LAMBERT MULTIPLIERS BETWEEN L^p SPACES

M. R. JABBARZADEH and S. KHALIL SARBAZ, Tabriz

(Received June 26, 2008)

Abstract. In this paper Lambert multipliers acting between L^p spaces are characterized by using some properties of conditional expectation operator. Also, Fredholmness of corresponding bounded operators is investigated.

Keywords: conditional expectation, multipliers, multiplication operators, Fredholm operator

MSC 2010: 47B20, 47B38

1. Introduction and preliminaries

Let $L(X, \Sigma, \mu)$ be a σ -finite measure space. For any complete σ -finite sub-algebra $\mathcal{A} \subseteq \Sigma$ with $1 \leqslant p \leqslant \infty$, the L^p -space $L^p(X, \mathcal{A}, \mu | \mathcal{A})$ is abbreviated by $L^p(\mathcal{A})$, and its norm is denoted by $\|\cdot\|_p$. We view $L^p(\mathcal{A})$ as a Banach sub-space of $L^p(\Sigma)$. The support of a measurable function f is defined by $\sigma(f) = \{x \in X : f(x) \neq 0\}$. All comparisons between two functions or two sets are to be interpreted as holding up to a μ -null set.

To examine the weighted composition operators efficiently, Alan Lambert in [9] associated with each transformation T the so-called conditional expectation operator $E(\cdot|\mathcal{A}) = E(\cdot)$ which is defined for each non-negative measurable function f or for each $f \in L^p(\Sigma)$, and is uniquely determined by the conditions

- (i) E(f) is \mathcal{A} -measurable and
- (ii) if A is any A-measurable set for which $\int_A f d\mu$ converges then

$$\int_A f \, \mathrm{d}\mu = \int_A E(f) \, \mathrm{d}\mu.$$

This research is supported by a grant from Tabriz University.

This operator will play a major role in our work, and we list here some of its useful properties:

- If g is A-measurable then E(fg) = E(f)g.
- $|E(f)|^p \leqslant E(|f|^p)$.
- $||E(f)||_p \leq ||f||_p$.
- If $f \ge 0$ then $E(f) \ge 0$; if f > 0 then E(f) > 0.
- $E(|f|^2) = |E(f)|^2$ if and only if $f \in L^p(\mathcal{A})$.

As an operator on $L^p(\Sigma)$, $E(\cdot)$ is contractive idempotent and $E(L^p(\Sigma)) = L^p(\mathcal{A})$. A real-valued Σ -measurable function f is said to be conditionable with respect to \mathcal{A} if $\mu(\{x \in X : E(f^+)(x) = E(f^-)(x) = \infty\}) = 0$. In this case $E(f) := E(f^+) - E(f^-)$. If f is complex-valued, then f is conditionable if both the real and imaginary parts of f are conditionable and their respective expectations are not both infinite on the same set of positive measure. In this case, $E(f) := E(\operatorname{Re} f) + iE(\operatorname{Im} f)$ (see [4]). We denote the linear space of all conditionable Σ -measurable functions on X by $L^0(\Sigma)$. For f and g in $L^0(\Sigma)$, we define $f \star g = fE(g) + gE(f) - E(f)E(g)$. Let $1 \leqslant p$, $q \leqslant \infty$. A measurable function $u \in L^0(\Sigma)$ for which $u \star f \in L^q(\Sigma)$ for each $f \in L^p(\Sigma)$ is called a Lambert multiplier. In other words, $u \in L^0(\Sigma)$ is a Lambert multiplier if and only if the corresponding \star -multiplication operator $T_u \colon L^p(\Sigma) \to L^q(\Sigma)$ defined as $T_u f = u \star f$ is bounded. Note that if u is a \mathcal{A} -measurable function or $\mathcal{A} = \Sigma$, then $u \in K_p^*$ if and only if the multiplication operator $M_u \colon L^p(\Sigma) \to L^q(\Sigma)$ is bounded.

In the next section, Lambert multipliers acting between two different $L^p(\Sigma)$ spaces are characterized by using some properties of the conditional expectation operator. In Section 3, Fredholmness of the corresponding \star -multiplication operators will be investigated.

2. Characterization of Lambert multipliers

Let $1 \leq p, q \leq \infty$. Define $K_{p,q}^{\star}$, the set of all Lambert multipliers from $L^{p}(\Sigma)$ into $L^{q}(\Sigma)$, as follows:

$$K_{p,q}^{\star} = \{ u \in L^0(\Sigma) \colon u \star L^p(\Sigma) \subseteq L^q(\Sigma) \}.$$

 $K_{p,q}^{\star}$ is a vector subspace of $L^{0}(\Sigma)$. Put $K_{p,p}^{\star} = K_{p}^{\star}$. In the following theorem we characterize the members of $K_{p,q}^{\star}$ in the case $1 \leq p = q < \infty$.

Theorem 2.1. Suppose $1 \leq p < \infty$ and $u \in L^0(\Sigma)$. Then $u \in K_p^*$ if and only if $E(|u|^p) \in L^\infty(\mathcal{A})$.

