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Abstract. We introduce the weighted Frobenius-Perron operator
P u

ϕ on L1 associated with the pair (u, ϕ) as a perdual of weighted
Koopman operator W = uCϕ on L∞ and then investigate some
fundamental properties of P u

ϕ by the language of conditional expec-
tation operator.

1. Introduction and preliminaries

Let (X,Σ, µ) be a complete σ-finite measure space and let ϕ : X →
X be a non-singular transformation; i.e., ϕ is Σ-measurable and µ ◦
ϕ−1(A) := µ(ϕ−1(A)) = 0, for all A ∈ Σ such that µ(A) = 0. This
assumption about ϕ just says that the measure µ ◦ ϕ−1 is absolutely
continuous with respect to the measure µ (we write µ ◦ ϕ−1 � µ, as
usual), where µ ◦ ϕ−1(A) = µ(ϕ−1(A)) for A ∈ Σ. We shall assume
that the restriction of µ to σ-subalgebra ϕ−1(Σ) of Σ is σ-finite, and we
denote by (X,ϕ−1(Σ), µ) the completion of (X,ϕ−1(Σ), µ|ϕ−1(Σ)). We
denote by h the Radon-Nikodym derivative, h = dµ ◦ ϕ−1/dµ. We will
write L1(ϕ−1(Σ)) for L1(X,ϕ−1(Σ), µ|ϕ−1(Σ)). L1(ϕ−1(Σ)) may then be
viewed as a subspace of L1(Σ) and we denote its norm by ‖.‖1. Support
of a measurable function f will be denoted by σ(f) = {x ∈ X; f(x) 6= 0}.
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86 Jabbarzadeh

Relationships between functions f and between sets are interpreted in
the almost everywhere sense. For any non-negative Σ-measurable func-
tion f as well as for any f ∈ Lp(Σ), by the Radon-Nikodym Theorem,
there exists a unique ϕ−1(Σ)-measurable function E(f) such that

∫
A
Efdµ =

∫
A
fdµ, for all A ∈ ϕ−1(Σ).

Hence, we obtain an operator E from L1(Σ) onto L1(ϕ−1(Σ)) which
is called conditional expectation operator associated with the σ-algebra
ϕ−1(Σ). It is easy to show that for each f ∈ L1(Σ), there exists a
Σ-measurable function g such that E(f) = g ◦ ϕ. We can assume that
σ(g) ⊆ σ(h), and there exists only one g with this property. We therefore
write g = E(f) ◦ ϕ−1, though we make no assumptions regarding the
invertibility of ϕ (see [1]). This operator will play a major role in our
work, and we list here some of its useful properties:

• E(fg) = E(f)g, whenever g is ϕ−1(Σ)-measurable and both condi-
tional expectations are defined.
• |E(f)| ≤ E(|f |).
• If f ≥ 0, then E(f) ≥ 0; if E(|f |) = 0, then f = 0.

Let f be a real-valued measurable function. Consider the set Bf =
{x ∈ X : E(f+)(x) = E(f−)(x) = ∞}. The function f is said to be
conditionable with respect to ϕ−1(Σ) if µ(Bf ) = 0. If f is complex-
valued, then f is conditionable if the real and imaginary parts of f are
conditionable and their respective expectations are not both infinite on
the same set of positive measure. For more details on the properties
of E see [11, 9]. Our aim here is to generalize some results obtained
for the (classic) Frobenius-Perron operators in [4, 6, 7] to the weighted
Frobenius-Perron operators.

2. Main results

Definition 2.1. Suppose ϕ : X → X is a non-singular transformation
and let u : X → C is a conditionable measurable function. If A is any
Σ-measurable set for which

∫
ϕ−1(A) ufdµ exists, then the linear operator

Pu
ϕ : L1(Σ) → L1(Σ), defined by

∫
A P

u
ϕfdµ =

∫
ϕ−1(A) ufdµ, is called the

weighted Frobenius-Perron operator associated with the pair (u, ϕ).
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Weighted Frobenius-Perron and Koopman operators 87

Let f ∈ L1(Σ) be given. For the above u and ϕ, we define the measure,

µu
ϕ,f (A) =

∫
ϕ−1(A)

ufdµ, A ∈ Σ.

