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1. Introduction and preliminaries

Let L(X, Σ, µ) be a σ-finite measure space. For any complete σ-finite sub-algebra

A ⊆ Σ with 1 6 p 6 ∞, the Lp-space Lp(X,A, µ|A) is abbreviated by Lp(A), and

its norm is denoted by ‖ · ‖p. We view Lp(A) as a Banach sub-space of Lp(Σ). The

support of a measurable function f is defined by σ(f) = {x ∈ X : f(x) 6= 0}. All

comparisons between two functions or two sets are to be interpreted as holding up

to a µ-null set.

To examine the weighted composition operators efficiently, Alan Lambert in [9]

associated with each transformation T the so-called conditional expectation operator

E(·|A) = E(·) which is defined for each non-negative measurable function f or for

each f ∈ Lp(Σ), and is uniquely determined by the conditions

(i) E(f) is A-measurable and

(ii) if A is any A-measurable set for which
∫

A f dµ converges then

∫

A

f dµ =

∫

A

E(f) dµ.
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This operator will play a major role in our work, and we list here some of its useful

properties:

• If g is A-measurable then E(fg) = E(f)g.

• |E(f)|p 6 E(|f |p).

• ‖E(f)‖p 6 ‖f‖p.

• If f > 0 then E(f) > 0; if f > 0 then E(f) > 0.

• E(|f |2) = |E(f)|2 if and only if f ∈ Lp(A).

As an operator on Lp(Σ), E(·) is contractive idempotent and E(Lp(Σ)) = Lp(A).

A real-valuedΣ-measurable function f is said to be conditionable with respect to A if

µ({x ∈ X : E(f+)(x) = E(f−)(x) = ∞}) = 0. In this case E(f) := E(f+)−E(f−).

If f is complex-valued, then f is conditionable if both the real and imaginary parts

of f are conditionable and their respective expectations are not both infinite on the

same set of positive measure. In this case, E(f) := E(Re f)+ iE(Im f) (see [4]). We

denote the linear space of all conditionable Σ-measurable functions on X by L0(Σ).

For f and g in L0(Σ), we define f ⋆ g = fE(g) + gE(f) − E(f)E(g). Let 1 6 p,

q 6 ∞. A measurable function u ∈ L0(Σ) for which u⋆f ∈ Lq(Σ) for each f ∈ Lp(Σ)

is called a Lambert multiplier. In other words, u ∈ L0(Σ) is a Lambert multiplier if

and only if the corresponding ⋆-multiplication operator Tu : Lp(Σ) → Lq(Σ) defined

as Tuf = u⋆f is bounded. Note that if u is a A-measurable function or A = Σ, then

u ∈ K⋆
p if and only if the multiplication operator Mu : Lp(Σ) → Lq(Σ) is bounded.

In the next section, Lambert multipliers acting between two different Lp(Σ) spaces

are characterized by using some properties of the conditional expectation operator.

In Section 3, Fredholmness of the corresponding ⋆-multiplication operators will be

investigated.

2. Characterization of Lambert multipliers

Let 1 6 p, q 6 ∞. Define K⋆
p,q, the set of all Lambert multipliers from Lp(Σ)

into Lq(Σ), as follows:

K⋆
p,q = {u ∈ L0(Σ): u ⋆ Lp(Σ) ⊆ Lq(Σ)}.

K⋆
p,q is a vector subspace of L0(Σ). Put K⋆

p,p = K⋆
p . In the following theorem we

characterize the members of K⋆
p,q in the case 1 6 p = q < ∞.

Theorem 2.1. Suppose 1 6 p < ∞ and u ∈ L0(Σ). Then u ∈ K⋆
p if and only if

E(|u|p) ∈ L∞(A).
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P r o o f. Let E(|u|p) ∈ L∞(A) and take f ∈ Lp(Σ). Since |E(u)|p 6 E(|u|p)

a.e., we have

‖E(u)f‖p
p =

∫

X

|E(u)f |p dµ 6

∫

X

E(|u|p)|f |p dµ 6 ‖E(|u|p)‖∞‖f‖p
p.

