
Southeast Asian
Bulletin of
Mathematics
c© SEAMS. 2008

Southeast Asian Bulletin of Mathematics (2008) 32: 459–466

M -Hyponormal Powers of Weighted Composition

Operators

M.R. Jabbarzadeh1∗, H. Emamalipour2 and Y.N. Dehghan3

Department of Mathematics, University of Tabriz, Tabriz, Iran

E-mail: 1mjabbar@tabrizu.ac.ir, 2hemamali@yahoo.com, 3nejad@tabrizu.ac.ir

AMS Mathematics Subject Classification (2000): Primary 47B20; Secondary
47B38

Abstract. In this note, M -hyponormality powers of weighted composition operators on
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1. Preliminaries And Notations

Let (X, Σ, µ) be a complete σ-finite measure space and suppose that T is a
measurable transformation from X into X such that µ ◦ T−1 is absolutely con-
tinuous with respect to µ and write µ ◦ T−1 ¿ µ. Let h be the Radon-Nikodym
derivative dµ◦T−1/dµ and we always assume that h is almost everywhere finite-
valued or, equivalently (X, T−1(Σ), µ) is σ-finite. All comparisons between two
functions or two sets are to be interpreted as holding up to a µ-null set. To
examine the weighted composition operators efficiently, Lambert in [8] associ-
ated with each transformation T , the so-called conditional expectation operator
E(•|T−1(Σ)) = Ei(•). E(f) is defined for each non-negative measurable func-
tion f or for each f ∈ L2(Σ), and is uniquely determined by the conditions:

(i) E(f) is T−1(Σ)-measurable and
(ii) If A is any T−1(Σ)-measurable set for which

∫
A

fdµ converges we have
∫

T−1(A)

fdµ =
∫

T−1(A)

E(f)dµ.
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As an operator on L2(Σ), E(•) is the contractive orthogonal projection onto
L2(T−1(Σ)) = R(CT ), the closure of the range of CT , used by Harrington and
Whitley in [5]. It is easy to show that for each non-negative Σ-measurable
function f or for each f ∈ L2(Σ), there exists a Σ-measurable function g such
that E(f) = g◦T . We can assume that the support of g, σ(g) = {x ∈ X : g(x) 6=
0}, lies in the σ(h) and there exists only one g with this property. We then write
g = E(f) ◦ T−1 though we make no assumptions regarding the invertibility of
T (see [2]). For further discussion of the conditional expectation operator see
the interesting papers [6], [8] and [3]. If u : X → C is a measurable function,
the weighted composition operator WT = uCT on L2(Σ) induced by T and u is
given by

WT (f) = u.f ◦ T, f ∈ L2(Σ).

Here, the non-singularity of T guarantees that WT is well defined as a mapping
of equivalence classes of functions on σ(u). In this case, the adjoint W ∗

T is given
by

W ∗
T f = hE(uf) ◦ T−1, f ∈ L2(Σ).

If WT (L2(Σ)) ⊆ L2(Σ), by the closed graph theorem WT is bounded. Bounded-
ness of weighted composition operators on L2(Σ) spaces already being studied
in [6]. Namely, WT is bounded if J = hE(|u|2) ◦ T−1 ∈ L∞(Σ).

Let B(H) denote the Banach space of all bounded linear operators on the
Hilbert space H. An operator T ∈ B(H) is called M -hyponormal if there exists
some M > 0 such that ‖T ∗x‖ ≤ M‖Tx‖ for all x ∈ H.

Power-hyponormality of composition operators in L2(Σ) appeared already in
[4] and for adjoint of weighted composition operators in the paper [3]. Also,
the analogous results for M -cohyponormality of composition operators has been
studied in [7]. Namely, if C∗T1

and C∗T2
are both M -hyponormal with h1 ≤

M2(h2 ◦ T2) a.e. and h2 ≤ M2(h1 ◦ T1) a.e., then for all positive integers m,
n and p, [(Cm

T1
Cn

T2
)p]∗ is Mp2(m+n)2-hyponormal. The aim of this paper is to

generalize the results obtained for composition operators in [7] to the weighted
composition operators.

2. Lemmas and Main Result

In the following we list some facts that will be applied often in this article (see
[1, 8]):

• ∫
X

f ◦ Tdµ =
∫

X
h.fdµ for all f ∈ L1(Σ) (change of variables formula).

• ‖WT f‖ = ‖M√
Jf‖ where J = hE(|u|2) ◦ T−1 ∈ L∞(Σ) and f ∈ L2(Σ).