Proof. Let $E(|u|^p) \in L^{\infty}(\mathcal{A})$ and take $f \in L^p(\Sigma)$. Since $|E(u)|^p \leqslant E(|u|^p)$ a.e., we have

$$||E(u)f||_p^p = \int_X |E(u)f|^p d\mu \le \int_X E(|u|^p)|f|^p d\mu \le ||E(|u|^p)||_\infty ||f||_p^p$$

Hence $||E(u)f||_p \leq ||E(|u|^p)||_{\infty}^{1/p}||f||_p$. A similar argument, using the fact that E(fE(g)) = E(f)E(g), reveals that we also have

$$||E(u)E(f)||_p^p = ||uE(f)||_p^p = \int_X |uE(f)|^p \, \mathrm{d}\mu \leqslant \int_X |u|^p E(|f|^p) \, \mathrm{d}\mu$$
$$= \int_X E(|u|^p)E(|f|^p) \, \mathrm{d}\mu \leqslant ||E(|u|^p)||_\infty \int_X |f|^p = ||E(|u|^p)||_\infty ||f||_p^p.$$

Thus $||E(u)E(f)||_p = ||uE(f)||_p \leqslant ||E(|u|^p)||_{\infty}^{1/p} ||f||_p$. Accordingly, we get that

$$||u \star f||_p \le ||E(u)f||_p + ||uE(f)||_p + ||E(u)E(f)||_p \le 3||E(|u|^p)||_{\infty}^{1/p} ||f||_p.$$

It follows that $u \star f \in L^p(\Sigma)$ and hence $u \in K_p^*$.

Now, suppose only that $u \in K_p^*$. An easy consequence of the closed graph theorem and the result guaranteeing a pointwise convergent subsequence for each $L^p(\Sigma)$ convergent sequence ensures that the operator $T_u \colon L^p(\Sigma) \to L^p(\Sigma)$ given by $T_u f = u \star f$ is bounded. Define a linear functional φ on $L^1(A)$ by

$$\varphi(f) = \int_X E(|u|^p) f \,\mathrm{d}\mu, \quad f \in L^1(\mathcal{A}).$$

We shall show that φ is bounded. To this end, since for each $f \in L^1(\mathcal{A})$, $E(|f|^{1/p}) = |f|^{1/p} \in L^p(\mathcal{A})$, we have

$$|\varphi(f)| \leqslant \int_X E(|u|^p)|f| \, \mathrm{d}\mu = \int_X (E(|u||f|^{1/p})^p \, \mathrm{d}\mu$$

$$= \int_X (|u||f|^{1/p})^p \, \mathrm{d}\mu = ||T_u|f|^{1/p}||_p^p$$

$$\leqslant ||T_u||^p |||f|^{1/p}||_p^p = ||T_u||^p ||f||_1.$$

Thus, φ is a bounded linear functional on $L^1(\mathcal{A})$ and $\|\varphi\| \leq \|T_u\|^p$. By the Riesz representation theorem, there exists a unique function $g \in L^{\infty}(\mathcal{A})$ such that

$$\varphi(f) = \int_X gf \,\mathrm{d}\mu, \quad f \in L^1(\mathcal{A}).$$

Therefore, we have $g = E(|u|^p)$ a.e. on X and hence $E(|u|^p) \in L^{\infty}(\mathcal{A})$.

Let $\Im := \{T_u : u \in K_p^*\}$ and let \Im' be the commutant of \Im in the algebra of all bounded linear operators. Still proceeding as in the proof of Theorem 6.6 given in [2] and Theorem 4.1 given in [6], one establishes that $\Im = \Im' = \Im''$ (see also [3]). Thus \Im is maximal abelian and hence it is norm closed.

For $u \in K_p^*$ define $||u||_{K_p^*} = ||E(|u|^p)||_{\infty}^{1/p}$. Then precisely the same calculation as that shown in the proof of Theorem 2.1 yields that

$$||u \star f||_p \le 3(||E(|u|^p)||_{\infty}^{1/p}||f||_p) < \infty, \quad f \in L^p(\Sigma),$$

and

$$\int_X E(|u|^p)|f| \, \mathrm{d}\mu \leqslant ||T_u||^p ||f||_1, \quad f \in L^1(\mathcal{A}).$$

It follows that

$$||T_u|| \leqslant 3||E(|u|^p)||_{\infty}^{1/p}$$

and

(2.2)
$$||E(|u|^p)||_{\infty} = \sup_{\|f\|_1 \le 1} \int_X E(|u|^p)|f| \, \mathrm{d}\mu \le ||T_u||^p.$$

It follows from (2.1) and (2.2) that

$$||u||_{K_p^*} \leqslant ||T_u|| \leqslant 3||u||_{K_p^*}.$$

Consequently, $\|\cdot\|_{K_p^*}$ and the operator norm $\|\cdot\|$ are equivalent norms on \Im . Also, since \Im is norm closed, it follows from (2.3) that K_p^* is a Banach space with the norm $\|\cdot\|_{K_p^*}$.