Hence ‖E(u)f‖p 6 ‖E(|u|p)‖
1/p
∞ ‖f‖p. A similar argument, using the fact that

E(fE(g)) = E(f)E(g), reveals that we also have

‖E(u)E(f)‖p
p = ‖uE(f)‖p

p =

∫

X

|uE(f)|p dµ 6

∫

X

|u|pE(|f |p) dµ

=

∫

X

E(|u|p)E(|f |p) dµ 6 ‖E(|u|p)‖∞

∫

X

|f |p = ‖E(|u|p)‖∞‖f‖p
p.

Thus ‖E(u)E(f)‖p = ‖uE(f)‖p 6 ‖E(|u|p)‖
1/p
∞ ‖f‖p. Accordingly, we get that

‖u ⋆ f‖p 6 ‖E(u)f‖p + ‖uE(f)‖p + ‖E(u)E(f)‖p 6 3‖E(|u|p)‖1/p
∞ ‖f‖p.

It follows that u ⋆ f ∈ Lp(Σ) and hence u ∈ K⋆
p .

Now, suppose only that u ∈ K⋆
p . An easy consequence of the closed graph theorem

and the result guaranteeing a pointwise convergent subsequence for each Lp(Σ) con-

vergent sequence ensures that the operator Tu : Lp(Σ) → Lp(Σ) given by Tuf = u⋆f

is bounded. Define a linear functional ϕ on L1(A) by

ϕ(f) =

∫

X

E(|u|p)f dµ, f ∈ L1(A).

We shall show that ϕ is bounded. To this end, since for each f ∈ L1(A), E(|f |1/p) =

|f |1/p ∈ Lp(A), we have

|ϕ(f)| 6

∫

X

E(|u|p)|f | dµ =

∫

X

(E(|u||f |1/p)p dµ

=

∫

X

(|u||f |1/p)p dµ = ‖Tu|f |
1/p‖p

p

6 ‖Tu‖
p‖|f |1/p‖p

p = ‖Tu‖
p‖f‖1.

Thus, ϕ is a bounded linear functional on L1(A) and ‖ϕ‖ 6 ‖Tu‖p. By the Riesz

representation theorem, there exists a unique function g ∈ L∞(A) such that

ϕ(f) =

∫

X

gf dµ, f ∈ L1(A).

Therefore, we have g = E(|u|p) a.e. on X and hence E(|u|p) ∈ L∞(A). �
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Let ℑ := {Tu : u ∈ K⋆
p} and let ℑ

′ be the commutant of ℑ in the algebra of all

bounded linear operators. Still proceeding as in the proof of Theorem 6.6 given in [2]

and Theorem 4.1 given in [6], one establishes that ℑ = ℑ′ = ℑ′′ (see also [3]). Thus

ℑ is maximal abelian and hence it is norm closed.

For u ∈ K⋆
p define ‖u‖K⋆

p
= ‖E(|u|p)‖

1/p
∞ . Then precisely the same calculation as

that shown in the proof of Theorem 2.1 yields that

‖u ⋆ f‖p 6 3(‖E(|u|p)‖1/p
∞ ‖f‖p) < ∞, f ∈ Lp(Σ),

and ∫

X

E(|u|p)|f | dµ 6 ‖Tu‖
p‖f‖1, f ∈ L1(A).

It follows that

(2.1) ‖Tu‖ 6 3‖E(|u|p)‖1/p
∞

and

(2.2) ‖E(|u|p)‖∞ = sup
‖f‖161

∫

X

E(|u|p)|f | dµ 6 ‖Tu‖
p.

It follows from (2.1) and (2.2) that

(2.3) ‖u‖K⋆
p

6 ‖Tu‖ 6 3‖u‖K⋆
p
.

Consequently, ‖ · ‖K⋆
p
and the operator norm ‖ · ‖ are equivalent norms on ℑ. Also,

since ℑ is norm closed, it follows from (2.3) that K⋆
p is a Banach space with the norm

‖ · ‖K⋆
p
.