• If u is in L∞(T−1(Σ)), then E(uf) = uE(f).
• For any f and g in L2(Σ) and any T−1(Σ)-measurable set A,∫

A
E(f)E(g)dµ =

∫
A

fE(g)dµ.
• For any f and g in L2(Σ), |E(fg)|2 ≤ E(|f |2)E(|g|2).
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Proposition 2.1. [4] Let Ti be a measurable transformation of X such that µ◦T−1
i

is absolutely continuous with respect to µ and hi = dµ◦T−1
i /dµ ∈ L∞(Σ) for i =

1, 2, and T3 : X → X given by T3 = T1◦T2. Then h3 = dµ◦T−1
3 /dµ is absolutely

continuous with respect to µ and h3 = h1E1(h2) ◦ T−1
1 where E(•|T−1

i (Σ)) =
Ei(•).

Proof. Let A ∈ Σ. By using of conditional expectation operator and change of
variables formula we have

∫

A

h3dµ =
∫

A

dµ ◦ (T1 ◦ T2)−1

dµ
dµ =

∫

A

dµ ◦ T−1
2 ◦ T−1

1

=
∫

T−1
1 (A)

dµ ◦ T−1
2 =

∫

T−1
1 (A)

h2dµ =
∫

T−1
1 (A)

E1(h2)dµ

=
∫

A

E1(h2) ◦ T−1
1 dµ ◦ T−1

1 =
∫

A

h1E1(h2) ◦ T−1
1 dµ.

Since (X, Σ, µ) is a σ-finite measure space, so the proof is therefore complete.

For a generalization of the above fact, we define the measure µTi,u(E) =∫
T−1

i (E)
|u|2dµ, for E ∈ Σ and i = 1, 2. Then it is easy to see that µTi,u ¿ µ.

Put Hi = dµTi,u/dµ which, of course, is a non-negative Σ-measurable function.
By simple calculation we have Hi = hiEi(|u|2) ◦ T−1

i (i = 1, 2) and H3 =
h1E1(H2) ◦ T−1

1 .

Example 2.2. Let X = [−1, 1], dµ = 1
2dx and Σ the Lebesgue sets. De-

fine Ti : X → X by T1(x) = (
√

1 + x − 1)χ[−1,0] + (1 − √
1− x)χ(0,1] and

T2(x) = 3
√

3x. One easily verifies that E1(f) = (f(x) + f(−x))/2 for all pos-
itive measurable function f on X. Direct computation shows that h1(x) =
(2 + 2x)χ[−1,0] + (2 − 2x)χ(0,1], E1(h2(x)) = x2 and (h1E1(h2) ◦ T−1

1 )(x) =
(2 + 2x)(2x + x2)χ[−1,0] + (2 − 2x)(2x − x2)χ(0,1] = h3(x). Now, if we take
u(x) = x, then H2(x) = x8/9 and (h1E1(H2) ◦ T−1

1 )(x) = 1/9(2 + 2x)(2x +
x2)8χ[−1,0] + 1/9(2− 2x)(2x− x2)8χ(0,1] = H3(x).

In order to prove our main result, it is necessary to state and prove several
lemmas.

Lemma 2.3. If W ∗
T is M -hyponormal, then J ≤ M2(J ◦T ), where J = hE(|u|2)◦

T−1.

Proof. Since W ∗
T is M -hyponormal, then

‖ WT f ‖2≤ M2 ‖ W ∗
T f ‖2, for all f ∈ L2(Σ).
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To assert the inequality it suffices to show that ‖ WT f ‖2= (Jf, f) and
‖W ∗

T f ‖2≤ ((J ◦ T )f, f). For all f ∈ L2(Σ), we have

‖ WT f ‖2=
∫
|uf ◦ T |2dµ =

∫
|u|2|f |2 ◦ Tdµ =

∫
E(|u|2)|f |2 ◦ Tdµ

=
∫

hE(|u|2) ◦ T−1|f |2dµ = (hE(|u|2) ◦ T−1f, f) = (Jf, f);

therefore, the first identity holds. On the other hand, we have

‖ W ∗
T f ‖2 = (W ∗

T f,W ∗
T f) = (WT W ∗

T f, f) = (uh ◦ TE(uf), f)

=
∫

uh ◦ TE(uf)fdµ =
∫

(h ◦ T )E(uf)E(uf)dµ

=
∫

(h ◦ T )|E(uf)|2dµ ≤
∫

(h ◦ T )E(|u|2)E(|f |2)dµ

∫
(h ◦ T )E(|u|2)ffdµ =

∫
(J ◦ T )ffdµ = ((J ◦ T )f, f).

Hence (Jf, f) ≤ M2((J ◦ T )f, f). Since f is an arbitrary element of L2(Σ), we
have J ≤ M2(J ◦ T ); and the proof is therefore complete.

