(i) EA(f) is A-measurable, and

(ii) if A is any A-measurable set for which [, fdu exists, we have

fAfd:U' = fAEA(f)d,U'

The operator E4 is called the conditional expectation operator. This
operator is at the central idea of our work, and we list here some of its
useful properties:

El. If g is A-measurable then E4(fg) = EA(f)g.
E2. EA(1) = 1.

E3. |[EA(f9)l? < A1) EA(91?).

E4. If f > 0, then E4(f) > 0.

The properties E1 and E2 imply that E(-) is an idempotent and
EA(LP(X)) = LP(A). So when A = %, we have E¥ = I where I is the
identity operator. Suppose that ¢ is a mapping from X into X which is
measurable, (i.e., p~1(X) C ¥) and pop~1! is absolutely continuous with
respect to g (o p~! < u). Let h be the Radon-Nikodym derivative,
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h=duo@=t/du. If we put A = ¢~1(2), it is easy to show that for each
non-negative 3-measurable function f or for each f € LP(X) (p > 1),
there exists a Y-measurable function g such that E%"_I(E)(f) =goop.
We can assume that the support of g lies in the support of h, and there
exists only one g with this property. We then write g = B9 (®) (f)op™t,
though we make no assumption regarding the invertibility of ¢ (see [2]).
For a deeper study of the properties of E see the paper [6].

Take a function w in L(X) and let ¢ : X — X be a non-singular
measurable transformation; i.e. u(p~1(A)) = 0 for all A € ¥ such that
p(A) = 0. Then the pair (u,) induces a linear operator uCy, from
LP(X) into L(X) defined by

uCy(f) =u.fow, (feLP(X)).

Here, the non-singularity of ¢ guarantees that uC, as a mapping of
equivalence classes of functions on support u is well defined. If uC,
takes LP(X) into L4(X) or uC, is equivalently bounded, then we say
that uCy, is a weighted composition operator from LP(X) into LI(X)
(1 <p,q <00). When u = 1, we just have the composition operator C,
defined by Cy(f) = f o ¢. For more details see [7].

2. Boundedness of weighted composition operators in 1 <
p < g < oo case

Let 1 < p < g < co. In this section we characterize the functions u
and transformations ¢ that induce weighted composition operators uC, :
LP(¥X) — L%(X) by using some properties of conditional expectation
operator, pair (u, ¢) and the measure space (X, %, u).

Case: 1 <g<p< o

Let 1 < ¢ <p < oo. In [4] we examined the set
Kpg=Kpq(A L) ={ue L(X):ulP(A) C LYX)}.

Kpq(A, %) is a vector subspace of L(X). Also note that if 1 <¢=p <
00, then L>®(X) C K, (A, X) and ), ,(X,3) = L>®(X).

For v € L(X), let M, from LP(A) into L(X) defined by M, f = u.f
be the corresponding linear transformation. An easy consequence of the
closed graph theorem and the result guaranteeing a pointwise convergent
subsequence for each LP convergent sequence assures us that for each u €
Kp.q(A,Y), the operator M, : LP(A) — Li(X) is a bounded multiplica-
tion operator. Boundedness of weighted composition operators on LP(X)
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spaces has already been studied in [3]. Namely, for a non-singular mea-
surable transformation ¢ and complex valued measurable weight func-
tion u on X, uC,, is bounded if and only if hE? ™ ) (|ufP)op~! € L=(X).
The following two results are established in [4].

THEOREM 2.1. Suppose 1 < ¢ < p < oo and u € L(X). Then

u € ICp 4 if and only if(EA(]u|q))% € L"(A), where % +1= %.

THEOREM 2.2. Suppose 1 < g < p < oo and %—l—% = %. Letu € L(X)
and ¢ : X — X be a non-singular measurable transformation. Then the
pair (u, ) induces a weighted composition operator uCy, from LP(X)

into LI(X) if and only if J = hE?~ ®(|u|?) o o~ € Li(%).
Case: 1 <p<qg<o0

In this case we shall find the relationship between a o-finite algebra
A C ¥ and the set of multiplication operators which map LP(A) into
L4(X). Our first task is the description of the members of ICp ; in terms
of the conditional expectation induced by .A.

THEOREM 2.3. Suppose 1 < p < ¢ < o0 and u € L(X). Then
u € Ky 4 if and only if u satisfies the following two conditions:
(i) EA(|u|?) =0 on B.

(ii) suppen (BA(u(40)19) 1 /p(An) < 00, where L 41 = 1.