The assumption µ ◦ ϕ−1 � µ implies µu
ϕ,f � µ. By the Radon-

Nikodym Theorem, there exists a µ-unique function f̃u
ϕ ∈ L1(Σ) such

that µu
ϕ,f (A) =

∫
A f̃

u
ϕdµ, for any A ∈ Σ. This may be expressed alter-

natively as: ∫
A
f̃u

ϕdµ =
∫

ϕ−1(A)
ufdµ, A ∈ Σ.

It follows that the mapping Pu
ϕ : f 7→ f̃u

ϕ is well defined on L1(Σ).

We note that according to Proposition 2.3 (vi) below, to the same
extent that the weighted Koopman operators are actual generalizations
of the Koopman operators, the weighted Frobenius-Perron operators will
be the actual generalizations of the (classic) Frobenius-Perron operators.

The weighted Koopman operator on L∞(Σ) with respect to the pair
(u, ϕ) is defined by uUϕ(f) = u.f ◦ ϕ, for each f ∈ L∞(Σ). Here, the
non-singularity of ϕ guarantees that uUϕ is well defined as a mapping
of equivalence classes of functions on σ(u). Note that uUϕ = MuUϕ

and Pu
ϕ = PϕMu where Mu is a multiplication operator, Uϕ and Pϕ are

(classic) Koopman and Frobenius-Perron operators, respectively. It is
easy to see that uUϕ is a bounded operator on L∞(Σ) if and only if
u ∈ L∞(Σ), and in this case ‖uUϕ‖ = ‖u‖∞ (see [12]). For a bounded
linear operator T on a Banach space, we use the symbols N (T ) and
R(T ) to denote the kernel and the range of T , respectively.

Now, let A ∈ Σ with 0 < µ(A) < ∞. As an application of the
properties of the conditional expectation and using the change of variable
formula, we have,∫

A
Pu

ϕfdµ =
∫

ϕ−1(A)
ufdµ =

∫
ϕ−1(A)

E(uf)dµ =
∫

A
hE(uf) ◦ ϕ−1dµ,

for all f ∈ L1(Σ). Since Σ is a σ-finite algebra, then it follows that
Pu

ϕf = hE(uf) ◦ ϕ−1.

In the following theorem, we investigate the necessary and sufficient
conditions for a weighted Frobenius-Perron operator Pu

ϕ to be bounded.
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88 Jabbarzadeh

Theorem 2.2. The weighted Frobenius-Perron operator Pu
ϕ is a bounded

operator on L1(Σ) if and only if u ∈ L∞(Σ) and its norm is given by
‖Pu

ϕ‖ = ‖u‖∞.

Proof. Let u ∈ L∞(Σ). Using the change of variable formula, we have,

‖Pu
ϕf‖1 =

∫
X
|Pu

ϕf |dµ =
∫

X
h|E(uf) ◦ ϕ−1|dµ

≤
∫

X
E(|uf |)dµ =

∫
X
|uf |dµ ≤ ‖u‖∞‖f‖1,

for each f ∈ L1(Σ). Thus, ‖Pu
ϕ‖ ≤ ‖u‖∞. Conversely, suppose that

Pu
ϕ is a bounded operator on L1(Σ). Write uf as w|uf |, when |w| = 1.

Then, we get,

‖Muf‖1 =
∫

X
|uf |dµ =

∫
X
wufdµ =

∫
X
hE(wuf) ◦ ϕ−1dµ

=
∫

X
Pu

ϕ(wf)dµ = ‖Pu
ϕ(wf)‖1 ≤ ‖Pu

ϕ‖‖wf‖1 = ‖Pu
ϕ‖‖f‖1,

for each f ∈ L1(Σ). Hence, we conclude that the multiplication operator
Mu is a bounded linear operator on L1(Σ). Therefore, u ∈ L∞ and
‖u‖∞ = ‖Mu‖ ≤ ‖Pu

ϕ‖. The proof of the theorem is now complete. �

Some basic properties of Pu
ϕ are listed in the following proposition.