Let $1 \leqslant q . Our second task is the description of the members of <math>K_{p,q}^{\star}$ in terms of the conditional expectation induced by \mathcal{A} .

Theorem 2.2. Suppose $1 \leq q and <math>u \in L^0(\Sigma)$. Then $u \in K_{p,q}^*$ if and only if $(E(|u|^q))^{1/q} \in L^r(\mathcal{A})$, where 1/p + 1/r = 1/q.

Proof. Suppose $(E(|u|^q))^{1/q} \in L^r(\mathcal{A})$. Let $f \in L^p(\Sigma)$. Using the same method as in the proof of Theorem 2.1, we have

$$||E(u)f||_q^q \leqslant \int_X E(|u|^q)|f|^q \,\mathrm{d}\mu = ||E(|u|^q)|^{1/q} f||_q^q \leqslant ||(E(|u|^q))^{1/q}||_r^q ||f||_p^q.$$

By similar computation we obtain

$$||uE(f)||_q^q \leqslant \int_X |u|^q E(|f|^q) \, \mathrm{d}\mu = \int_X E(|u|^q) E(|f|^q) \, \mathrm{d}\mu$$

$$\leqslant ||(E(|u|^q))^{1/q}||_r^q ||E(|f|^q)||_{p/q} \leqslant ||(E(|u|^q))^{1/q}||_r^q ||f||_p^q$$

and

$$||E(u)E(f)||_q^q \leqslant \int_X E(|u|^q)E(|f|^q) \,\mathrm{d}\mu$$

$$\leqslant ||(E(|u|^q))^{1/q}||_r^q ||(E(|f|^q))^{1/q}||_p^q \leqslant ||(E(|u|^q))^{1/q}||_r^q ||f||_p^q.$$

Therefore we have $||T_u f|| \leq 3||(E(|u|^q))^{1/q}||_r||f||_p$ for all $f \in L^p(\Sigma)$. Consequently, T_u is bounded and hence $u \in K_{p,q}^*$.

Now, suppose only that $u \in K_{p,q}^{\star}$. Define $\varphi \colon L^{p/q}(\mathcal{A}) \to \mathbb{C}$ given by $\varphi(f) = \int_X E(|u|^q) f \, \mathrm{d}\mu$. Clearly φ is a linear functional. We shall show that φ is bounded. For each $f \in L^{p/q}(\mathcal{A})$ we get that

$$|\varphi(f)| \le \int_X E(|u|^q)|f| d\mu = \int_X E((|u||f|^{1/q})^q) d\mu = ||T_u|f|^{1/q}||_q^q \le ||T_u||^q ||f||_{p/q}.$$

It follows that $\|\varphi\| \leq \|T_u\|^q$ and hence φ is bounded. By the Riesz representation theorem, there exists a unique $g \in L^{r/q}(\mathcal{A})$ such that $\varphi(f) = \int_X gf \, \mathrm{d}\mu$ for each $f \in L^{p/q}(\mathcal{A})$. Hence $g = E(|u|^q)$ a.e. on X. That is, $(E|u|^q)^{1/q} \in L^r(\mathcal{A})$ and hence the proof is complete.

Recall that an \mathcal{A} -atom of the measure μ is an element $A \in \mathcal{A}$ with $\mu(A) > 0$ such that for each $F \in \Sigma$, if $F \subseteq A$ then either $\mu(F) = 0$ or $\mu(F) = \mu(A)$. A measure with no atoms is called non-atomic. It is a well-known fact that every σ -finite measure space $(X, \mathcal{A}, \mu|_{\mathcal{A}})$ can be partitioned uniquely as

$$X = \left(\bigcup_{n \in \mathbb{N}} A_n\right) \cup B,$$

where $\{A_n\}_{n\in\mathbb{N}}$ is a countable collection of pairwise disjoint A-atoms and B, being disjoint from each A_n , is non-atomic (see [13]).

In the following theorem we characterize the members of $K_{p,q}^{\star}$ in the case $1 \leq p < q < \infty$.

Theorem 2.3. Suppose $1 \leqslant p < q < \infty$ and $u \in L^0(\Sigma)$. Then $u \in K_{p,q}^*$ if and only if

(i) $E(|u|^q) = 0$ a.e. on B;

(ii)
$$M := \sup_{n \in \mathbb{N}} \frac{E(|u|^q)(A_n)}{\mu(A_n)^{q/r}} < \infty$$
, where $\frac{1}{q} + \frac{1}{r} = \frac{1}{p}$.