Example 2.4. Let X = [0, 1], dµ = dx and Σ the Lebesgue sets. Let T : X → X
be defined by T (x) = 4x− 4x2 and let u be the map u(x) = (4− 8x)(χ[0,1/2] −
χ(1/2,1]) on X. Then a simple computation gives ‖W ∗

T f‖ = ‖f((1+
√

1− x)/2)+
f((1−√1− x)/2)‖, ‖WT f‖ = ‖ 4

√
64(1− x)f‖ and J ◦ T (x) = 8|2x− 1|. So for

each M > 2−3/4, J ≥ M2(J ◦ T ) and hence by lemma 2.3, WT is not M -
hyponormal operator on L2(Σ).

Lemma 2.5. If W ∗
T is M -hyponormal, then for f ∈ L2(Σ), ((J ◦ T )Ef, f) =

((J ◦ T )f, f) where J = hE(|u|2) ◦ T−1.

Proof. Let f ∈ L2(Σ), then we have

((J ◦ T )Ef, f) =
∫

(J ◦ T )(Ef)fdµ =
∫

(J ◦ T )EfEfdµ

=
∫

(J ◦ T )|Ef |2dµ ≤
∫

(J ◦ T )E(|f |2)dµ

=
∫

(J ◦ T )|f |2dµ = ((J ◦ T )f, f)

Hence ((J ◦ T )Ef, f) ≤ ((J ◦ T )f, f). On the other hand, since W ∗
T is M -

hyponormal, then

KerE = (R(WT ))
⊥

= KerW ∗
T ⊆ Ker(WT ).
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Now, since for all f ∈ L2(Σ), Ef − f ∈ KerE, then Ef − f ∈ Ker(WT ). This
shows that ∫

J(Ef − f)dµ =
∫

hE(|u|2) ◦ T−1(Ef − f)dµ

=
∫

E(|u|2)(Ef − f) ◦ Tdµ =
∫
|u|2(Ef − f) ◦ Tdµ = 0.

It follows that J(Ef − f) = 0. Thus, it follows from Lemma 2.3 that for all
g ∈ L2(Σ), we have

((J ◦ T )(Ef − f), g) =
∫

(J ◦ T )(Ef − f)gdµ ≥ 1
M2

∫
J(Ef − f)gdµ = 0.

We conclude that ((J ◦ T )(Ef − f), g) ≥ 0, hence (J ◦ T )Ef ≥ (J ◦ T )f .

Lemma 2.5 can be extended to give the following result.

Lemma 2.6. If W ∗
T is M -hyponormal, then for all f ∈ L2(Σ) and n ∈ N

((Jn ◦ T )Ef, f) = ((Jn ◦ T )f, f).

Lemma 2.7. If J ≤ M2(h ◦ T ), for all f ∈ L2(Σ) and r,m ∈ N , then

((J ◦ T )rWm
T f,Wm

T f) ≤ M (m−1)(2r+m)(Jr+mf, f).

Proof. We shall prove the result by induction on m and fixed r. For m = 1 and
f ∈ L2(Σ),

((J ◦ T )rWT f,WT f) =
∫

(J ◦ T )ruf ◦ T.uf ◦ Tdµ

=
∫

(J ◦ T )r|u|2|f |2 ◦ Tdµ =
∫

Jr ◦ TE(|u|2)|f |2 ◦ Tdµ

=
∫

JrhE(|u|2) ◦ T−1|f |2dµ =
∫

JrJffdµ = (Jr+1f, f),

which shows that the Lemma holds for m = 1. Now assuming that the Lemma



464 M.R. Jabbarzadeh, H. Emamalipour and Y.N. Dehghan

holds for m = 1, 2, ..., k and f ∈ L2(Σ). Then we have

((J ◦ T )rW k+1
T f,W k+1

T f) = ((J ◦ T )rW k
T WT f,W k

T WT f)

≤ M (k−1)(2r+k)(Jr+kWT f,WT f) = M (k−1)(2r+k)

∫
Jr+k|u|2|f |2 ◦ Tdµ

= M (k−1)(2r+k)

∫
Jr+kE(|u|2)|f |2 ◦ Tdµ

≤ M (k−1)(2r+k)M2(r+k)

∫
(J ◦ T )r+kE(|u|2)|f |2 ◦ Tdµ

= Mk(2r+k+1)

∫
Jr+khE(|u|2) ◦ T−1|f |2dµ

= Mk(2r+k+1)

∫
Jr+kJffdµ = Mk(2r+k+1)(Jr+k+1f, f),

which shows that the result holds for m = k + 1. Thus the result holds for all
r,m ∈ N and f ∈ L2(Σ).