Proposition 2.3. Let ϕi be a measurable transformation of X such that
µ◦ϕ−1

i is absolutely continuous with respect to µ and hi = dµ◦ϕ−1
i /dµ ∈

L∞(Σ), for i = 1, 2. Put ϕ3 = ϕ1 ◦ ϕ2 and E(.|ϕ−1
i (Σ)) = Ei. Then the

following assertions hold.

(i) µ ◦ ϕ−1
3 � µ and h3 = dµ ◦ ϕ−1

3 /dµ = h1E1(h2) ◦ ϕ−1
1 .

(ii) Pϕ1
Pu

ϕ2
= Pu

ϕ3
.

(iii) Pu
ϕ1
Pu

ϕ2
= Pϕ1

Pϕ2
Mu.u◦ϕ2

.

(iv) (Pu
ϕ)n = (

∏n−1
i=0 u ◦ ϕi)Pn

ϕ .

(v) Let u ≥ 0. Then, Pu
ϕf ≥ 0 if f ≥ 0 and (uUϕ)g ≥ 0 if g ≥ 0.

(vi) (Pu
ϕ)∗ = uUϕ.

Archive of SID

www.SID.ir

www.sid.ir
www.sid.ir


Weighted Frobenius-Perron and Koopman operators 89

Proof. (i) The assumption µ ◦ ϕ−1
i � µ implies that for each A ∈ Σ

with µ(A) = 0 , µ(ϕ−1
1 (A)) = 0, and so µ(ϕ−1

2 (ϕ−1
1 (A)) = 0. Hence,

µ ◦ ϕ−1
3 � µ. Also, by use of conditional expectation operator and

change of variables formula, we have,∫
A
h3dµ =

∫
A

dµ ◦ (ϕ1 ◦ ϕ2)−1

dµ
dµ =

∫
A
dµ ◦ ϕ−1

2 ◦ ϕ−1
1

=
∫

ϕ−1
1 (A)

dµ ◦ ϕ−1
2 =

∫
ϕ−1

1 (A)
h2dµ =

∫
ϕ−1

1 (A)
E1(h2)dµ

=
∫

A
E1(h2) ◦ ϕ−1

1 dµ ◦ ϕ−1
1 =

∫
A
h1E1(h2) ◦ ϕ−1

1 dµ.

Since (X,Σ, µ) is a σ-finite measure space, then the proof is complete.

(ii) Since Pϕif = hiEi(f) ◦ ϕ−1
i

, then for any A ∈ Σ and f ∈ L1(Σ)
we get,∫

A
Pu

ϕ3
fdµ =

∫
A
h3E3(uf) ◦ ϕ−1

3
dµ =

∫
A
E3(uf) ◦ ϕ−1

3
dµ ◦ ϕ−1

3

=
∫

ϕ−1
3 (A)

E3(uf)dµ =
∫

ϕ−1
2 (ϕ−1

1 (A))
ufdµ =

∫
ϕ−1

2 (ϕ−1
1 (A))

E2(uf)dµ

=
∫

ϕ−1
1 (A)

h2E2(uf) ◦ ϕ−1
2
dµ =

∫
A
h1E1(h2E2(uf) ◦ ϕ−1

2
) ◦ ϕ−1

1
dµ

=
∫

A
Pϕ1

(h2E2(uf) ◦ ϕ−1
2

)dµ =
∫

A
Pϕ1

(Pu
ϕ2
f)dµ .

Now, since (X,Σ, µ) is a σ-finite measure space, then the proof is com-
plete.

(iii) Since Pϕ1
Pϕ2

= Pϕ1◦ϕ2
, then for any A ∈ Σ and f ∈ L1(Σ) we

have, ∫
A
Pϕ1

Pϕ2
Mu.u◦ϕ2

fdµ =
∫

A
Pϕ1◦ϕ2

(u.u ◦ ϕ2)fdµ

=
∫

ϕ−1
3 (A)

h3E3(u.u ◦ ϕ2f) ◦ ϕ−1
3
dµ =

∫
ϕ−1

3 (A)
u.u ◦ ϕ2fdµ

=
∫

ϕ−1
1 (A)

h2uE2(uf) ◦ ϕ−1
2 dµ =

∫
A
h1E1(h2uE2(uf) ◦ ϕ−1

2 ) ◦ ϕ−1
1 dµ

=
∫

A
h1E1(uPu

ϕ2
f) ◦ ϕ−1

1 dµ =
∫

A
Pu

ϕ1
(Pu

ϕ2
f)dµ.
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90 Jabbarzadeh

Again, since (X,Σ, µ) is a σ-finite measure space, then the proof is
complete.