Proof. Suppose that both (i) and (ii) hold. Then, for each $f \in L^p(\Sigma)$ with $||f||_p \leq 1$ we have

$$||E(u)f||_q^q \leqslant \int_X E(|u|^q)|f|^q d\mu = \left(\int_B + \int_{\bigcup A_n}\right) (E(|u|^q)|f|^q) d\mu$$

$$= \sum_{n \in \mathbb{N}} \int_{A_n} E(|u|^q)|f|^q d\mu = \sum_{n \in \mathbb{N}} E(|u|^q)(A_n)|f(A_n)|^q \mu(A_n)$$

$$= \sum_{n \in \mathbb{N}} \frac{(E(|u|^q)(A_n)}{\mu(A_n)^{q/r}} (|f(A_n)|^p \mu(A_n))^{q/p} \leqslant M ||f||_p^q \leqslant M,$$

where we have used the fact that $E(|u|^q)$ is a constant \mathcal{A} -measurable function on each A_n (see [5, Theorem I.7.3]). Consequently, $||E(u)f||_q \leq M^{1/q}$. Since the conditional expectation operator E is a contraction, similar computation shows that $||uE(f)||_q \leq M^{1/q}$ and $||E(u)E(f)||_q \leq M^{1/q}$. It follows that $||T_u|| \leq 3M^{1/q} < \infty$ and hence $u \in K_{p,q}^*$.

Conversely, suppose that $u \in K_{p,q}^{\star}$. First we show that $E(|u|^q) = 0$ a.e. on B. Assuming the contrary, we can find some $\delta > 0$ such that $\mu(\{x \in B : E(|u|^q)(x) \ge \delta\}) > 0$. Put $F = \{x \in B : E(|u|^q)(x) \ge \delta\}$. Since $(X, \mathcal{A}, \mu|_{\mathcal{A}})$ is a σ -finite measure space, we can suppose that $\mu(F) < \infty$. Also, since F is non-atomic so for all $n \in \mathbb{N}$ there exists $F_n \subseteq F$ such that $\mu(F_n) = \mu(F)/2^n$. For any $n \in \mathbb{N}$, put $f_n = 1/((\mu(F_n))^{1/p})\chi_{F_n}$. It is clear that $f_n \in L^p(\mathcal{A})$ and $||f_n||_p = 1$. Since q/p > 1, we have

$$\infty > \|T_u\|^q \geqslant \|T_u f_n\|_q^q = \|u \star f_n\|_q^q = \|u f_n\|_q^q$$

$$= \int_X |u f_n|^q \, \mathrm{d}\mu = 1/(\mu(F_n)^{q/p}) \int_{F_n} |u|^q \, \mathrm{d}\mu = 1/(\mu(F_n)^{q/p}) \int_{F_n} E(|u|^q) \, \mathrm{d}\mu$$

$$\geqslant \delta \mu(F_n)/(\mu(F_n)^{q/p}) = \delta \left(\frac{\mu(F)}{2^n}\right)^{1-q/p} = \delta \left(\frac{2^n}{\mu(F)}\right)^{q/p-1} \to \infty \quad \text{as } n \to \infty,$$

which is a contradiction. Hence we conclude that $\mu(\{x \in B : E(|u|^q)(x) \neq 0\}) = 0$. Next, we examine the supremum in (ii). For any $n \in \mathbb{N}$, put $f_n = 1/(\mu(A_n)^{1/p})\chi_{A_n}$. Then it is clear that $f_n \in L^p(\mathcal{A})$ and $||f_n||_p = 1$. Hence we have

$$\infty > ||T_u||^q \geqslant ||T_u f_n||_q^q = \frac{1}{\mu(A_n)^{q/p}} \int_{A_n} E(|u|^q) \, \mathrm{d}\mu$$
$$= \frac{1}{\mu(A_n)^{q/p}} E(|u|^q) (A_n) \mu(A_n) = \frac{E(|u|^q) (A_n)}{\mu(A_n)^{q/r}}.$$

Since this holds for any $n \in \mathbb{N}$, we get that $M < \infty$.

Theorem 2.4.

- (i) $u \in K_{\infty}^{\star}$ if and only if $u \in L^{\infty}(\Sigma)$.
- (ii) If $1 \leqslant q < \infty$, then $u \in K_{\infty,q}^{\star}$ if and only if $|u| \in L^{q}(\Sigma)$.
- (iii) If $1 \leq p < \infty$, then $u \in K_{p,\infty}^{\star}$ if and only if u = 0 a.e. on B and

$$\sup_{n\in\mathbb{N}}(|u|^p(A_n)/\mu(A_n))<\infty.$$

Proof. (i) Suppose that for each $f \in L^{\infty}(\Sigma)$, $u \star f \in L^{\infty}(\Sigma)$. Since the conditional expectation operator E is a contraction, we obtain

$$||u||_{\infty} = ||u\chi_X||_{\infty} = ||T_u\chi_X||_{\infty} \leqslant ||T_u|| < \infty.$$

Conversely, suppose that $u \in L^{\infty}(\Sigma)$. Then for each $f \in L^{\infty}(\Sigma)$ we have $||T_u f||_{\infty} \le 3||u||_{\infty}||f||_{\infty}$. Thus $||T_u|| \le 3||u||_{\infty}$ and hence $u \in K_{\infty}^{\star}$. Consequently, we get (i).