Proof. To prove the theorem, we adopt the methods used by
Axler [1] and Takagi [9]. Suppose that both (i) and (ii) hold. Put

b = sup,en (EA(\u(An)|q))§/u(An). Then, for each f € LP(A) with
|| fllp <1 we have

sy = [ BAulo) s

-y /A A1

neN

A(lu(A,)|9)) @ E B
=2 <(E o )W ) (1 (AP An)?
neN "

<ot 3 (£ (AP u(AL))

neN

=Y [ v

neN
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Hence u € K, 4. Conversely, suppose that v € Kp 4. So the operator
M, : LP(A) — L1(X) given by M, f = u.f is a bounded linear operator
on X = BU (Upey An). Assume that p({z € B : EA(|u(z)|?) #
0}) > 0. Then there exists a positive number 0 such that u({x € B :
EA(lu(z)]?) > 6}) > 0. Put K = {z € B: EA(|u(x)|?) > §}. Since K
is non-atomic, by (b) we can find fo € LP(A) such that ;- | fo|?dp = oc.
Then we have

0> IMufolly = [ BAGuI foftdn =3 [ Ifofd = .

which is a contradiction. In other words, E(|u|?) = 0 on B. Now we

prove that (ii) also holds. For any n € N put f,, = (1/u(An)%)XAn. It
is clear that f,, € LP(A) and || f,|l, = 1. Hence we have

A %
(EA(Ju(A gm) _{ L EA(yu<An>\q>u<An>}

1(An) 1(An)?
1
1 Al 1q ¢
= 7 [ B (jul)dp
1(An)7 A
1
q
—{ [ A usman}
X
= [[Mufnllq < [[Mul]
Since this holds for any n € N, it follows that b < || M,||* < oo. O

The next corollary follows immediately from Theorem 2.3 and the
known fact that when A = ¥ then E4 = I (identity operator).

COROLLARY 2.4. Suppose 1 < p < g < oo and u € L(X). Then the
operator M, from LP(X) into L4(X) is a bounded linear operator if and
only if u satisfies the following two conditions:

(i) w=0 on B,
1

(ii) supnen |u(An)|*/1(A,) < oo, where é +1= >
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In the following theorem we give a necessary and sufficient condi-
tion for boundedness of weighted composition operators from LP(X) into
L1(%), where 1 <p < ¢ < o0.

THEOREM 2.5. Supposel <p<g<oo, u€ L(X)andp: X — X is
a non-singular measurable transformation. Then the pair (u, @) induces
a weighted composition operator uC,, from LP(X) into LY(X) if and only
if the following conditions hold:

(i) J=0on B,

(ii) suppen | J(An)|4/u(An) < 00, where L +1 =1

Proof. Let f € LP(X). We will have

[uCo I = /hE“’_I(E)(qu) o | f|%du Z/!\q/jf\qdﬂ = M g7 f1G
So by Corollary 2.4 the theorem holds. O

COROLLARY 2.6. Under the same assumptions as in Theorem 2.5,
¢ induces a composition operator Cy, : LP(X) — L9(X) if and only if the
following conditions hold:

(i) h=0o0n B,

(i) sup,en [h(An)]7/i(Ap) < 0o, where 2 +1 =1,

3. Fredholm weighted composition operators on LP-spaces

Let 1 <p< oo, 1§q<ooand11;+%:1. Then it is well-known
fact that each g* € L(X) defines a bounded linear functional Fy- on
LP(X) by

Fype(f) = / fodu (f € IP(5).

Moreover, the mapping g* — Fy- is an isometry from L4(3) onto
(LP)*(X), so the norm dual of LP(X) can be identified with L9(X). In
the following theorem we compute the adjoint of uC,.

PRroprosITION 3.1. Let W = uC,, be a weighted composition operator
on LP(¥) and %—1—% = 1. Then W*g* = hE(u.g*)op~! for all g* € LI(%).
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Proof. Take A € ¥ such that 0 < pu(A) < oo. For g* € L(X) consider
a bounded linear functional Fy~ on LP(X) as above. Then we have

(W*Fg)(xa) = For Wxa) = /(WXA)g* dp

= /U-XA op ghdu = /hE(u.g*) o txadu = FE(u.g*)op—1XA-

Hence, W*Fy« = Fyp(u.g+)0p-1- After identifying (LP)*(X) with L?(X)
and ¢g* with Fy», we can write W*g* = hE(u.g*) o ! for all g* €
Li(%). O

In the following theorem we investigate a necessary and sufficient
condition for a weighted composition operator W = uC,, to be Fredholm.
The proof of the theorem follows a similar method of proof as was used
to prove Theorem 4.2 in [5] which is similar to a theorem of Takagi[8].
We use the symbols (W) and R(W) to denote the kernel and the range
of W, respectively. We recall that W is said to be a Fredholm operator
if R(W) is closed and if dim N (W) < co and codim R(W) < oo.

THEOREM 3.2. Suppose that p is a non-atomic measure. Let W =
uC,, be a weighted composition operator on LP(¥). Then W is a Fred-

holm operator if and only if J = hE? ' &) (ju|P) o o= > § almost every
where on X for some § > 0.

