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Abstract. In this paper Lambert multipliers acting between LP spaces are character-
ized by using some properties of conditional expectation operator. Also, Fredholmness of
corresponding bounded operators is investigated.
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1. INTRODUCTION AND PRELIMINARIES

Let L(X,3, 1) be a o-finite measure space. For any complete o-finite sub-algebra
A C ¥ with 1 < p < oo, the LP-space LP(X, A, u|A) is abbreviated by LP(A), and
its norm is denoted by || - ||, We view LP(A) as a Banach sub-space of L?(3). The
support of a measurable function f is defined by o(f) = {z € X: f(x) # 0}. Al
comparisons between two functions or two sets are to be interpreted as holding up
to a p-null set.

To examine the weighted composition operators efficiently, Alan Lambert in [9]
associated with each transformation 7" the so-called conditional expectation operator
E(-|A) = E(-) which is defined for each non-negative measurable function f or for
each f € LP(X), and is uniquely determined by the conditions

(i) E(f) is A-measurable and
(ii) if A is any A-measurable set for which [, fdu converges then

/Afdu=/AE(f)du-
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This operator will play a major role in our work, and we list here some of its useful
properties:

e If g is A-measurable then E(fg) = E(f)g.

[E(H)IP < E(|f[7).

IEHp < L []p-

If f >0 then E(f) > 0;if f > 0 then E(f) > 0.
E(|f?) = |E(f)|? if and only if f € LP(A).

As an operator on LP(X), E(-) is contractive idempotent and F(LP(X)) = LP(A).
A real-valued Y-measurable function f is said to be conditionable with respect to A if
p{z € X: E(fT)(z) = E(f)(z) = oo}) = 0. In this case E(f) := E(f*)— E(f").
If f is complex-valued, then f is conditionable if both the real and imaginary parts

of f are conditionable and their respective expectations are not both infinite on the
same set of positive measure. In this case, E(f) := E(Re f) +1E(Im f) (see [4]). We
denote the linear space of all conditionable ¥-measurable functions on X by L°(%).
For f and g in L%(X), we define f xg = fE(g) + gE(f) — E(f)E(g). Let 1 < p,
q < 00. A measurable function u € L°(X) for which ux f € L4(X) for each f € LP(X)
is called a Lambert multiplier. In other words, u € L°(¥) is a Lambert multiplier if
and only if the corresponding *-multiplication operator T,,: LP(X) — L%(X) defined
as T, f = ux f is bounded. Note that if u is a A-measurable function or A = X, then
u € K, if and only if the multiplication operator M, : LP(¥) — L%(X) is bounded.

In the next section, Lambert multipliers acting between two different L?(X) spaces
are characterized by using some properties of the conditional expectation operator.
In Section 3, Fredholmness of the corresponding x-multiplication operators will be
investigated.

2. CHARACTERIZATION OF LAMBERT MULTIPLIERS

Let 1 < p, ¢ < 0o. Define K*

> the set of all Lambert multipliers from LP(3)
into L1(X), as follows:

K}, ={ueL’(%): uxLP(X) C LY(X)}.

K , is a vector subspace of LO(%). Put K}, = K. In the following theorem we
characterize the members of K , in the case 1 < p = ¢ < co.

Theorem 2.1. Suppose 1 < p < oo and u € L%(X). Then u € K if and only if
E([ul?) € L>(A).
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Proof. Let E(JulP) € L*(A) and take f € LP(X). Since |E(u)|? < E(|ulP)

a.e., we have
IIE(U)fIIZZ/ IE(U)flpdué/ E(lu)fPdp < TE(ul”) oo lLF1I5-
b'e b'e

Hence ||E(u)fl|l, < ||E(|u|p)||c1,ép||f||p A similar argument, using the fact that
E(fE(g)) = E(f)E(g), reveals that we also have

IE@EI = [wBOIE = [ WBP < [ P EQAP) de
X X
= [ BB < 1P [ 177 = Bl |l 71
X X
Ths | B = [E(Dlly < I Eup)| X771, Accordingly, we get tha

lux fllp < IE@)fllp + 1By + 1E@EF)]p < BIE(ul®)[ZL71£]lp-

It follows that u x f € LP(X) and hence u € K.

Now, suppose only that u € K. An easy consequence of the closed graph theorem
and the result guaranteeing a pointwise convergent subsequence for each LP(X) con-
vergent sequence ensures that the operator T,,: LP(X) — LP(X) given by T, f = ux f
is bounded. Define a linear functional ¢ on L'(A) by

o(f) = /X E(u")fdu, f € L}(A).