(iv) It follows from (iii).

(v) It is trivial.

(vi) It is well-known that L∞(Σ) is the dual space of L1(Σ); that
is, f ∈ L∞(Σ) is viewed as a bounded linear functional f∗ on L1(Σ),
defined by f∗(g) = (g, f) =

∫
X gfdµ. First, suppose that f = χA , A ∈ Σ

(µ(A) = +∞ is possible). Then, for each g ∈ L1(Σ), we have,

(g, (Pu
ϕ)∗χA) = (Pu

ϕg, χA) =
∫

A
E(ug) ◦ ϕ−1dµ ◦ ϕ−1 =

∫
ϕ−1(A)

E(ug)dµ

=
∫

ϕ−1(A)
ugdµ =

∫
X
guχ

ϕ−1(A)
dµ =

∫
X
g(uχA ◦ ϕ)dµ = (g, (uUϕ)χA).

Hence, (Pu
ϕ)∗χA = (uUϕ)χA . It follows that the result holds if f is a

simple function. Now, since the simple functions are dense in L∞(Σ),
then we get (Pu

ϕ)∗f = (uUϕ)f , for all f ∈ L∞(Σ). This completes the
proof.

Many problems in ergodic theory and physical sciences are related
to the problem of existance and computation of absolutely continuous
invariant measures (see [2]). Let u ∈ L∞(Σ) and f ∈ L1(Σ). Define
ν

f
(A) =

∫
A ufdµ, for all A ∈ Σ. It is easy to see that νf � µ.

Proposition 2.4. Let u ∈ L∞(Σ) and f ∈ L1(Σ). Then, f ∈ N (Pu
ϕ −

Mu) if and only if the measure νf is invariant under ϕ (here, the in-
variance of the measure νf means that ν

f
◦ ϕ−1 = ν

f
).

Proof. Since Σ is σ-finite, then for all A ∈ Σ we have,

f ∈ N (Pu
ϕ −Mu) ⇐⇒ Pu

ϕf = uf ⇐⇒

ν
f
◦ ϕ−1(A) =

∫
ϕ−1(A)

ufdµ =
∫

A
Pu

ϕfdµ =
∫

A
ufdµ = ν

f
(A).

�

Corollary 2.5. The function f ∈ L1(Σ) is a fixed point of the Frobenius-
Perron operator Pϕ if and only if µ

f
◦ϕ−1 = µ

f
, where µ

f
(A) =

∫
A fdµ

(A ∈ Σ).
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Weighted Frobenius-Perron and Koopman operators 91

It is well-known that each ν ∈ ba(X,Σ, µ), the space of all bounded
complex charges on Σ which vanish on all sets of µ-measure 0, defines a
bounded linear functional Fν on L∞(Σ) by Fν(f) =

∫
X fdν. Moreover

the mapping ν → Fν is an isometric isomorphism from ba(X,Σ, µ) onto
(L∞(Σ))∗; see [3, 10]. For ν ∈ ba(X,Σ, µ) and u ∈ L∞(Σ), we define
the measure Λν by

Λν(A) =
∫

ϕ−1(A)
udν, A ∈ Σ.

Since µ◦ϕ−1 � µ, then we see that Λν ∈ ba(X,Σ, µ). Now, we compute
the dual of W := uUϕ. Take f ∈ L∞(Σ) and ν ∈ ba(X,Σ, µ). As an
application of the properties of the conditional expectation operator E
and using the change of variable formula, we have,

W ∗(Fν)(f) = Fν(Wf) =
∫

X
uf ◦ ϕdν =

∫
X
Eν(u)f ◦ ϕdν

=
∫

X
fEν(u) ◦ ϕ−1dν ◦ ϕ−1 =

∫
X
fdΛν = FΛν (f).

