

صدور گواهینامه نمایه مقالات نویسندگان در SID

Bulletin of the Iranian Mathematical Society Vol. 35 No. 2 (2009), pp 85-96.

WEIGHTED FROBENIUS-PERRON AND KOOPMAN OPERATORS

M.R. JABBARZADEH

Communicated by Heydar Radjavi

ABSTRACT. We introduce the weighted Frobenius-Perron operator P_{φ}^{u} on L^{1} associated with the pair (u, φ) as a perdual of weighted Koopman operator $W = uC_{\varphi}$ on L^{∞} and then investigate some fundamental properties of P_{φ}^{u} by the language of conditional expectation operator.

1. Introduction and preliminaries

Let (X, Σ, μ) be a complete σ -finite measure space and let $\varphi : X \to X$ be a non-singular transformation; i.e., φ is Σ -measurable and $\mu \circ \varphi^{-1}(A) := \mu(\varphi^{-1}(A)) = 0$, for all $A \in \Sigma$ such that $\mu(A) = 0$. This assumption about φ just says that the measure $\mu \circ \varphi^{-1}$ is absolutely continuous with respect to the measure μ (we write $\mu \circ \varphi^{-1} \ll \mu$, as usual), where $\mu \circ \varphi^{-1}(A) = \mu(\varphi^{-1}(A))$ for $A \in \Sigma$. We shall assume that the restriction of μ to σ -subalgebra $\varphi^{-1}(\Sigma)$ of Σ is σ -finite, and we denote by $(X, \varphi^{-1}(\Sigma), \mu)$ the completion of $(X, \varphi^{-1}(\Sigma), \mu|_{\varphi^{-1}(\Sigma)})$. We denote by h the Radon-Nikodym derivative, $h = d\mu \circ \varphi^{-1}/d\mu$. We will write $L^1(\varphi^{-1}(\Sigma))$ for $L^1(X, \varphi^{-1}(\Sigma), \mu|_{\varphi^{-1}(\Sigma)})$. $L^1(\varphi^{-1}(\Sigma))$ may then be viewed as a subspace of $L^1(\Sigma)$ and we denote its norm by $\|.\|_1$. Support of a measurable function f will be denoted by $\sigma(f) = \{x \in X; f(x) \neq 0\}$.

 \bigodot 2009 Iranian Mathematical Society.

MSC(2000): Primary 47B20; Secondary 46B38.

Keywords: Frobenius-Perron operator, weighted composition operator, conditional expectation.

Received: 10 August 2008, Accepted: 15 November 2008.

⁸⁵

Relationships between functions f and between sets are interpreted in the almost everywhere sense. For any non-negative Σ -measurable function f as well as for any $f \in L^p(\Sigma)$, by the Radon-Nikodym Theorem, there exists a unique $\varphi^{-1}(\Sigma)$ -measurable function E(f) such that

$$\int_{A} Efd\mu = \int_{A} fd\mu, \quad \text{ for all } A \in \varphi^{-1}(\Sigma).$$

Hence, we obtain an operator E from $L^1(\Sigma)$ onto $L^1(\varphi^{-1}(\Sigma))$ which is called conditional expectation operator associated with the σ -algebra $\varphi^{-1}(\Sigma)$. It is easy to show that for each $f \in L^1(\Sigma)$, there exists a Σ -measurable function g such that $E(f) = g \circ \varphi$. We can assume that $\sigma(g) \subseteq \sigma(h)$, and there exists only one g with this property. We therefore write $g = E(f) \circ \varphi^{-1}$, though we make no assumptions regarding the invertibility of φ (see [1]). This operator will play a major role in our work, and we list here some of its useful properties:

• E(fg) = E(f)g, whenever g is $\varphi^{-1}(\Sigma)$ -measurable and both conditional expectations are defined.

• $|E(f)| \leq E(|f|).$

• If $f \ge 0$, then $E(f) \ge 0$; if E(|f|) = 0, then f = 0.

Let f be a real-valued measurable function. Consider the set $B_f = \{x \in X : E(f^+)(x) = E(f^-)(x) = \infty\}$. The function f is said to be conditionable with respect to $\varphi^{-1}(\Sigma)$ if $\mu(B_f) = 0$. If f is complexvalued, then f is conditionable if the real and imaginary parts of f are conditionable and their respective expectations are not both infinite on the same set of positive measure. For more details on the properties of E see [11, 9]. Our aim here is to generalize some results obtained for the (classic) Frobenius-Perron operators in [4, 6, 7] to the weighted Frobenius-Perron operators.

2. Main results

Definition 2.1. Suppose $\varphi : X \to X$ is a non-singular transformation and let $u : X \to \mathbb{C}$ is a conditionable measurable function. If A is any Σ -measurable set for which $\int_{\varphi^{-1}(A)} ufd\mu$ exists, then the linear operator $\mathcal{P}_{\varphi}^{u} : L^{1}(\Sigma) \to L^{1}(\Sigma)$, defined by $\int_{A} \mathcal{P}_{\varphi}^{u} fd\mu = \int_{\varphi^{-1}(A)} ufd\mu$, is called the weighted Frobenius-Perron operator associated with the pair (u, φ) .