Let 1 6 q < p < ∞. Our second task is the description of the members of K⋆
p,q in

terms of the conditional expectation induced by A.

Theorem 2.2. Suppose 1 6 q < p < ∞ and u ∈ L0(Σ). Then u ∈ K⋆
p,q if and

only if (E(|u|q))1/q ∈ Lr(A), where 1/p + 1/r = 1/q.

P r o o f. Suppose (E(|u|q))1/q ∈ Lr(A). Let f ∈ Lp(Σ). Using the same method

as in the proof of Theorem 2.1, we have

‖E(u)f‖q
q 6

∫

X

E(|u|q)|f |q dµ = ‖E(|u|q))1/qf‖q
q 6 ‖(E(|u|q))1/q‖q

r‖f‖
q
p.

By similar computation we obtain

‖uE(f)‖q
q 6

∫

X

|u|qE(|f |q) dµ =

∫

X

E(|u|q)E(|f |q) dµ

6 ‖(E(|u|q))1/q‖q
r‖E(|f |q)‖p/q 6 ‖(E(|u|q))1/q‖q

r‖f‖
q
p
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and

‖E(u)E(f)‖q
q 6

∫

X

E(|u|q)E(|f |q) dµ

6 ‖(E(|u|q))1/q‖q
r ‖(E(|f |q))1/q‖q

p 6 ‖(E(|u|q))1/q‖q
r ‖f‖q

p.

Therefore we have ‖Tuf‖ 6 3‖(E(|u|q))1/q‖r‖f‖p for all f ∈ Lp(Σ). Consequently,

Tu is bounded and hence u ∈ K⋆
p,q.

Now, suppose only that u ∈ K⋆
p,q. Define ϕ : Lp/q(A) → C given by ϕ(f) =

∫

X
E(|u|q)f dµ. Clearly ϕ is a linear functional. We shall show that ϕ is bounded.

For each f ∈ Lp/q(A) we get that

|ϕ(f)| 6

∫

X

E(|u|q)|f | dµ =

∫

X

E((|u||f |1/q)q) dµ = ‖Tu|f |
1/q‖q

q 6 ‖Tu‖
q‖f‖p/q.

It follows that ‖ϕ‖ 6 ‖Tu‖q and hence ϕ is bounded. By the Riesz representation

theorem, there exists a unique g ∈ Lr/q(A) such that ϕ(f) =
∫

X gf dµ for each

f ∈ Lp/q(A). Hence g = E(|u|q) a.e. on X . That is, (E|u|q)1/q ∈ Lr(A) and hence

the proof is complete. �

Recall that an A-atom of the measure µ is an element A ∈ A with µ(A) > 0 such

that for each F ∈ Σ, if F ⊆ A then either µ(F ) = 0 or µ(F ) = µ(A). A measure with

no atoms is called non-atomic. It is a well-known fact that every σ-finite measure

space (X,A, µ|A) can be partitioned uniquely as

X =

(

⋃

n∈NAn

)

∪ B,

where {An}n∈N is a countable collection of pairwise disjoint A-atoms and B, being

disjoint from each An, is non-atomic (see [13]).

In the following theorem we characterize the members of K⋆
p,q in the case 1 6 p <

q < ∞.

Theorem 2.3. Suppose 1 6 p < q < ∞ and u ∈ L0(Σ). Then u ∈ K⋆
p,q if and

only if

(i) E(|u|q) = 0 a.e. on B;

(ii) M := sup
n∈N E(|u|q)(An)

µ(An)q/r
< ∞, where

1

q
+

1

r
=

1

p
.
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P r o o f. Suppose that both (i) and (ii) hold. Then, for each f ∈ Lp(Σ) with

‖f‖p 6 1 we have

‖E(u)f‖q
q 6

∫

X

E(|u|q)|f |q dµ =

(
∫

B

+

∫

⋃
An

)