(ii) Let $|u| \in L^q(\Sigma)$ and $f \in L^{\infty}(\Sigma)$. Then we have

$$||uE(f)||_q^q = \int_X |uE(f)|^q \, \mathrm{d}\mu \le ||f||_\infty^q \int_X |u|^q \, \mathrm{d}\mu = ||f||_\infty^q ||u^q||_q^q.$$

Hence, $\|uE(f)\|_q \leq \|f\|_{\infty} \|u\|_q$. Similarly, we get $\|uE(f)\|_q \leq \|f\|_{\infty} \|u\|_q$ and $\|E(u)E(f)\|_q \leq \|f\|_{\infty} \|u\|_q$. Thus $\|T_u\| \leq 3\|u\|_q$ and hence $u \in K_{\infty,q}^{\star}$. Conversely, suppose that $T_u(L^{\infty}(\Sigma)) \subseteq L^q(\Sigma)$. Since $T_u\chi_X \in L^q(\Sigma)$, it follows that

$$\infty > \|T_u \chi_X\|_q^q = \int_X |T_u \chi_X|^q d\mu = \int_X |u|^q d\mu = \|u\|_q^q.$$

Thus we get (ii).

(iii) Suppose that u=0 a.e. on B and $M:=\sup_{n\in\mathbb{N}}(|u|^p(A_n)/\mu(A_n))<\infty$. Then for each $f\in L^p(\Sigma)$ with $\|f\|_p\leqslant 1$ we have

$$||uE(f)||_{\infty}^{p} = \inf\{b \ge 0 \colon |uE(f)|^{p} \le b\}$$

$$= \inf\{b \ge 0 \colon |u|^{p}|E(f)|^{p} \le b\}$$

$$= \inf\{b \ge 0 \colon |u|^{p}(A_{n})|E(f)(A_{n})|^{p} \le b, \ n \in \mathbb{N}\}$$

$$\le \inf\{b \ge 0 \colon |u|^{p}(A_{n})(E|f|^{p})(A_{n}) \le b, \ n \in \mathbb{N}\}$$

$$\le \sup_{n \in \mathbb{N}} \frac{|u|^{p}(A_{n})}{\mu(A_{n})} = M < \infty.$$

Consequently, $||uE(f)||_{\infty} \leq M^{1/p}$. Similarly, since

$$|u(A_n)|^p = \frac{1}{\mu(A_n)} \int_{A_n} |u|^p d\mu = \frac{1}{\mu(A_n)} \int_{A_n} E(|u|^p) d\mu = (E(|u|^p))(A_n),$$

we get that $||fE(u)||_{\infty} \leqslant M^{1/p}$ and $||E(u)E(f)||_{\infty} \leqslant M^{1/p}$. Therefore $||T_u|| \leqslant 3M^{1/p}$ and hence $u \in K_{p,\infty}^*$.

Conversely, suppose that $u \in K_{p,\infty}^*$. First we show that u = 0 a.e. on B. Assuming the contrary, we can find $\delta > 0$ such that $\mu(\{x \in X : |u(x)| \ge \delta\}) > 0$. Put $F = \{x \in X : |u(x)| \ge \delta\}$. Since F is non atomic, choose a number a such that $0 < a < \mu(F)$ and a sequence $F_1, F_2, \ldots \in A$ of disjoint subsets of F such that $\mu(F_k) = a/2^{pk}$ for all $k \in \mathbb{N}$. We define a function f_0 on X by

$$f_0 = \sum_{k=1}^{\infty} 2^{k/2p} \chi_{F_k}.$$

It is easy to show that $f_0 \in L^p(\mathcal{A})$, but that it is not in $L^{\infty}(\mathcal{A})$. It follows that

$$\infty = \delta^{1/p} \|f_0\|_{L^{\infty}(\mathcal{A})} = \|\delta^{1/p} f_0\|_{L^{\infty}(\mathcal{A})} \leqslant \|T_u f_0\|_{L^{\infty}(\mathcal{A})} \leqslant \|T_u\| \|f_0\|_{L^p(\mathcal{A})} < \infty,$$

which is a contradiction. Hence $\mu(\{x \in X \colon |u(x)| \neq 0\}) = 0$, in other words, u = 0 a.e. on B.

Now, for any $n \in \mathbb{N}$, put $f_n = 1/(\mu(A_n)^{1/p})\chi_{A_n}$. It is clear that for all $n \in \mathbb{N}$, $f_n \in L^p(\mathcal{A})$ and $||f_n||_p = 1$. Then we obtain

$$\infty > ||T_u||^p \geqslant ||T_u f_n||_{\infty}^p = ||u f_n||_{\infty}^p \geqslant \frac{|u|^p (A_n)}{\mu(A_n)}.$$

Therefore $M < \infty$. This complete the proof.

3. Fredholmness of ★-multiplication operators

Proposition 3.1. Let $1 \leq p < \infty$, 1/p + 1/q = 1, and $u \in K_p^*$. Then, for each $g \in L^p(\Sigma)$, $f \in L^q(\Sigma)$ and $n \in \mathbb{N}$ we have

- (i) $T_u^n g = (E(u))^{n-1} (E(u)g + nuE(g) nE(u)E(g)),$
- (ii) $T_u^{*n} f = (\overline{E(u)})^{n-1} \{ nE(\overline{u}f) + \overline{E(u)}(f nE(f)) \}.$

Proof. (i) is trivial.