Let $f \in L^1(\Sigma)$ be given. For the above u and φ , we define the measure,

$$\mu^{u}_{\varphi,f}(A) = \int_{\varphi^{-1}(A)} uf d\mu, \qquad A \in \Sigma.$$

The assumption $\mu \circ \varphi^{-1} \ll \mu$ implies $\mu_{\varphi,f}^u \ll \mu$. By the Radon-Nikodym Theorem, there exists a μ -unique function $\tilde{f}_{\varphi}^u \in L^1(\Sigma)$ such that $\mu_{\varphi,f}^u(A) = \int_A \tilde{f}_{\varphi}^u d\mu$, for any $A \in \Sigma$. This may be expressed alternatively as:

$$\int_{A} \widetilde{f}^{u}_{\varphi} d\mu = \int_{\varphi^{-1}(A)} u f d\mu, \qquad A \in \Sigma.$$

It follows that the mapping $\mathcal{P}^{u}_{\varphi}: f \mapsto \widetilde{f}^{u}_{\varphi}$ is well defined on $L^{1}(\Sigma)$.

We note that according to Proposition 2.3 (vi) below, to the same extent that the weighted Koopman operators are actual generalizations of the Koopman operators, the weighted Frobenius-Perron operators will be the actual generalizations of the (classic) Frobenius-Perron operators.

The weighted Koopman operator on $L^{\infty}(\Sigma)$ with respect to the pair (u, φ) is defined by $uU_{\varphi}(f) = u.f \circ \varphi$, for each $f \in L^{\infty}(\Sigma)$. Here, the non-singularity of φ guarantees that uU_{φ} is well defined as a mapping of equivalence classes of functions on $\sigma(u)$. Note that $uU_{\varphi} = M_uU_{\varphi}$ and $\mathcal{P}_{\varphi}^u = P_{\varphi}M_u$ where M_u is a multiplication operator, U_{φ} and P_{φ} are (classic) Koopman and Frobenius-Perron operators, respectively. It is easy to see that uU_{φ} is a bounded operator on $L^{\infty}(\Sigma)$ if and only if $u \in L^{\infty}(\Sigma)$, and in this case $||uU_{\varphi}|| = ||u||_{\infty}$ (see [12]). For a bounded linear operator T on a Banach space, we use the symbols $\mathcal{N}(T)$ and $\mathcal{R}(T)$ to denote the kernel and the range of T, respectively.

Now, let $A \in \Sigma$ with $0 < \mu(A) < \infty$. As an application of the properties of the conditional expectation and using the change of variable formula, we have,

$$\int_{A} \mathcal{P}_{\varphi}^{u} f d\mu = \int_{\varphi^{-1}(A)} u f d\mu = \int_{\varphi^{-1}(A)} E(uf) d\mu = \int_{A} h E(uf) \circ \varphi^{-1} d\mu,$$

for all $f \in L^1(\Sigma)$. Since Σ is a σ -finite algebra, then it follows that $\mathcal{P}^u_{\varphi}f = hE(uf) \circ \varphi^{-1}$.

In the following theorem, we investigate the necessary and sufficient conditions for a weighted Frobenius-Perron operator \mathcal{P}^{u}_{ω} to be bounded.

Theorem 2.2. The weighted Frobenius-Perron operator $\mathcal{P}_{\varphi}^{u}$ is a bounded operator on $L^{1}(\Sigma)$ if and only if $u \in L^{\infty}(\Sigma)$ and its norm is given by $\|\mathcal{P}_{\varphi}^{u}\| = \|u\|_{\infty}$.

Proof. Let $u \in L^{\infty}(\Sigma)$. Using the change of variable formula, we have,

$$\begin{aligned} \|\mathcal{P}_{\varphi}^{u}f\|_{1} &= \int_{X} |\mathcal{P}_{\varphi}^{u}f| d\mu = \int_{X} h|E(uf) \circ \varphi^{-1}| d\mu \\ &\leq \int_{X} E(|uf|) d\mu = \int_{X} |uf| d\mu \leq \|u\|_{\infty} \|f\|_{1}, \end{aligned}$$

for each $f \in L^1(\Sigma)$. Thus, $\|\mathcal{P}_{\varphi}^u\| \leq \|u\|_{\infty}$. Conversely, suppose that \mathcal{P}_{φ}^u is a bounded operator on $L^1(\Sigma)$. Write uf as w|uf|, when |w| = 1. Then, we get,

$$||M_u f||_1 = \int_X |uf| d\mu = \int_X \overline{w} u f d\mu = \int_X hE(\overline{w} u f) \circ \varphi^{-1} d\mu$$
$$= \int_X \mathcal{P}^u_{\varphi}(\overline{w} f) d\mu = ||\mathcal{P}^u_{\varphi}(\overline{w} f)||_1 \le ||\mathcal{P}^u_{\varphi}|| ||\overline{w} f||_1 = ||\mathcal{P}^u_{\varphi}|| ||f||_1,$$

for each $f \in L^1(\Sigma)$. Hence, we conclude that the multiplication operator M_u is a bounded linear operator on $L^1(\Sigma)$. Therefore, $u \in L^{\infty}$ and $\|u\|_{\infty} = \|M_u\| \leq \|\mathcal{P}_{\varphi}^u\|$. The proof of the theorem is now complete. \Box

Some basic properties of $\mathcal{P}_{\varphi}^{u}$ are listed in the following proposition.