(E(|u|q)|f |q) dµ

=
∑

n∈N∫

An

E(|u|q)|f |q dµ =
∑

n∈NE(|u|q)(An)|f(An)|qµ(An)

=
∑

n∈N (E(|u|q)(An)

µ(An)q/r
(|f(An)|pµ(An))q/p 6 M‖f‖q

p 6 M,

where we have used the fact that E(|u|q) is a constant A-measurable function on

each An (see [5, Theorem I.7.3]). Consequently, ‖E(u)f‖q 6 M1/q. Since the con-

ditional expectation operator E is a contraction, similar computation shows that

‖uE(f)‖q 6 M1/q and ‖E(u)E(f)‖q 6 M1/q. It follows that ‖Tu‖ 6 3M1/q < ∞

and hence u ∈ K⋆
p,q.

Conversely, suppose that u ∈ K⋆
p,q. First we show that E(|u|q) = 0 a.e. on B.

Assuming the contrary, we can find some δ > 0 such that µ({x ∈ B : E(|u|q)(x) >

δ}) > 0. Put F = {x ∈ B : E(|u|q)(x) > δ}. Since (X,A, µ|A) is a σ-finite measure

space, we can suppose that µ(F ) < ∞. Also, since F is non-atomic so for all

n ∈ N there exists Fn ⊆ F such that µ(Fn) = µ(F )/2n. For any n ∈ N, put

fn = 1/((µ(Fn))1/p)χFn
. It is clear that fn ∈ Lp(A) and ‖fn‖p = 1. Since q/p > 1,

we have

∞ > ‖Tu‖
q > ‖Tufn‖

q
q = ‖u ⋆ fn‖

q
q = ‖ufn‖

q
q

=

∫

X

|ufn|
q dµ = 1/(µ(Fn)q/p)

∫

Fn

|u|q dµ = 1/(µ(Fn)q/p)

∫

Fn

E(|u|q) dµ

> δµ(Fn)/(µ(Fn)q/p) = δ
(µ(F )

2n

)1−q/p

= δ
( 2n

µ(F )

)q/p−1

→ ∞ as n → ∞,

which is a contradiction. Hence we conclude that µ({x ∈ B : E(|u|q)(x) 6= 0}) = 0.

Next, we examine the supremum in (ii). For any n ∈ N, put fn = 1/(µ(An)1/p)χAn
.

Then it is clear that fn ∈ Lp(A) and ‖fn‖p = 1. Hence we have

∞ > ‖Tu‖
q > ‖Tufn‖

q
q =

1

µ(An)q/p

∫

An

E(|u|q) dµ

=
1

µ(An)q/p
E(|u|q)(An)µ(An) =

E(|u|q)(An)

µ(An)q/r
.

Since this holds for any n ∈ N, we get that M < ∞. �
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Theorem 2.4.

(i) u ∈ K⋆
∞ if and only if u ∈ L∞(Σ).

(ii) If 1 6 q < ∞, then u ∈ K⋆
∞,q if and only if |u| ∈ Lq(Σ).

(iii) If 1 6 p < ∞, then u ∈ K⋆
p,∞ if and only if u = 0 a.e. on B and

sup
n∈N(|u|p(An)/µ(An)) < ∞.

P r o o f. (i) Suppose that for each f ∈ L∞(Σ), u ⋆ f ∈ L∞(Σ). Since the

conditional expectation operator E is a contraction, we obtain

‖u‖∞ = ‖uχ
X
‖∞ = ‖Tuχ

X
‖∞ 6 ‖Tu‖ < ∞.

Conversely, suppose that u ∈ L∞(Σ). Then for each f ∈ L∞(Σ) we have ‖Tuf‖∞ 6

3‖u‖∞‖f‖∞. Thus ‖Tu‖ 6 3‖u‖∞ and hence u ∈ K⋆
∞. Consequently, we get (i).

(ii) Let |u| ∈ Lq(Σ) and f ∈ L∞(Σ). Then we have

‖uE(f)‖q
q =

∫

X

|uE(f)|q dµ 6 ‖f‖q
∞

∫

X

|u|q dµ = ‖f‖q
∞‖uq‖q

q.