After identifying (L∞(Σ))∗ with ba(X,Σ, µ) and ν with Fν , we can write
W ∗(ν) = Λν .

Let ca(X,Σ, µ) be the subspace of ba(X,Σ, µ) consisting of all com-
plex measures absolutely continuous with respect to σ-finite measure µ.
Since for each f ∈ L1(X,Σ, µ), µ

f
� µ, then we have µ

f
∈ ca(X,Σ, µ).

Define a mapping Ψ : L1(X,Σµ) −→ ca(X,Σ, µ) by Ψ(f) = µ
f
, with

inverse Ψ−1(ν) = dν
dµ (see [4]). Now, for any A ∈ Σ and f ∈ L1(X,Σ, µ),

we get,

Λµ
f
(A) =

∫
ϕ−1(A)

udµf =
∫

ϕ−1(A)
ufdµ =

∫
A
Pu

ϕ(f)dµ.

Hence,
dΛµ

f

dµ = Pu
ϕ(f). On the other hand, we have,

Ψ−1W ∗Ψ(f) = Ψ−1W ∗(µ
f
) = ψ−1(Λµ

f
) =

dΛµ
f

dµ
= Pu

ϕ(f).

Therefore, W ∗ is the natural extension of the weighted Frobenius-Perron
operator Pu

ϕ on (L1(X,Σ, µ))∗∗ (see [4]).

In the following theorem, we give a sufficient condition for Pu
ϕ to have

closed range on L1(Σ).
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92 Jabbarzadeh

Theorem 2.6. Let Pu
ϕ be the weighted Frobenius-Perron operator and

W = uUϕ be the weighted Koopman operator with respect to the pair
(u, ϕ). If there exists a constant δ > 0 such that |u| ≥ δ on σ(u), then
R(Pu

ϕ) and R(W ) are closed in L1(Σ) and L∞(Σ), respectively.

Proof. First, we show that the range of W is closed. Let {Wfn}n∈N be
an arbitrary sequence in R(W ), which converges to some g ∈ L∞(Σ).
Hence, {Wfn}n∈N converges to g

u ∈ L∞(σ(u),Σ|σ(u)
, µ|σ(u)

). In fact,
since |Uϕfn − g

u | = | 1u ||Wfn − g| ≤ 1
δ |Wfn − g| on σ(u), then it follows

that ‖Uϕfn − g
u‖L∞(σ(u)) −→ 0, as n → ∞. On the other hand, since

Pϕ and so P ∗
ϕ = Uϕ always have a closed range (see [7]), then we obtain

a function f ∈ L∞(Σ) such that Uϕf = g
u on σ(u). Since g = 0 on

X\σ(u) and L∞(X,Σ, µ) = L∞(σ(u))⊕L∞(σ(u)c), then we deduce that
g = Wf ∈ L∞(Σ). By the Banach closed range theorem, this implies
that the range of W ∗ is also closed. Now, we show that Ψ−1W ∗Ψ = Pu

ϕ

has a closed range. Suppose W ∗(µ
fn

) = (W ∗Ψ)fn −→ Ψg, for some
g ∈ L1(X,Σ, µ). So, there exists ν ∈ ca(X,Σ, µ) such that Ψg = W ∗(ν).
Hence, g = Ψ−1W ∗(ν) = Ψ−1W ∗Ψ( dν

dµ). This completes the proof. �

As a consequence of the above theorem and the Banach closed range
theorem (see [13]), we have the following corollary.

Corollary 2.7. Under the same assumptions as in Theorem 2.6, we
have:

(a) Pu
ϕ is one-to-one if and only if W is onto.

(b) W is one-to-one if and only if Pu
ϕ is onto.

The proofs are similar to the proofs of the similar results in [7].

In the following, we show that the weighted Frobenius-Perron operator
Pu

ϕ is the product of two linear operators. This is a generalization of the
work done in [6]. Define T1 : L1(ϕ−1(Σ)) −→ L1(Σ) and T2 : L1(Σ) −→
L1(ϕ−1(Σ)) by

T1f = h.f ◦ ϕ−1, f ∈ L1(ϕ−1(Σ))

and

T2f = E(uf), f ∈ L1(Σ),
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Weighted Frobenius-Perron and Koopman operators 93

respectively. It follows that

‖T1f‖1 =
∫

X
h|f ◦ ϕ−1|dµ =

∫
X
|f | ◦ ϕ−1dµ ◦ ϕ−1 =

∫
X
|f |dµ = ‖f‖1.