We shall show that ¢ is bounded. To this end, since for each f € L'(A), E(|f|*/?) =
|f|}/P € LP(A), we have

o(f) < /X E(ul?)| f| d = /X (B (ul | /17 dp
- /X (ull 7Y dps = | Tul F1V72

<ATlPILI2IE = (TPl

Thus, ¢ is a bounded linear functional on L'(A) and |¢|| < ||T.||P. By the Riesz
representation theorem, there exists a unique function g € L*°(A) such that

o) = [ ardu resia.
Therefore, we have g = E(Ju|P) a.e. on X and hence E(|ul?) € L>=(A). O
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Let § := {T,: u € K} and let 3’ be the commutant of ¥ in the algebra of all
bounded linear operators. Still proceeding as in the proof of Theorem 6.6 given in [2]
and Theorem 4.1 given in [6], one establishes that & = &' = " (see also [3]). Thus
$J is maximal abelian and hence it is norm closed.

For u € K define |ul|xy = |\E(|u|p)|\éép Then precisely the same calculation as
that shown in the proof of Theorem 2.1 yields that

lux fllp < 3UE(u)LPIf]p) < 0o, f € LP(D),

and

/XE(IUIP)IfIdu <ATullPlfll, f € LY(A).

It follows that

@) I7.] < SIE L

and

) IEGuPll = sup [ E(ul?)Ifdu < 7],
Ifllhst /X

It follows from (2.1) and (2.2) that
(2.3) [ullrey < NTull < 3llullx;-

Consequently, || - ||k and the operator norm || - || are equivalent norms on . Also,
since § is norm closed, it follows from (2.3) that K, is a Banach space with the norm
- ;-

Let 1 < g < p < oo. Our second task is the description of the members of K , in
terms of the conditional expectation induced by .A.

Theorem 2.2. Suppose 1 < ¢ < p < oo and u € L°(X). Then u € K, , if and
only if (E(|Ju|?))Y/? € L"(A), where 1/p+ 1/r = 1/q.

Proof. Suppose (E(|u|9))'/? € L"(A). Let f € LP(X). Using the same method
as in the proof of Theorem 2.1, we have

IEw)f]e < /X E(ul9)]£19 dp = | E(lu]?) Y £119 < 1B (a2 £
By similar computation we obtain
I8 < / (1B (| £17) dpt = / E(jul)E(f]7) dy
X X
< Bl B F19)lya < ICEul) )9 £
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and

IE@)E(f)]g < / E(jul)E(f]?) dp
X
Bl DYWL NEASIDY G < NEul DY AE 12

Therefore we have || T, f|| < 3||(E(Ju|9))"/4|,||f|l, for all f € LP(X). Consequently,
T, is bounded and hence u € K;’q.
Now, suppose only that u € K}, Define ¢: LP/9(A) — C given by o(f) =

/v E  E(|u|?) f dp. Clearly ¢ is a hnear functlonal We shall show that ¢ is bounded.
For each f € LP/9(A) we get that

] </XE(IUIQ)IfIduz/XE((IUIIfll/q)q)du=IITqull/q||3< 1Tl W15/ q-

It follows that ||¢|| < ||T||? and hence ¢ is bounded. By the Riesz representation
theorem, there exists a unique g € L"/9(A) such that o(f) = Jx gf du for each
f € LP/9(A). Hence g = E(|u|?) a.e. on X. That is, (E|u|?)'/9 € L"(A) and hence
the proof is complete. O

Recall that an A-atom of the measure p is an element A € A with p(A) > 0 such
that for each F' € X, if F C A then either u(F) = 0 or u(F) = pu(A4). A measure with
no atoms is called non-atomic. It is a well-known fact that every o-finite measure
space (X, A, u|4) can be partitioned uniquely as

= <HLEJN An) UB

where {A, }nen is a countable collection of pairwise disjoint .A-atoms and B, being
disjoint from each A,,, is non-atomic (see [13]).

In the following theorem we characterize the members of K , in the case 1 < p <
q < o0.