Proposition 2.3. Let φ_i be a measurable transformation of X such that $\mu \circ \varphi_i^{-1}$ is absolutely continuous with respect to μ and $h_i = d\mu \circ \varphi_i^{-1}/d\mu \in L^{\infty}(\Sigma)$, for i = 1, 2. Put $\varphi_3 = \varphi_1 \circ \varphi_2$ and $E(.|\varphi_i^{-1}(\Sigma)) = E_i$. Then the following assertions hold.

- (i) $\mu \circ \varphi_3^{-1} \ll \mu$ and $h_3 = d\mu \circ \varphi_3^{-1}/d\mu = h_1 E_1(h_2) \circ \varphi_1^{-1}$.
- (*ii*) $P_{\varphi_1} \mathcal{P}^u_{\varphi_2} = \mathcal{P}^u_{\varphi_3}$.
- (*iii*) $\mathcal{P}^{u}_{\varphi_1}\mathcal{P}^{u}_{\varphi_2} = P_{\varphi_1}P_{\varphi_2}M_{u.u\circ\varphi_2}.$
- (*iv*) $(\mathcal{P}^u_{\varphi})^n = (\prod_{i=0}^{n-1} u \circ \varphi^i) P^n_{\varphi}.$
- (v) Let $u \ge 0$. Then, $\mathcal{P}^u_{\varphi} f \ge 0$ if $f \ge 0$ and $(uU_{\varphi})g \ge 0$ if $g \ge 0$.
- (vi) $(\mathcal{P}^u_{\varphi})^* = uU_{\varphi}.$

Proof. (i) The assumption $\mu \circ \varphi_i^{-1} \ll \mu$ implies that for each $A \in \Sigma$ with $\mu(A) = 0$, $\mu(\varphi_1^{-1}(A)) = 0$, and so $\mu(\varphi_2^{-1}(\varphi_1^{-1}(A))) = 0$. Hence, $\mu \circ \varphi_3^{-1} \ll \mu$. Also, by use of conditional expectation operator and change of variables formula, we have,

$$\int_{A} h_{3} d\mu = \int_{A} \frac{d\mu \circ (\varphi_{1} \circ \varphi_{2})^{-1}}{d\mu} d\mu = \int_{A} d\mu \circ \varphi_{2}^{-1} \circ \varphi_{1}^{-1}$$
$$= \int_{\varphi_{1}^{-1}(A)} d\mu \circ \varphi_{2}^{-1} = \int_{\varphi_{1}^{-1}(A)} h_{2} d\mu = \int_{\varphi_{1}^{-1}(A)} E_{1}(h_{2}) d\mu$$
$$= \int_{A} E_{1}(h_{2}) \circ \varphi_{1}^{-1} d\mu \circ \varphi_{1}^{-1} = \int_{A} h_{1} E_{1}(h_{2}) \circ \varphi_{1}^{-1} d\mu.$$

Since (X, Σ, μ) is a σ -finite measure space, then the proof is complete.

(ii) Since $P_{\varphi_i}f = h_i E_i(f) \circ \varphi_i^{-1}$, then for any $A \in \Sigma$ and $f \in L^1(\Sigma)$ we get,

$$\begin{split} &\int_{A} \mathcal{P}_{\varphi_{3}}^{u} f d\mu = \int_{A} h_{3} E_{3}(uf) \circ \varphi_{3}^{-1} d\mu = \int_{A} E_{3}(uf) \circ \varphi_{3}^{-1} d\mu \circ \varphi_{3}^{-1} \\ &= \int_{\varphi_{3}^{-1}(A)} E_{3}(uf) d\mu = \int_{\varphi_{2}^{-1}(\varphi_{1}^{-1}(A))} uf d\mu = \int_{\varphi_{2}^{-1}(\varphi_{1}^{-1}(A))} E_{2}(uf) d\mu \\ &= \int_{\varphi_{1}^{-1}(A)} h_{2} E_{2}(uf) \circ \varphi_{2}^{-1} d\mu = \int_{A} h_{1} E_{1}(h_{2} E_{2}(uf) \circ \varphi_{2}^{-1}) \circ \varphi_{1}^{-1} d\mu \\ &= \int_{A} P_{\varphi_{1}}(h_{2} E_{2}(uf) \circ \varphi_{2}^{-1}) d\mu = \int_{A} P_{\varphi_{1}}(\mathcal{P}_{\varphi_{2}}^{u} f) d\mu \;. \end{split}$$

Now, since (X, Σ, μ) is a σ -finite measure space, then the proof is complete.