(ii) We will prove the result by induction. Since E(g)f = fE(g) for each $g \in L^p(\Sigma)$ and $f \in L^q(\Sigma)$, we have

$$(g, T_u^* f) = (T_u g, f) = \int (uE(g) + gE(u) - E(g)E(u))\overline{f} \,d\mu$$

$$= \int (gE(u\overline{f}) + E(u)g\overline{f} - gE(u)E(\overline{f})) \,d\mu$$

$$= \int g\left(\overline{E(\overline{u}f) + \overline{E(u)}f - \overline{E(u)}E(f)}\right) \,d\mu$$

$$= \left(g, E(\overline{u}f) + \overline{E(u)}f - \overline{E(u)}E(f)\right),$$

which shows that the result holds for n = 1. Assume now that it holds for n = k and calculate

$$\begin{split} T_u^{*(k+1)}f &= T_u^*\big((\overline{E(u)})^{k-1}\big\{kE(\bar{u}f) + \overline{E(u)}(f-kE(f))\big\}\big) \\ &= (\overline{E(u)})^k\big\{(k+1)E(\bar{u}f) - kE(f)\overline{E(u)}\big\} \\ &+ (\overline{E(u)})^k\big\{kE(\bar{u}f) + \overline{E(u)}(f-kE(f))\big\} \\ &- (\overline{E(u)})^k\big\{kE(\bar{u}f) - (k-1)\overline{E(u)}E(f)\big\} \\ &= (\overline{E(u)})^k\big\{(k+1)E(\bar{u}f) + \overline{E(u)}\big(f-(k+1)E(f)\big)\big\}. \end{split}$$

Thus the proposition is proved.

In what follows we use the symbols $\mathcal{N}(T_u)$ and $\mathcal{R}(T_u)$ to denote the kernel and the range of T_u , respectively. We recall that T_u is said to be a Fredholm operator if $\mathcal{R}(T_u)$ is closed, $\dim \mathcal{N}(T_u) < \infty$, and $\operatorname{codim} \mathcal{R}(T_u) < \infty$.

The next result gives a necessary and sufficient condition for a \star -multiplication operator T_u on $L^p(\Sigma)$ to be a Fredholm operator, thereby generalizing the result in [11] for multiplication operators.

Theorem 3.2. Suppose that $u \in K_p^*$ and \mathcal{A} is a non-atomic measure space. Then the operator T_u is Fredholm on $L^p(\Sigma)$ $(1 \leq p < \infty)$ if and only if $|E(u)| \geq \delta$ almost everywhere on X for some $\delta > 0$.

Proof. Suppose that T_u is a Fredholm operator. We first claim that T_u is onto. Suppose the contrary. Then there exists $f_0 \in L^p(\Sigma) \setminus \mathcal{R}(T_u)$. Since $\mathcal{R}(T_u)$ is closed, there exists $g_0 \in L^q(\Sigma)$, the dual space of $L^p(\Sigma)$, such that

(3.1)
$$(g_0, f_0) = \int \bar{f}_0 g_0 \, \mathrm{d}\mu = 1$$

and

(3.2)
$$(g_0, T_u f) = \int g_0 \overline{T_u f} \, \mathrm{d}\mu = 0, \quad f \in L^p(\Sigma).$$

Now (3.1) yields that the set $B_r = \{x \in X : |E(\bar{f}_0 g_0)(x)| \ge r\}$ has positive measure for some r > 0. As \mathcal{A} is non-atomic, we can choose a sequence $\{A_n\}$ of subsets of B_r with $0 < \mu(A_n) < \infty$ and $A_m \cap A_n = \emptyset$ for $m \ne n$. Put $g_n = \chi_{A_n} g_0$. Clearly, $g_n \in L^q(\Sigma)$ and is nonzero, because

$$\int_{X} |\bar{f}_{0}g_{n}| \, \mathrm{d}\mu \geqslant \int_{A_{n}} |\bar{f}_{0}g_{n}| \, \mathrm{d}\mu = \int_{A_{n}} E(|\bar{f}_{0}g_{0}|) \geqslant \int_{A_{n}} |E(\bar{f}_{0}g_{0})| \, \mathrm{d}\mu \geqslant r\mu(A_{n}) > 0$$

for each n. Also, for each $f \in L^p(\Sigma)$, $\chi_{A_n} f \in L^p(\Sigma)$ and so (3.2) implies that

$$(T_u^*g_n, f) = (g_n, T_u f) = \int_{A_n} g_0 \overline{T_u f} d\mu = \int_X g_0 \overline{T_u(\chi_{A_n} f)} d\mu = (g_0, T_u(\chi_{A_n} f)),$$