Theorem 2.3. Suppose 1 < p < g < oo and u € L°(X). Then u € K} , if and
only if

(i) E(Jul?) =0 a.e. on B;

E(|u|?) (A,

(ii) M :=su (u})(An)

< h 1 + L
oo, where =
nenN  p(Ap)e/T q
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Proof. Suppose that both (i) and (i) hold. Then, for each f € LP(X) with
[Ifllp <1 we have

1Bl < [ B Iflqdu—</ / ) (1) £1) dp

-3 / E(lul")|£17dp = 37 B(jul?)(A0)] £ (An) 7(A,)

neN neN
= > B QP < MLl < M
neN n

where we have used the fact that F(|u|?) is a constant .A-measurable function on
each A, (see [5, Theorem 1.7.3]). Consequently, ||E(u)f|l, < M'/. Since the con-
ditional expectation operator F is a contraction, similar computation shows that
|uB(f)|lq < MY and |E(u)E(f)|, < M4, Tt follows that ||T,|| < 3MY7 < oo
and hence u € K, .

Conversely, suppose that u € K, ,. First we show that E(|u|?) = 0 a.e. on B.
Assuming the contrary, we can find some § > 0 such that u({z € B: E(Ju|?)(x) >
0}) > 0. Put F ={x € B: E(|Jul]?)(x) > §}. Since (X, A, u1| 1) is a o-finite measure
space, we can suppose that u(F) < oo. Also, since F is non-atomic so for all
n € N there exists F,, C F such that u(F,) = p(F)/2". For any n € N, put

= 1/((W(Fu))"/?)xF, . Tt is clear that f, € LP(A) and ||f,||, = 1. Since ¢/p > 1,
we have

00 > [|Tull* > |Tufnll§ = llux full§ = llufallg

/ fufult dp = 1/(u(F, )0/ / [ul da = 1/ (u(F,)0/?) / E(|ul?) du

Fp Frn

> 6u(F,) /(u(F,)9P) = 6(”;5) )1_q/p = 6(/;;;) )Q/p_l — 00 as n — oo,

which is a contradiction. Hence we conclude that u({zx € B: E(|u|?)(z) # 0}) =
Next, we examine the supremum in (ii). For any n € N, put f,, = 1/(;L(An)1 p)XA”.
Then it is clear that f,, € LP(A) and || f,||, = 1. Hence we have

1
oo I 2 A= gy [, B
| . _ B(ul?)(An)

= sy PO A = 7

Since this holds for any n € N, we get that M < oc. 0
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Theorem 2.4.
(i) we K% if and only if u € L*>®(X).
(ii) If 1 < q < oo, then u € K7, , if and only if [u| € LI(%).
(iii) If 1 <p < oo, thenu € K, 1fandon1y1fu—0ae on B and

sup([u["(An)/p(An)) < o0

neN

Proof. (i) Suppose that for each f € L>®(X), ux f € L>®(X). Since the
conditional expectation operator E is a contraction, we obtain

l[ulloo = lluxxlloc = [Tuxx loo < [[Tul] < oo.

Conversely, suppose that u € L>°(X). Then for each f € L>°(X) we have || Ty f]loo <
3luflooll flloo- Thus || Tu]l < 3||u|lcc and hence u € K* . Consequently, we get (i).
(ii) Let |u] € L9(X) and f € L*°(X). Then we have

luE(f)2 = /X WE(f)| dp < [I£1%, /X ol dp = || £ 2l

Hence, [uE(f)llq < [fllccllully.  Similarly, we get [[uE(f)[q < [Ifllocllully and
IE@E)lq < [ Flloollellg: Thus [[Tuf] < 3l|luflq and hence u € K&, ;. Conversely,
suppose that T,,(L>°(X)) C LI(X). Since Ty X, € L1(X), it follows that

00 > | Tuxx |1t = /X (T |7 dpt = /X ol dp = [Juf.

Thus we get (ii).
(iii) Suppose that « = 0 a.e. on B and M := sup(|u|P(A,)/u(A,)) < oo. Then for
neN

each f € LP(X) with ||f|l, < 1 we have

[wE(f)|[% = inf{b>0: [uE(f)]” < b}
= inf{b > 0: |ulP|E(f)|” < b}
b>0

— inf{b > 0: [u?(4,)|E(f)(An)]P < b, n €N}
< inf{b > 0: [u?(A)(E|fI")(An) < b, n € N}
lulP(Ay)
< su =M < o0.
nen p(An)
Consequently, [|[uE(f)||oo < M/P. Similarly, since
(AP = / pdu= ! / E(ul?) du = (B(jul?))(An),
w(An) Ja, w(An) Ja,
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we get that || fE(u)||e < MYP and |E(u)E(f)||e < MY/P. Therefore ||T,| < 3M/?
and hence u € K, ..