(iii) Since $P_{\varphi_1}P_{\varphi_2} = P_{\varphi_1 \circ \varphi_2}$, then for any $A \in \Sigma$ and $f \in L^1(\Sigma)$ we have,

$$\begin{split} \int_{A} P_{\varphi_1} P_{\varphi_2} M_{u.u \circ \varphi_2} f d\mu &= \int_{A} P_{\varphi_1 \circ \varphi_2} (u.u \circ \varphi_2) f d\mu \\ &= \int_{\varphi_3^{-1}(A)} h_3 E_3 (u.u \circ \varphi_2 f) \circ \varphi_3^{-1} d\mu = \int_{\varphi_3^{-1}(A)} u.u \circ \varphi_2 f d\mu \\ &= \int_{\varphi_1^{-1}(A)} h_2 u E_2 (uf) \circ \varphi_2^{-1} d\mu = \int_{A} h_1 E_1 (h_2 u E_2 (uf) \circ \varphi_2^{-1}) \circ \varphi_1^{-1} d\mu \\ &= \int_{A} h_1 E_1 (u \mathcal{P}_{\varphi_2}^u f) \circ \varphi_1^{-1} d\mu = \int_{A} \mathcal{P}_{\varphi_1}^u (\mathcal{P}_{\varphi_2}^u f) d\mu. \end{split}$$

Again, since (X, Σ, μ) is a σ -finite measure space, then the proof is complete.

- (*iv*) It follows from (*iii*).
- (v) It is trivial.

(vi) It is well-known that $L^{\infty}(\Sigma)$ is the dual space of $L^{1}(\Sigma)$; that is, $f \in L^{\infty}(\Sigma)$ is viewed as a bounded linear functional f^{*} on $L^{1}(\Sigma)$, defined by $f^{*}(g) = (g, f) = \int_{X} gfd\mu$. First, suppose that $f = \chi_{A}, A \in \Sigma$ $(\mu(A) = +\infty$ is possible). Then, for each $g \in L^{1}(\Sigma)$, we have,

$$\begin{split} (g,(\mathcal{P}^{u}_{\varphi})^{*}\chi_{A}) &= (\mathcal{P}^{u}_{\varphi}g,\chi_{A}) = \int_{A} E(ug) \circ \varphi^{-1} d\mu \circ \varphi^{-1} = \int_{\varphi^{-1}(A)} E(ug) d\mu \\ &= \int_{\varphi^{-1}(A)} ug d\mu = \int_{X} gu \chi_{\varphi^{-1}(A)} d\mu = \int_{X} g(u\chi_{A} \circ \varphi) d\mu = (g,(uU_{\varphi})\chi_{A}). \end{split}$$

Hence, $(\mathcal{P}_{\varphi}^{u})^{*}\chi_{A} = (uU_{\varphi})\chi_{A}$. It follows that the result holds if f is a simple function. Now, since the simple functions are dense in $L^{\infty}(\Sigma)$, then we get $(\mathcal{P}_{\varphi}^{u})^{*}f = (uU_{\varphi})f$, for all $f \in L^{\infty}(\Sigma)$. This completes the proof.

Many problems in ergodic theory and physical sciences are related to the problem of existance and computation of absolutely continuous invariant measures (see [2]). Let $u \in L^{\infty}(\Sigma)$ and $f \in L^{1}(\Sigma)$. Define $\nu_{f}(A) = \int_{A} u f d\mu$, for all $A \in \Sigma$. It is easy to see that $\nu_{f} \ll \mu$.

Proposition 2.4. Let $u \in L^{\infty}(\Sigma)$ and $f \in L^{1}(\Sigma)$. Then, $f \in \mathcal{N}(\mathcal{P}_{\varphi}^{u} - M_{u})$ if and only if the measure ν_{f} is invariant under φ (here, the invariance of the measure ν_{f} means that $\nu_{f} \circ \varphi^{-1} = \nu_{f}$).

Proof. Since Σ is σ -finite, then for all $A \in \Sigma$ we have,

$$f \in \mathcal{N}(\mathcal{P}^{u}_{\varphi} - M_{u}) \Longleftrightarrow \mathcal{P}^{u}_{\varphi}f = uf \Longleftrightarrow$$
$$\nu_{f} \circ \varphi^{-1}(A) = \int_{\varphi^{-1}(A)} ufd\mu = \int_{A} \mathcal{P}^{u}_{\varphi}fd\mu = \int_{A} ufd\mu = \nu_{f}(A).$$

Corollary 2.5. The function $f \in L^1(\Sigma)$ is a fixed point of the Frobenius-Perron operator P_{φ} if and only if $\mu_f \circ \varphi^{-1} = \mu_f$, where $\mu_f(A) = \int_A f d\mu$ $(A \in \Sigma)$.