which implies that $T_u^*g_n=0$ and so $g_n\in\mathcal{N}(T_u^*)$. Since all the sets in $\{A_n\}$ are disjoint, the sequence $\{g_n\}$ forms a linearly independent subset of $\mathcal{N}(T_u^*)$. This contradicts the fact that $\dim\mathcal{N}(T^*u)=\operatorname{codim}\mathcal{R}(T_u)<\infty$. Hence T_u is onto. Let $Z(E(u)):=\sigma(E(u))^c=\{x\in X\colon E(u)(x)=0\}$. Then $\mu(Z(E(u)))=0$. Since $\mu(Z(E(u)))>0$, there is an $F\subseteq Z(E(u))$ with $0<\mu(F)<\infty$. If $\chi_F\in\mathcal{R}(T_u)$, then there exists $f\in L^p(\Sigma)$ such that $T_uf=\chi_F$. Then

$$\mu(F) = \int_X \chi_F d\mu = \int_F T_u f d\mu = \int_F E(T_u f) d\mu = \int_F E(u) E(f) d\mu = 0,$$

and this is a contradiction. So $\chi_F \in L^p(\Sigma) \setminus \mathcal{R}(T_u)$, which contradicts the fact that T_u is onto. For each n = 1, 2, ..., let

$$H_n = \left\{ x \in X : \ \frac{\|E(|u|^p)\|_{\infty}}{(n+1)^2} < |E(u)|^p(x) \leqslant \frac{\|E(|u|^p)\|_{\infty}}{n^2} \right\}$$

and $H = \{n \in \mathbb{N} : \mu(H_n) > 0\}$. Then the H_n 's are pairwise disjoint, $X = \bigcup_{n=1}^{\infty} H_n$ and $\mu(H_n) < \infty$ for each $n \ge 1$. Take

$$f(x) = \begin{cases} \frac{|E(u)|}{\mu(H_n)^{1/p}}, & x \in H_n, \ n \in H, \\ 0 & \text{otherwise.} \end{cases}$$

Then

$$\int_X |f|^p d\mu = \sum_{n \in H} \int_{H_n} \frac{|E(u)|^p}{\mu(H_n)} d\mu \leqslant \sum_{n \in H} \frac{\|E(|u|^p)\|_{\infty}}{n^2} < \infty.$$

Therefore $f \in L^p(\mathcal{A})$ and so there exist $g \in L^p(\Sigma)$ such that $T_ug = f$. Hence $E(u)E(g) = E(T_ug) = f$. Since E(g) = f/E(u) off Z(E(u)) and $\mu(Z(E(u))) = 0$, it follows that

$$\int_{X} |g|^{p} d\mu = \int_{X} E(|g|^{p}) d\mu \geqslant \int_{X} |E(g)|^{p} d\mu
= \int_{X} \frac{|f|^{p}}{|E(u)|^{p}} d\mu = \sum_{n \in H} \int_{H_{n}} \frac{1}{\mu(H_{n})} d\mu = \sum_{n \in H} 1.$$

This implies that H must be a finite set. So there is an n_0 such that $n \ge n_0$ implies $\mu(H_n) = 0$. Together with $\mu(Z(E(u))) = 0$, we obtain

$$\mu\left(\left\{x \in X \colon |E(u)|^p(x) \leqslant \frac{\|E(|u|^p)\|_{\infty}}{n_0^2}\right\}\right) = \mu\left(\bigcup_{n=n_0}^{\infty} H_n \cup Z(E(u))\right) = 0,$$

that is $|E(u)| \ge ((|E(|u|^p)||_{\infty})/n_0^2)^{1/p} := \delta$ almost everywhere on X.

Conversely, suppose that $|E(u)| \ge \delta$ a.e. on X for some $\delta > 0$. Let $f \in \mathcal{N}(T_u^*)$. We have $T_u^* f = E(\bar{u}f) + \overline{E(u)}(f - E(f)) = 0$ and so $E(\bar{u}f) = E(T_u^*f) = 0$. Thus

$$\int_X \bar{u}f \, \mathrm{d}\mu = \int_X E(\bar{u}f) \, \mathrm{d}\mu = 0,$$

which implies that

$$\mathcal{N}(T_u^*) \subseteq \left\{ f \in L^p(\Sigma) \colon \int_X \bar{u} f \, \mathrm{d}\mu = 0 \right\} \subseteq L^p(Z(u), \Sigma_{Z(u)}, \mu|_{Z(u)}).$$

Also, since $E(|u|) \ge |E(u)| \ge \delta$ and X is a σ -finite measure space, we have $|u| \ge \delta$ and hence $\mu(Z(u)) = 0$. It follows that

$$\operatorname{codim} \mathcal{R}(T_u) = \dim \mathcal{N}(T_u^*) = 0.$$

Now, we shall show that T_u has closed range. Let $\{T_u f_n\}$ be an arbitrary sequence in $\mathcal{R}(T_u)$ and let $||T_u f_n - g||_p \to 0$ for some $g \in L^p(\Sigma)$. Hence we have $E(u)E(f_n) = E(T_u f_n) \stackrel{L^p}{\to} E(g)$. Since by hypothesis $|E(u)| \ge \delta$, it follows that $E(g)/E(u) \in L^p(\mathcal{A})$ and $E(f_n) \stackrel{L^p}{\to} E(g)/E(u)$. Consequently,

$$f_n \stackrel{L^p}{\to} \frac{1}{E(u)} \left\{ g + E(g) - \frac{uE(g)}{E(u)} \right\} := f$$

and hence $T_u f_n \xrightarrow{L^p} T_u f$. Therefore $g = T_u f$, which implies that T_u has closed range. Thus the theorem is proved.