Conversely, suppose that u € K, . First we show that u = 0 a.e. on B. Assuming
the contrary, we can find 6 > 0 such that pu({x € X: |u(z)] > §}) > 0. Put
F ={z € X: |u(x)| > d}. Since F is non atomic, choose a number a such that
0 < a < u(F) and a sequence Fy, Fy,... € A of disjoint subsets of F' such that
w(Fy) = a/2P for all k € N. We define a function fy on X by

oo

fo=>_2"%xp,.

k=1

It is easy to show that fo € LP(.A), but that it is not in L*>°(A). It follows that

00 = 6| foll e ay = 167 foll Loe(ay < 1 Tufollzo=ay < N Tullll foll Lr(ay < o0,

which is a contradiction. Hence p({zx € X: |u(z)| # 0}) = 0, in other words, u = 0
a.e. on B.

Now, for any n € N, put f,, = 1/(u(A,)"P)xa,. It is clear that for all n € N,
fn € LP(A) and || fn|lp = 1. Then we obtain

[ulP(An)
1(An)
Therefore M < oo. This complete the proof. ([

00 > [|Tull” 2 || Tufnllfe = llufnllts =

3. FREDHOLMNESS OF x-MULTIPLICATION OPERATORS

Proposition 3.1. Let 1 <p < oo, 1/p+1/qg=1, and u € K};. Then, for each
g € LP(Y), f € LYY) and n € N we have
(i) Ti'g = (E(w))" (E(u)g + nuE(g) — nE(u)E(g)),
(i) 73" f = (E(u)""HnE(af) + E(u)(f — nE(f))}.
Proof. (i) is trivial.
(ii) We will prove the result by induction. Since E(g)f = fE(g) for each g € LP(X)
and f € LI(X), we have

(@.T2f) = (Tug. f) = / (uE(g) + 9B (u) — B(g)E(u))f dp
- / (9E(uf) + E(w)gf — gEw)E(f)) du

= [o(B@n + B - E@ED) dn
= (0. B(af) + B)f ~ Bw)B(),
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which shows that the result holds for n = 1. Assume now that it holds for n = &
and calculate

Ty f = Tr ((E(w)* "{kE(uf) + E(u)(f — kE(f))})
= (BE(w)*{(k+1)E(af) - kE(f)E(u)}

Thus the proposition is proved. O

In what follows we use the symbols N (T},) and R(T,) to denote the kernel and
the range of T, respectively. We recall that T, is said to be a Fredholm operator if
R(Ty) is closed, dim N (T},) < oo, and codim R(T,,) < oo.

The next result gives a necessary and sufficient condition for a x-multiplication
operator T,, on LP(X) to be a Fredholm operator, thereby generalizing the result
in [11] for multiplication operators.

Theorem 3.2. Suppose that u € K and A is a non-atomic measure space. Then
the operator T, is Fredholm on LP(X) (1 < p < o0) if and only if |E(u)| > ¢ almost
everywhere on X for some § > 0.

Proof. Suppose that T, is a Fredholm operator. We first claim that 7T, is onto.
Suppose the contrary. Then there exists fy € LP(X) \ R(Ty,). Since R(T,,) is closed,
there exists go € L9(X), the dual space of L?(X), such that

(3.1) (90, fo) = /fogo dp=1
and
(3.2) (90, Tuf) = /goTufdu =0, felL’X).

Now (3.1) yields that the set B, = {z € X: |E(fogo)(z)| = r} has positive measure
for some r > 0. As A is non-atomic, we can choose a sequence {A,} of subsets of B,
with 0 < p(A,) < oo and A,, N A, = 0 for m # n. Put g, = xa,g0. Clearly,
gn € L4(X) and is nonzero, because

/X | fogn| du > / | fogn| dp = /A E(|fogol) = /An |E(fogo)| dp = ru(Ay) > 0

n
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for each n. Also, for each f € LP(X), xa, f € LP(X) and so (3.2) implies that