It is well-known that each $\nu \in ba(X, \Sigma, \mu)$, the space of all bounded complex charges on Σ which vanish on all sets of μ -measure 0, defines a bounded linear functional F_{ν} on $L^{\infty}(\Sigma)$ by $F_{\nu}(f) = \int_{X} f d\nu$. Moreover the mapping $\nu \to F_{\nu}$ is an isometric isomorphism from $ba(X, \Sigma, \mu)$ onto $(L^{\infty}(\Sigma))^{*}$; see [3, 10]. For $\nu \in ba(X, \Sigma, \mu)$ and $u \in L^{\infty}(\Sigma)$, we define the measure Λ_{ν} by

$$\Lambda_{\nu}(A) = \int_{\varphi^{-1}(A)} u d\nu, \qquad A \in \Sigma.$$

Since $\mu \circ \varphi^{-1} \ll \mu$, then we see that $\Lambda_{\nu} \in ba(X, \Sigma, \mu)$. Now, we compute the dual of $W := uU_{\varphi}$. Take $f \in L^{\infty}(\Sigma)$ and $\nu \in ba(X, \Sigma, \mu)$. As an application of the properties of the conditional expectation operator Eand using the change of variable formula, we have,

$$W^*(F_{\nu})(f) = F_{\nu}(Wf) = \int_X uf \circ \varphi d\nu = \int_X E_{\nu}(u)f \circ \varphi d\nu$$
$$= \int_X fE_{\nu}(u) \circ \varphi^{-1} d\nu \circ \varphi^{-1} = \int_X fd\Lambda_{\nu} = F_{\Lambda_{\nu}}(f).$$

After identifying $(L^{\infty}(\Sigma))^*$ with $ba(X, \Sigma, \mu)$ and ν with F_{ν} , we can write $W^*(\nu) = \Lambda_{\nu}$.

Let $ca(X, \Sigma, \mu)$ be the subspace of $ba(X, \Sigma, \mu)$ consisting of all complex measures absolutely continuous with respect to σ -finite measure μ . Since for each $f \in L^1(X, \Sigma, \mu)$, $\mu_f \ll \mu$, then we have $\mu_f \in ca(X, \Sigma, \mu)$. Define a mapping $\Psi : L^1(X, \Sigma\mu) \longrightarrow ca(X, \Sigma, \mu)$ by $\Psi(f) = \mu_f$, with inverse $\Psi^{-1}(\nu) = \frac{d\nu}{d\mu}$ (see [4]). Now, for any $A \in \Sigma$ and $f \in L^1(X, \Sigma, \mu)$, we get,

$$\Lambda_{\mu_f}(A) = \int_{\varphi^{-1}(A)} u d\mu_f = \int_{\varphi^{-1}(A)} u f d\mu = \int_A \mathcal{P}^u_{\varphi}(f) d\mu.$$

Hence, $\frac{d\Lambda_{\mu_f}}{d\mu} = \mathcal{P}^u_{\varphi}(f)$. On the other hand, we have,

$$\Psi^{-1}W^*\Psi(f) = \Psi^{-1}W^*(\mu_f) = \psi^{-1}(\Lambda_{\mu_f}) = \frac{d\Lambda_{\mu_f}}{d\mu} = \mathcal{P}^u_{\varphi}(f).$$

Therefore, W^* is the natural extension of the weighted Frobenius-Perron operator \mathcal{P}^u_{φ} on $(L^1(X, \Sigma, \mu))^{**}$ (see [4]).

In the following theorem, we give a sufficient condition for $\mathcal{P}_{\varphi}^{u}$ to have closed range on $L^{1}(\Sigma)$.

Theorem 2.6. Let $\mathcal{P}_{\varphi}^{u}$ be the weighted Frobenius-Perron operator and $W = uU_{\varphi}$ be the weighted Koopman operator with respect to the pair (u, φ) . If there exists a constant $\delta > 0$ such that $|u| \geq \delta$ on $\sigma(u)$, then $\mathcal{R}(\mathcal{P}_{\varphi}^{u})$ and $\mathcal{R}(W)$ are closed in $L^{1}(\Sigma)$ and $L^{\infty}(\Sigma)$, respectively.

Proof. First, we show that the range of W is closed. Let $\{Wf_n\}_{n\in\mathbb{N}}$ be an arbitrary sequence in $\mathcal{R}(W)$, which converges to some $g \in L^{\infty}(\Sigma)$. Hence, $\{Wf_n\}_{n\in\mathbb{N}}$ converges to $\frac{g}{u} \in L^{\infty}(\sigma(u), \Sigma_{|\sigma(u)}, \mu_{|\sigma(u)})$. In fact, since $|U_{\varphi}f_n - \frac{g}{u}| = |\frac{1}{u}| |Wf_n - g| \leq \frac{1}{\delta} |Wf_n - g|$ on $\sigma(u)$, then it follows that $||U_{\varphi}f_n - \frac{g}{u}||_{L^{\infty}(\sigma(u))} \longrightarrow 0$, as $n \to \infty$. On the other hand, since P_{φ} and so $P_{\varphi}^* = U_{\varphi}$ always have a closed range (see [7]), then we obtain a function $f \in L^{\infty}(\Sigma)$ such that $U_{\varphi}f = \frac{g}{u}$ on $\sigma(u)$. Since g = 0 on $X \setminus \sigma(u)$ and $L^{\infty}(X, \Sigma, \mu) = L^{\infty}(\sigma(u)) \oplus L^{\infty}(\sigma(u)^c)$, then we deduce that $g = Wf \in L^{\infty}(\Sigma)$. By the Banach closed range theorem, this implies that the range of W^* is also closed. Now, we show that $\Psi^{-1}W^*\Psi = \mathcal{P}_{\varphi}^{u}$ has a closed range. Suppose $W^*(\mu_{f_n}) = (W^*\Psi)f_n \longrightarrow \Psi g$, for some $g \in L^1(X, \Sigma, \mu)$. So, there exists $\nu \in ca(X, \Sigma, \mu)$ such that $\Psi g = W^*(\nu)$. Hence, $g = \Psi^{-1}W^*(\nu) = \Psi^{-1}W^*\Psi(\frac{d\nu}{d\mu})$. This completes the proof. \Box

As a consequence of the above theorem and the Banach closed range theorem (see [13]), we have the following corollary.