Proof. Suppose that W is a Fredholm operator. We first claim that
W is onto and takes an f, € LP(X)\R(W). Since R(W) is closed, we can
find a functional Ly« on LP(X) corresponding to g* € LI(X) (% + % =1)
which is defined as

() Ly (f) = [ fa"dusuch that Ly (fo) = 1 and Ly (ROW)) = 0.

Hence the set Es = {z € X : Re(fog*)(x) > J} must have positive
measure for some § > 0. Since p is non-atomic we can choose a sequence
{E,} of subsets of Es with 0 < p(E,) < u(Es) and E, N E,, = () for
n # m. Let g} = xg,9*. Then g} € LY(X) and is nonzero because

Re/ fogndp > op(Ey) > 0.
X

Evidently for any f € LP(X), xg, f is in LP(X), and so the right equality
of (1) yields

)
/ FW*gn)dp = / fhE(ugy) o o™ dp = / fE(ug*) oo~ tdpo ™!
X X E,
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/ fopE(ug®)du =/ ug” fowpdu =/ g ufop(xm,op)du
o~ 1(En) o~ 1(En) X

/ g u(fxE,) o pdu = / gW(fxg,)du = 0.
X X

This implies that g% € N(W*). Thus the sequence {g:} forms a lin-
early independent subset of N (W*). This contradicts the fact that
dim N (W*) = codimR(W) < oo. Hence W is onto. Next we put
Z(J) = {z : J(x) = 0}. Now we claim that pu(Z(J)) = 0. For, if
w(Z(J)) > 0, there exists a subset F' of Z(J) with 0 < u(F) < oo. If
XF € R(W), then there exists f € LP(X) such that yp = W f. Then

= [ wspan [ aigpan=o

and this is a contradiction. So xr € LP(X) \ R(W), which contradicts
the fact that W is onto. Also since u(Z(J)) = 0 and po ¢! < u we
have p(Z(J o)) =0. For each n =1,2,..., let

|/ 0 ¢lloo |/ 0 ¢l
H, = X, ——= — 3,
{x € (it 1) <Jop(r) < =

and H = {n : p(H,) > 0}. Then the H,’s are pairwise disjoint and
X =, Hy. Define

(Jop(x)/u(Hy))v if x € Hy, n e H,
flz) =

0 elsewhere.

/X\fl”du= Z/Hn mdu

Jo 1
Z H SOHOO < ”Jogp”oozﬁ < 00,

ncH n=1
so f e LP(X). If g€ LP(X) is such that Wg = f, then

| BT uplgr o gdn = [ BT O 1P
It follows that

/ hE?™ O () 0 o™ |g|Pdp = / hE?T O fP) 0 o™ dp.
X X

Then
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Thus |g[P = hE? &)(|f[P) o o1/J on off Z(J). Since u(Z(J)) = 0, it
follows that
K !flp)

® l(E P 1 ®
/g”du /E If!)w dpo ™! /E
Jop

-/, }i‘ld“:%/m W)~ 2t

neH
This implies that H must be finite set. Thus there is an n, such that
n > n, implies u(H,) = 0 and so

u({xeX:Joap(x)SHJ:ngoo}> —M<D HnUZ(Jogp)> = 0.

n=ne

Therefore we obtain J o ¢ > ||J o ¢|leo/n2 almost everywhere on X.
Since N (W) = LP(Z(J)), n(Z(J)) = 0 so dim N (W) = {0} and then ¢
is essentially surjective. Hence J > ||J||oo/n2 (= J) almost everywhere
on X.

Conversely, suppose that J > § almost everywhere for some § > 0.
Since h > 0 and for each f € LP(X), W, = ([ JIf[Pdu)Y/ T >
5Y2||f|l,, it follows that W and C,, are injective and R(W) is closed.
Also since W = M,,C, we deduce that M, is injective and so p(Z(u)) =
0. Now let ¢g* € N(W*). Then W*g* = hE¢71(E)(ug*) o ! =0 and
so B¢ () (ug*) o o1 = 0. Tt follows that g* = 0. Thus codim R(W) =
dim N (W*) = 0. Therefore the theorem is proved. O

REMARK 3.3. One of the interesting features of a weighted composi-
tion operator is that the multiplication operator alone may not define a
bounded operator between two LP(X) spaces. As an example, let X be
(0,1), 3 be the Borel sets, and p be the Lebesgue measure. Let ¢ be the
map p(z) = ¢z and u(z) = 1/y/z on (0,1). Then M, dos not define a
bounded operator from L!(¥) into L'(X). However a simple computa-
tion shows that J(z) = 3y/z € L>(X) and so W f(x) = 1//af(Jx) is
bounded operator on L(X).
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