Hence, T1 is an isometry. Note that T1 ◦ T2 = Pu
ϕ. Thus, if u ∈ L∞(Σ),

then Pu
ϕ is actually the product of two bounded linear operators and

(2.1) ‖Pu
ϕf‖1 = ‖T2f‖1, f ∈ L1(Σ).

Therefore, ‖T2‖ = ‖Pu
ϕ‖ = ‖u‖∞. Also, equality (2.1) shows that the

operator Pu
ϕ is compact if and only if T2 is a compact operator. On the

other hand, since (Pu
ϕ)∗ = W and Pu

ϕ = Ψ−1W ∗Ψ, then compactness of
Pu

ϕ is equivalent to compactness of W .

Recall that an atom of the measure µ is an element A ∈ Σ with
µ(A) > 0 such that for each F ∈ Σ, if F ⊆ A, then either µ(F ) = 0
or µ(F ) = µ(A). A measure with no atom is called non-atomic. It
is a well-known fact that every σ-finite measure space (X,Σ, µ) can be
partitioned uniquely as follows:

(2.2) X =

(⋃
n∈N

An

)
∪B,

where {An}n∈N ⊆ Σ is a countable collection of pairwise disjoint atoms
and B, being disjoint from each An, is non-atomic (see [14]).

In the sequel, we investigate compact weighted Frobenius-Perron op-
erator on L1(Σ). Recall that a linear operator T on a Banach space B is
compact if it maps every bounded sequence {xn} in B onto a sequence
{Txn} in B which has a convergent subsequence.

Theorem 2.8. Let (X,Σ, µ) be a non-atomic σ-finite measure space.
Then, no bounded weighted Frobenius-Perron operator on L1(Σ) is com-
pact unless it is the zero operator.

Proof. Recall that the operator Pu
ϕ is compact if and only if T2 is a

compact operator. Hence, it suffices to show that the non-zero bounded
operator T2 is not compact. Consider the set F = {x ∈ X : |u(x)|2 >
1
2‖u‖

2
∞}. Obviously, µ(F ) > 0. Since Σ is non-atomic and σ-finite, then

there are measurable sets {An}∞n=1 such that An+1 ⊆ An ⊆ A0 ⊆ F ,
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94 Jabbarzadeh

µ(A0) <∞ , and 0 < µ(An+1) = 1
2µ(An). For all n ∈ N, define:

fn =
ū

‖u‖2∞µ(An)
χAn

.

Then, ‖fn‖1 ≤ 1/‖u‖∞. Now, since E is a positive operator, then for
any m,n ∈ N with m > n, we have,

‖T2fm − T2fn‖1 =
∫

X
|E(ufm)− E(ufn)|dµ =

∫
X
E(u(fn − fm))dµ

=
∫

X
u(fn − fm)dµ =

∫
X

|u|2

‖u‖2∞

(
χAn

µ(An)
−

χAm

µ(Am)

)
dµ

≥
∫

An\Am

dµ

2µ(An)
=

1
2
µ(An\Am)
µ(An)

=
1
2

(
1− µ(Am)

µ(An)

)
.

Since µ(Am) < 1
2µ(An), then we get ‖T2fm − T2fn‖1 ≥ 1

4 , which shows
that the sequence {T2fn} dose not contain a convergent subsequence. �

In the following theorem, we give the sufficient conditions for the
compactness of Pu

ϕ on L1(Σ).

Theorem 2.9. Let Pu
ϕ be a bounded Frobenius-Perron operator on L1(Σ)

and let (X,Σ, µ) be partitioned as (2.2). Suppose that u(ϕ−1(B)) = 0
and for any ε > 0, there exist finite disjoint atoms A1

ε, . . . , A
n
ε such that

µ({x ∈ ϕ−1(∪n
i=1A

i
ε) : |u(x)| > ε}) > 0, and µ({x ∈ ϕ−1(X\ ∪n

i=1 A
i
ε) :

|u(x)| > ε}) = 0. Then, Pu
ϕ is a compact operator.