Corollary 2.7. Under the same assumptions as in Theorem 2.6, we have:

(a) $\mathcal{P}^{u}_{\varphi}$ is one-to-one if and only if W is onto.

(b) W is one-to-one if and only if \mathcal{P}^u_{φ} is onto.

The proofs are similar to the proofs of the similar results in [7].

In the following, we show that the weighted Frobenius-Perron operator $\mathcal{P}_{\varphi}^{u}$ is the product of two linear operators. This is a generalization of the work done in [6]. Define $T_{1}: L^{1}(\varphi^{-1}(\Sigma)) \longrightarrow L^{1}(\Sigma)$ and $T_{2}: L^{1}(\Sigma) \longrightarrow L^{1}(\varphi^{-1}(\Sigma))$ by

$$T_1 f = h.f \circ \varphi^{-1}, \qquad f \in L^1(\varphi^{-1}(\Sigma))$$

and

$$T_2 f = E(uf), \qquad f \in L^1(\Sigma),$$

respectively. It follows that

$$||T_1f||_1 = \int_X h|f \circ \varphi^{-1}|d\mu = \int_X |f| \circ \varphi^{-1}d\mu \circ \varphi^{-1} = \int_X |f|d\mu = ||f||_1.$$

Hence, T_1 is an isometry. Note that $T_1 \circ T_2 = \mathcal{P}_{\varphi}^u$. Thus, if $u \in L^{\infty}(\Sigma)$, then \mathcal{P}_{φ}^u is actually the product of two bounded linear operators and

(2.1)
$$\|\mathcal{P}_{\varphi}^{u}f\|_{1} = \|T_{2}f\|_{1}, \qquad f \in L^{1}(\Sigma).$$

Therefore, $||T_2|| = ||\mathcal{P}_{\varphi}^u|| = ||u||_{\infty}$. Also, equality (2.1) shows that the operator \mathcal{P}_{φ}^u is compact if and only if T_2 is a compact operator. On the other hand, since $(\mathcal{P}_{\varphi}^u)^* = W$ and $\mathcal{P}_{\varphi}^u = \Psi^{-1}W^*\Psi$, then compactness of \mathcal{P}_{φ}^u is equivalent to compactness of W.

Recall that an atom of the measure μ is an element $A \in \Sigma$ with $\mu(A) > 0$ such that for each $F \in \Sigma$, if $F \subseteq A$, then either $\mu(F) = 0$ or $\mu(F) = \mu(A)$. A measure with no atom is called non-atomic. It is a well-known fact that every σ -finite measure space (X, Σ, μ) can be partitioned uniquely as follows:

(2.2)
$$X = \left(\bigcup_{n \in \mathbb{N}} A_n\right) \cup B,$$

where $\{A_n\}_{n \in \mathbb{N}} \subseteq \Sigma$ is a countable collection of pairwise disjoint atoms and *B*, being disjoint from each A_n , is non-atomic (see [14]).

In the sequel, we investigate compact weighted Frobenius-Perron operator on $L^1(\Sigma)$. Recall that a linear operator T on a Banach space \mathcal{B} is compact if it maps every bounded sequence $\{x_n\}$ in \mathcal{B} onto a sequence $\{Tx_n\}$ in \mathcal{B} which has a convergent subsequence.

Theorem 2.8. Let (X, Σ, μ) be a non-atomic σ -finite measure space. Then, no bounded weighted Frobenius-Perron operator on $L^1(\Sigma)$ is compact unless it is the zero operator.

Proof. Recall that the operator $\mathcal{P}_{\varphi}^{u}$ is compact if and only if T_{2} is a compact operator. Hence, it suffices to show that the non-zero bounded operator T_{2} is not compact. Consider the set $F = \{x \in X : |u(x)|^{2} > \frac{1}{2} \|u\|_{\infty}^{2}\}$. Obviously, $\mu(F) > 0$. Since Σ is non-atomic and σ -finite, then there are measurable sets $\{A_{n}\}_{n=1}^{\infty}$ such that $A_{n+1} \subseteq A_{n} \subseteq A_{0} \subseteq F$,

$$\mu(A_0)<\infty$$
 , and $0<\mu(A_{n+1})=\frac{1}{2}\mu(A_n).$ For all $n\in\mathbb{N},$ define:

$$f_n=\frac{\bar{u}}{\|u\|_\infty^2\mu(A_n)}\chi_{\scriptscriptstyle A_n}.$$

Then, $||f_n||_1 \leq 1/||u||_{\infty}$. Now, since *E* is a positive operator, then for any $m, n \in \mathbb{N}$ with m > n, we have,