(Tign,f)=(nguf)=/ gOTude:/XgOTu(XAnf)dM:(QO;Tu(XA,,f))a

n

which implies that T'g, = 0 and so g, € N(T). Since all the sets in {4, } are
disjoint, the sequence {g,} forms a linearly independent subset of M (Z)). This
contradicts the fact that dim N (T*u) = codimR(T},) < co. Hence T, is onto. Let
Z(E(u)) == o(E(u)® = {x € X: E(u)(z) = 0}. Then u(Z(E(u))) = 0. Since
w(Z(E(u))) > 0, there is an F' C Z(E(u)) with 0 < u(F) < oo. If xp € R(T,), then
there exists f € LP(X) such that T,,f = xr. Then

wP) = [ xean= [ Tupan= [ B [ B@EG a0

and this is a contradiction. So xp € LP(X) \ R(T.), which contradicts the fact that
T, is onto. For each n =1,2,..., let

IE(lul?)lloo

= {xEX; (n+1)2 <|E(u)P(x) < 1 Cl? )|°°}

n2

o)
and H = {n € N: u(H,) > 0}. Then the H,’s are pairwise disjoint, X = |J H,
n=1

and p(H,) < oo for each n > 1. Take

|E(u)|
Fla) = § n(HVP
0 otherwise.

r € H,, neH,

Then
[E(u)[? IE(|ul?)[lo
p — <
JRY XQI/H iy < T <o

Therefore f € LP(A) and so there exist ¢ € LP(X) such that T,,g = f. Hence

E(u)E(g) = E(Tug) = f. Since E(g) = f/E(u) off Z(E(u)) and u(Z(E(u))) =0, it
follows that

= [ Bz [ 1z

T B
= Jx IE@p = Z/ =21

neH neH
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This implies that H must be a finite set. So there is an ny such that n > ng implies
w(Hy) = 0. Together with p(Z(E(u))) =0, we obtain

u({oexs e < DI ) :“(g U Z(E() ) <.

that is |E(u)| = ((|E(Jul?)||s)/nd)"/? := § almost everywhere on X.
Conversely, suppose that |E(u)| = § a.e. on X for some § > 0. Let f € N(T}).
We have T)f f = E(af) + E(u)(f — E(f)) =0 and so E(uf) = E(T,f) =0. Thus

[ aran= [ B@nan=o

which implies that

N { e [ afdn=0} € 020 Szl

Also, since E(|u]) = |E(u)| > § and X is a o-finite measure space, we have |u| > §
and hence u(Z(u)) = 0. It follows that

codim R(T,) = dim N(T}¥) = 0.

Now, we shall show that T, has closed range. Let {7, f,} be an arbitrary sequence
in R(T,,) and let || T, fr, — g||lp, — O for some g € LP(X). Hence we have E(u)E(f,) =
E(T.fn) = E(g). Since by hypothesis |E(u)| > 4, it follows that E(g)/E(u) € LP(A)
and E(fp) = E(g)/E(u). Consequently,

fu 2 Eiu) {9+B() - f(ff))} =

and hence T, f, L T.f. Therefore g = T, f, which implies that T}, has closed range.
Thus the theorem is proved. O

Now, we consider the particular case when p = 2. An operator T on a Hilbert
space H is normal if TT* = T*T, and T is self-adjoint if T' = T™*.
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Proposition 3.3. Let u € K. Then the following claims are true:
(i) Ty is a normal operator if and only if u € L>°(A).
(ii) T, is a self-adjoint operator if and only if u € L*°(A) is real valued.

Proof. (i) Assume T, is normal. Then for each f € L?(X) we have E(T,,/ T f) =
E(u)E(af) and B(T;T.f) = E(f)E(|ul?) + B(w)E(af) — E(@)E(w)E(f). Therefore
we obtain that E(|u|?) = |E(u)|>. Consequently u € L°(A). Conversely, suppose
that u € L*(A) and take f € L?(X). Then T;T,f = T,T;f = |u|*f, and hence
T, is normal.

(ii) follows from (i). O

Example 3.4. Let X = [-1,1], du = dz, let ¥ be the Lebesgue sets, and A
the o-subalgebra generated by the sets symmetric about the origin. Put 0 < a < 1.
Then for each f € L*(X) we have

| En@a= [ jwa

_ [ s g ey,
[ @)

—a 2
Consequently, (Ef)(z) = (f(z) + f(—x))/2. Now, if we take u(z) = cosz + sinz,
then the x-multiplication operator T,,: L?*(X) — L?(%) has the form

(Tuf)(z) = (cosx + ;sinx)f(x) + ;sinxf(—x).

Direct computation shows that (T} f)(z) = (cosz +sinz/2) f(z) —sinz/2f(—z) and
|E(u)| > cos 1. Therefore, T, is a Fredholm but not a normal operator. O
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