Proof. Take ε > 0 arbitrarily. Put Bε = ϕ−1(∪n
i=1A

i
ε) and v = χBε

u.
It is easy to see u = v = 0 on ϕ−1(B) and u = v on Bε. Then, for each
f ∈ L1(Σ), we have,

‖(Pu
ϕ − Pv

ϕ)f‖1 =
∫

X\(ϕ−1(B)∪Bε)
|hE(uf) ◦ ϕ−1|dµ

≤
∫

X\(ϕ−1(B)∪Bε)
E(|uf |)◦ϕ−1dµ◦ϕ−1 =

∫
ϕ−1(X\(ϕ−1(B)∪Bε))

E(|uf |)dµ

=
∫

ϕ−1(X\(ϕ−1(B)∪Bε))
|uf |dµ ≤ ε

∫
X
|f |dµ = ε‖f‖1.

On the other hand, we have,

Pv
ϕf = hE

(
(

n∑
i=1

χ
Ai

ε
◦ ϕ)uf

)
◦ ϕ−1 =

n∑
i=1

(Pu
ϕf)(Ai

ε)χAi
ε
.
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Therefore, Pv
ϕ has a finite rank and hence Pu

ϕ is compact. �

Example 2.10. Let w = {mn}∞n=1 be a sequence of positive real num-
bers. Consider the space lp(w) = Lp(N, 2N, µ), where 2N is the power set
of natural numbers and µ is a measure on 2N defined by µ({n}) = mn.
Let u = {u(n)}∞n=1 be a sequence of nonnegative real numbers. Sup-
pose that the restriction of µ to σ-subalgebra ϕ−1(2N) is σ-finite, where
ϕ : N → N is a non-singular measurable transformation. Direct compu-
tations show that for all f = {f(n)}∞n=1 ∈ l1(w), we have,

h(k) =
1
mk

∑
j∈ϕ−1(k)

mj ,

(E(f))(k) =

∑
j∈ϕ−1(ϕ(k)) f(j)mj∑

j∈ϕ−1(ϕ(k))mj
,

(E(f) ◦ ϕ−1)(k) =

∑
j∈ϕ−1(k) f(j)mj∑

j∈ϕ−1(k)mj
,

Pu
ϕ(f)(k) = h(k)(E(uf) ◦ ϕ−1)(k) =

1
mk

∑
j∈ϕ−1(k)

u(j)f(j)mj .

Example 2.11. Let X = [0, 1], dµ = dx, and Σ be the Lebesgue
sets. A mapping ϕ : [0, 1] → [0, 1] is called piecwise monotonic if there
exists a partition 0 < a0 < a1 < . . . < an = 1 of [0, 1] such that
ϕj := ϕ |(aj−1,aj) is a c1-function, which can be extended to a c1-function
on Aj = [aj−1, aj ] and |ϕ′j(x)| > 0 on (aj−1, aj), j = 1, . . . , n. Put
Σj = Σ|Aj

, E(.|ϕ−1(Σj)) = Ej and µ|Σj
= µj . It is easy to see that

µj ◦ ϕ−1
j � µj and ϕ−1(Σj) = Σj . Thus, Ej = I on L1(Aj ,Σj , µj)

and hj(x) = (dµj ◦ ϕ−1/dµj)(x) = (ϕ−1
j )′(x) = 1/ϕ′j(ϕ

−1
j (x)), for all

x ∈ (aj−1, aj). Note that, in general, one does not have hj = h|Aj
(see

[1]). Then, for all f ∈ L1(Σ) and x ∈ [0, 1], we get,

(Pϕf)(x) = P1
ϕ(f)(x) = h(x)(E(f) ◦ ϕ−1)(x)

=
n∑

j=1

hj(x)(Ej(χAj
f) ◦ ϕ−1

j )(x) =
n∑

j=1

f(ϕ−1
j (x))

ϕ′j(ϕ
−1
j (x))

χAj
(ϕ−1

j (x)) .
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