$$\begin{split} \|T_2 f_m - T_2 f_n\|_1 &= \int_X |E(uf_m) - E(uf_n)| d\mu = \int_X E(u(f_n - f_m)) d\mu \\ &= \int_X u(f_n - f_m) d\mu = \int_X \frac{|u|^2}{\|u\|_{\infty}^2} \left(\frac{\chi_{A_n}}{\mu(A_n)} - \frac{\chi_{A_m}}{\mu(A_m)}\right) d\mu \\ &\ge \int_{A_n \setminus A_m} \frac{d\mu}{2\mu(A_n)} = \frac{1}{2} \frac{\mu(A_n \setminus A_m)}{\mu(A_n)} = \frac{1}{2} \left(1 - \frac{\mu(A_m)}{\mu(A_n)}\right). \end{split}$$

Since $\mu(A_m) < \frac{1}{2}\mu(A_n)$, then we get $||T_2f_m - T_2f_n||_1 \ge \frac{1}{4}$, which shows that the sequence $\{T_2f_n\}$ dose not contain a convergent subsequence. \Box

In the following theorem, we give the sufficient conditions for the compactness of $\mathcal{P}^{u}_{\varphi}$ on $L^{1}(\Sigma)$.

Theorem 2.9. Let $\mathcal{P}_{\varphi}^{u}$ be a bounded Frobenius-Perron operator on $L^{1}(\Sigma)$ and let (X, Σ, μ) be partitioned as (2.2). Suppose that $u(\varphi^{-1}(B)) = 0$ and for any $\varepsilon > 0$, there exist finite disjoint atoms $A_{\varepsilon}^{1}, \ldots, A_{\varepsilon}^{n}$ such that $\mu(\{x \in \varphi^{-1}(\bigcup_{i=1}^{n} A_{\varepsilon}^{i}) : |u(x)| > \varepsilon\}) > 0$, and $\mu(\{x \in \varphi^{-1}(X \setminus \bigcup_{i=1}^{n} A_{\varepsilon}^{i}) : |u(x)| > \varepsilon\}) = 0$. Then, $\mathcal{P}_{\varphi}^{u}$ is a compact operator.

Proof. Take $\varepsilon > 0$ arbitrarily. Put $B_{\varepsilon} = \varphi^{-1}(\bigcup_{i=1}^{n} A_{\varepsilon}^{i})$ and $v = \chi_{B_{\varepsilon}} u$. It is easy to see u = v = 0 on $\varphi^{-1}(B)$ and u = v on B_{ε} . Then, for each $f \in L^{1}(\Sigma)$, we have,

$$\begin{split} \|(\mathcal{P}^{u}_{\varphi} - \mathcal{P}^{v}_{\varphi})f\|_{1} &= \int_{X \setminus (\varphi^{-1}(B) \cup B_{\varepsilon})} |hE(uf) \circ \varphi^{-1}| d\mu \\ &\leq \int_{X \setminus (\varphi^{-1}(B) \cup B_{\varepsilon})} E(|uf|) \circ \varphi^{-1} d\mu \circ \varphi^{-1} = \int_{\varphi^{-1}(X \setminus (\varphi^{-1}(B) \cup B_{\varepsilon}))} E(|uf|) d\mu \\ &= \int_{\varphi^{-1}(X \setminus (\varphi^{-1}(B) \cup B_{\varepsilon}))} |uf| d\mu \leq \varepsilon \int_{X} |f| d\mu = \varepsilon \|f\|_{1}. \end{split}$$

On the other hand, we have,

$$\mathcal{P}^v_{\varphi}f = hE\left((\sum_{i=1}^n \chi_{A^i_{\varepsilon}} \circ \varphi)uf\right) \circ \varphi^{-1} = \sum_{i=1}^n (\mathcal{P}^u_{\varphi}f)(A^i_{\varepsilon})\chi_{A^i_{\varepsilon}}$$

Therefore, $\mathcal{P}^{v}_{\varphi}$ has a finite rank and hence $\mathcal{P}^{u}_{\varphi}$ is compact.

Example 2.10. Let $w = \{m_n\}_{n=1}^{\infty}$ be a sequence of positive real numbers. Consider the space $l^p(w) = L^p(\mathbb{N}, 2^{\mathbb{N}}, \mu)$, where $2^{\mathbb{N}}$ is the power set of natural numbers and μ is a measure on $2^{\mathbb{N}}$ defined by $\mu(\{n\}) = m_n$. Let $u = \{u(n)\}_{n=1}^{\infty}$ be a sequence of nonnegative real numbers. Suppose that the restriction of μ to σ -subalgebra $\varphi^{-1}(2^{\mathbb{N}})$ is σ -finite, where $\varphi : \mathbb{N} \to \mathbb{N}$ is a non-singular measurable transformation. Direct computations show that for all $f = \{f(n)\}_{n=1}^{\infty} \in l^1(w)$, we have,

$$h(k) = \frac{1}{m_k} \sum_{j \in \varphi^{-1}(k)} m_j ,$$

$$(E(f))(k) = \frac{\sum_{j \in \varphi^{-1}(\varphi(k))} f(j)m_j}{\sum_{j \in \varphi^{-1}(\varphi(k))} m_j} ,$$

$$(E(f) \circ \varphi^{-1})(k) = \frac{\sum_{j \in \varphi^{-1}(k)} f(j)m_j}{\sum_{j \in \varphi^{-1}(k)} m_j} ,$$

$$\mathcal{P}^u_{\varphi}(f)(k) = h(k)(E(uf) \circ \varphi^{-1})(k) = \frac{1}{m_k} \sum_{j \in \varphi^{-1}(k)} u(j)f(j)m_j .$$