Lemma 2.8. If W ∗
T is M -hyponormal and u ∈ L∞(T−1Σ) then for all f ∈ L2(Σ)

and r,m ∈ N , we have

M (m−1)(2r+m)(Jr(Wm
T )∗f, (Wm

T )∗f) ≥ ((J ◦ T )r+mf, f).

Proof. We shall prove the result by induction on m and fixed r. Suppose that
m = 1 and f ∈ L2(Σ). Then

(JrW ∗
T f,W ∗

T f) = ((Jr ◦ T )WT W ∗
T f, f) = ((Jr ◦ T )uh ◦ TE(uf), f)

= ((Jr ◦ T )|u|2h ◦ TEf, f) = ((Jr ◦ T )E(|u|2)h ◦ TEf, f)
= ((Jr ◦ T )(J ◦ T )Ef, f) = ((Jr+1 ◦ T )f, f),

which shows that the Lemma holds for m = 1. The rest of the proof can be
repeated as in Lemma 2.8 in [7].

Lemma 2.9. If J ≤ M2(J ◦ T ), then for all n ∈ N and f ∈ L2(Σ),

((Wn
T )∗(Wn

T )f, f) ≤ Mn(n−1)(Jnf, f).

Proof. Since W ∗
T WT f = Jf , hence the result holds for n = 1. Let us suppose

that the result is true for n = r and f ∈ L2(Σ). First we show that

(JkWT f,WT f) ≤ M2k(Jk+1f, f). (1)
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Suppose f ∈ L2(Σ). Then

(JkWT f,WT f) =
∫

JkWT fWT fdµ =
∫

Jk|u|2|f |2 ◦ Tdµ

=
∫

JkE(|u|2)|f |2 ◦ Tdµ ≤ M2

∫
(Jk ◦ T )E(|u|2)|f |2 ◦ Tdµ

= M2k

∫
JkhE(|u|2) ◦ T−1ffdµ = M2k

∫
Jk+1ffdµ = M2k(Jk+1f, f).

Hence, by induction hypothesis and (1), we have

((W k+1
T )∗(W k+1

T )f, f) = ((W k
T )∗(W k

T )WT f,WT f)

≤ Mk(k−1)(JkWT f,WT f) ≤ Mk(k−1)M2k(Jk+1f, f)
= Mk(k+1)(Jk+1f, f).

Lemma 2.10. If (uCT )∗ is M -hyponormal and u ∈ L∞(T−1(Σ)) then for all
f ∈ L2(Σ) and n ∈ N

Mn(n−1)((Wn
T )(Wn

T )∗f, f) ≥ ((J ◦ T )nf, f) .

Proof. We shall prove the result by induction on n. Suppose that n = 1 and
f ∈ L2(Σ). Then

(WT W ∗
T f, f) =

∫
uh ◦ TE(uf)fdµ =

∫
h ◦ T |u|2E(|f |2)dµ

=
∫

h ◦ TE(|f |2)E(|u|2)dµ =
∫

(J ◦ T )ffdµ = ((J ◦ T )f, f).

Now, assume that the Lemma holds for n. Then by using Lemma 2.8, we have

((Wn+1
T )(Wn+1

T )∗f, f) = (WT Wn
T (Wn

T )∗W ∗
T f, f)

= (Wn
T (Wn

T )∗W ∗
T f,W ∗

T f) ≥ 1
Mn(n−1)

((J ◦ T )nW ∗
T f,W ∗f)

≥ 1
Mn(n−1)

1
M2n

((J)nW ∗
T f,W ∗f) =

1
Mn(n+1)

((Jn+1 ◦ T )f, f),

which completes the induction step and the Lemma is proved.

If we change the role of h and CT with J and WT respectively and using
previous lemmas in this paper, we can prove the following theorem similar to
the proof used in [7].
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Theorem 2.11. (a) If W ∗
T is M -hyponormal, then for all n ∈ N, (W ∗

T )n

is Mn2
-hyponormal.

(b) Put A = WT1 and B = WT2 . If A∗ and B∗ are M -hyponormal such that

J1 ≤ M2(J2 ◦ T2), (J1 = h1E1(|u|2) ◦ T−1
1 )

and
J2 ≤ M2(J1 ◦ T1), (J2 = h2E2(|u|2) ◦ T−1

2 ).

Then (AmBn)∗ is M (m+n)2-hyponormal for all m,n ∈ N .

(c) Under the hypothesis of (b), [(AmBn)p]∗ is Mp2(m+n)2-hyponormal.
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