Now, we consider the particular case when p=2. An operator T on a Hilbert space H is normal if $TT^*=T^*T$, and T is self-adjoint if $T=T^*$.

Proposition 3.3. Let $u \in K_2^*$. Then the following claims are true:

- (i) T_u is a normal operator if and only if $u \in L^{\infty}(A)$.
- (ii) T_u is a self-adjoint operator if and only if $u \in L^{\infty}(A)$ is real valued.

Proof. (i) Assume T_u is normal. Then for each $f \in L^2(\Sigma)$ we have $E(T_u T_u^* f) = E(u)E(\bar{u}f)$ and $E(T_u^* T_u f) = E(f)E(|u|^2) + E(u)E(\bar{u}f) - E(\bar{u})E(u)E(f)$. Therefore we obtain that $E(|u|^2) = |E(u)|^2$. Consequently $u \in L^{\infty}(\mathcal{A})$. Conversely, suppose that $u \in L^{\infty}(\mathcal{A})$ and take $f \in L^2(\Sigma)$. Then $T_u^* T_u f = T_u T_u^* f = |u|^2 f$, and hence T_u is normal.

(ii) follows from (i).
$$\Box$$

Example 3.4. Let X = [-1, 1], $d\mu = dx$, let Σ be the Lebesgue sets, and \mathcal{A} the σ -subalgebra generated by the sets symmetric about the origin. Put $0 < a \le 1$. Then for each $f \in L^2(\Sigma)$ we have

$$\int_{-a}^{a} E(f)(x) dx = \int_{-a}^{a} f(x) dx$$

$$= \int_{-a}^{a} \left\{ \frac{f(x) + f(-x)}{2} + \frac{f(x) - f(-x)}{2} \right\} dx$$

$$= \int_{-a}^{a} \frac{f(x) + f(-x)}{2} dx.$$

Consequently, (Ef)(x) = (f(x) + f(-x))/2. Now, if we take $u(x) = \cos x + \sin x$, then the \star -multiplication operator $T_u: L^2(\Sigma) \to L^2(\Sigma)$ has the form

$$(T_u f)(x) = \left(\cos x + \frac{1}{2}\sin x\right) f(x) + \frac{1}{2}\sin x f(-x).$$

Direct computation shows that $(T_u^*f)(x) = (\cos x + \sin x/2)f(x) - \sin x/2f(-x)$ and $|E(u)| \ge \cos 1$. Therefore, T_u is a Fredholm but not a normal operator.

References

- [1] J. Campbell and J. Jamison: On some classes of weighted composition operators. Glasg. Math. J. 32 (1990), 87–94.
- [2] J. B. Conway: A course in Functional Analysis, 2nd ed. Springer-Verlag, New York, 1990.
- [3] B. de Pagter and W. J. Ricker: Bicommutants of algebras of multiplication operators. Proc. London Math. Soc. 72 (1996), 458–480.
- [4] J. Herron: Weighted conditional expectation operators on L^p spaces. UNC Charlotte Doctoral Dissertation.
- [5] S. Kantorovitz: Introduction to Modern Analysis. Oxford University Press, Oxford, 2003. zbl
- [6] A. Lambert and T. G. Lucas: Nagata's principle of idealization in relation to module homomorphisms and conditional expectations. Kyungpook Math. J. 40 (2000), 327–337. zbl

[7]	A.	Lambert:	L^p	multip	liers a	nd ne	$_{ m ested}$	sigma-a	lgebras	. Oper.	Theory	Adv.	Appl.	104	
	(19)	98), 147–	153.											2	zbl
[0]	4	T 1		D 1/	T.T. 7	L T	A -1	c		1 1	. 1 1	1	1 1. :1:	. , .	

- [8] A. Lambert and B. M. Weinstock: A class of operator algebras induced by probabilistic conditional expectations. Mich. Math. J. 40 (1993), 359–376.
- [9] A. Lambert: Hyponormal composition operators. Bull. London Math. Soc. 18 (1986), 395–400.
- [10] M. M. Rao: Conditional Measures and Applications. Marcel Dekker, New York, 1993.
- [11] H. Takagi: Fredholm weighted composition operators. Integral Equations Oper. Theory 16 (1993), 267–276.
- [12] H. Takagi and K. Yokouchi: Multiplication and composition operators between two L^p -spaces. Contemp. Math. 232 (1999), 321–338.
- [13] A. C. Zaanen: Integration, 2nd ed. North-Holland, Amsterdam, 1967.

Authors' addresses: M. R. Jabbarzadeh, S. Khalil Sarbaz, Faculty of Mathematical Sciences, University of Tabriz, P. O. Box 5166615648, Tabriz, Iran, e-mail: mjabbar @tabrizu.ac.ir, skhsarbaz@tabrizu.ac.ir.