Example 2.11. Let X = [0,1], $d\mu = dx$, and Σ be the Lebesgue sets. A mapping $\varphi : [0,1] \to [0,1]$ is called piecwise monotonic if there exists a partition $0 < a_0 < a_1 < \ldots < a_n = 1$ of [0,1] such that $\varphi_j := \varphi \mid_{(a_{j-1},a_j)}$ is a c^1 -function, which can be extended to a c^1 -function on $A_j = [a_{j-1}, a_j]$ and $|\varphi'_j(x)| > 0$ on (a_{j-1}, a_j) , $j = 1, \ldots, n$. Put $\Sigma_j = \Sigma_{\mid A_j}$, $E(\cdot|\varphi^{-1}(\Sigma_j)) = E_j$ and $\mu_{\mid \Sigma_j} = \mu_j$. It is easy to see that $\mu_j \circ \varphi_j^{-1} \ll \mu_j$ and $\varphi^{-1}(\Sigma_j) = \Sigma_j$. Thus, $E_j = I$ on $L^1(A_j, \Sigma_j, \mu_j)$ and $h_j(x) = (d\mu_j \circ \varphi^{-1}/d\mu_j)(x) = (\varphi_j^{-1})'(x) = 1/\varphi'_j(\varphi_j^{-1}(x))$, for all $x \in (a_{j-1}, a_j)$. Note that, in general, one does not have $h_j = h_{\mid A_j}$ (see [1]). Then, for all $f \in L^1(\Sigma)$ and $x \in [0, 1]$, we get,

$$(P_{\varphi}f)(x) = \mathcal{P}_{\varphi}^{1}(f)(x) = h(x)(E(f) \circ \varphi^{-1})(x)$$
$$= \sum_{j=1}^{n} h_{j}(x)(E_{j}(\chi_{A_{j}}f) \circ \varphi_{j}^{-1})(x) = \sum_{j=1}^{n} \frac{f(\varphi_{j}^{-1}(x))}{\varphi_{j}'(\varphi_{j}^{-1}(x))} \chi_{A_{j}}(\varphi_{j}^{-1}(x)) .$$

Acknowledgments

The author thanks the referee for very helpful comments and valuable suggestions. The author was supported by the Research Institute for Fundamental Sciences, Tabriz, Iran.

References

- 1. J. Campbell and J. Jamison, On some classes of weighted composition operators, *Glasgow Math. J.* **32** (1990) 87-94.
- 2. I. P Cornfeld, S.V. Fomin and YA.G. Sinai, Eegodic Theory, Springer, New York, 1982.
- N. Dunford and J. Schwartz, Linear Operators, Part I, General Theory, Inter-Science, New York, 1958.
- J. Ding and W.E. Hornor, A new approach to Frobenius-Perron operators, J. Math. Anal. Appl. 187 (1994) 1047-1058.
- 5. J. Ding, The point spectrum of Frobenius-Perron and Koopman operators, *Proc. Amer. Math. Soc.* **126** (1998) 1355-1361.
- J. Ding , The Frobenius-Perron operator as a product of two operators, Appl. Math. Lett. 9 (1996) 63-65.
- 7. J. Ding, A closed range theorem for the Frobenius-Perron operator and its application to the spectral analysis, J. Math. Anal. Appl. 184 (1994) 156-167.
- J. Ding, Decomposition theorems for Koopman operators, Nonlinear Anal. 28 (1997) 1011-1018.
- 9. A. Lambert, Localizing sets for sigma-algebras and related point transformations, *Proc. Roy. Soc. Edinburgh Sect. A* **188** (1991) 111-118.
- K.P.S. Bhaskara Rao and M. Bhaskara Rao, Theory of Charges, Academic Press, New York, 1983.
- M.M. Rao, Conditional Measure and Applications, Marcel Dekker, New York, 1993.
- H. Takagi and K. Yokouchi, Multiplication and composition operators between two L^p-spaces, Contemporary Math. 232 (1999) 321-338.
- 13. K. Yosida, Functional Analysis, 5th ed., Springer-Verlag, Berlin, 1978.
- 14. A. C. Zaanen, Integration, 2nd ed., North-Holland, Amsterdam, 1967.

M. R. Jabbarzadeh

Department of Pure Mathematics, University of Tabriz, P.O. Box 5166615648, Tabriz, Iran.

Email: mjabbar@tabrizu.ac.ir

صدور گواهینامه نمایه مقالات نویسندگان در SID