Hence, ‖uE(f)‖q 6 ‖f‖∞‖u‖q. Similarly, we get ‖uE(f)‖q 6 ‖f‖∞‖u‖q and

‖E(u)E(f)‖q 6 ‖f‖∞‖u‖q. Thus ‖Tu‖ 6 3‖u‖q and hence u ∈ K⋆
∞,q. Conversely,

suppose that Tu(L∞(Σ)) ⊆ Lq(Σ). Since Tuχ
X
∈ Lq(Σ), it follows that

∞ > ‖Tuχ
X
‖q

q =

∫

X

|Tuχ
X
|q dµ =

∫

X

|u|q dµ = ‖u‖q
q.

Thus we get (ii).

(iii) Suppose that u = 0 a.e. on B and M := sup
n∈N(|u|p(An)/µ(An)) < ∞. Then for

each f ∈ Lp(Σ) with ‖f‖p 6 1 we have

‖uE(f)‖p
∞ = inf{b > 0: |uE(f)|p 6 b}

= inf{b > 0: |u|p|E(f)|p 6 b}

= inf{b > 0: |u|p(An)|E(f)(An)|p 6 b, n ∈ N}

6 inf{b > 0: |u|p(An)(E|f |p)(An) 6 b, n ∈ N}

6 sup
n∈N |u|p(An)

µ(An)
= M < ∞.

Consequently, ‖uE(f)‖∞ 6 M1/p. Similarly, since

|u(An)|p =
1

µ(An)

∫

An

|u|p dµ =
1

µ(An)

∫

An

E(|u|p) dµ = (E(|u|p))(An),
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we get that ‖fE(u)‖∞ 6 M1/p and ‖E(u)E(f)‖∞ 6 M1/p. Therefore ‖Tu‖ 6 3M1/p

and hence u ∈ K⋆
p,∞.

Conversely, suppose that u ∈ K⋆
p,∞. First we show that u = 0 a.e. on B. Assuming

the contrary, we can find δ > 0 such that µ({x ∈ X : |u(x)| > δ}) > 0. Put

F = {x ∈ X : |u(x)| > δ}. Since F is non atomic, choose a number a such that

0 < a < µ(F ) and a sequence F1, F2, . . . ∈ A of disjoint subsets of F such that

µ(Fk) = a/2pk for all k ∈ N. We define a function f0 on X by

f0 =
∞
∑

k=1

2k/2pχFk
.

It is easy to show that f0 ∈ Lp(A), but that it is not in L∞(A). It follows that

∞ = δ1/p‖f0‖L∞(A) = ‖δ1/pf0‖L∞(A) 6 ‖Tuf0‖L∞(A) 6 ‖Tu‖‖f0‖Lp(A) < ∞,

which is a contradiction. Hence µ({x ∈ X : |u(x)| 6= 0}) = 0, in other words, u = 0

a.e. on B.

Now, for any n ∈ N, put fn = 1/(µ(An)1/p)χAn
. It is clear that for all n ∈ N,

fn ∈ Lp(A) and ‖fn‖p = 1. Then we obtain

∞ > ‖Tu‖
p > ‖Tufn‖

p
∞ = ‖ufn‖

p
∞ >

|u|p(An)

µ(An)
.

Therefore M < ∞. This complete the proof. �

3. Fredholmness of ⋆-multiplication operators

Proposition 3.1. Let 1 6 p < ∞, 1/p + 1/q = 1, and u ∈ K⋆
p . Then, for each

g ∈ Lp(Σ), f ∈ Lq(Σ) and n ∈ N we have

(i) T n
u g = (E(u))n−1(E(u)g + nuE(g) − nE(u)E(g)),

(ii) T ∗
u

nf = (E(u))n−1{nE(ūf) + E(u)(f − nE(f))}.

P r o o f. (i) is trivial.

(ii) We will prove the result by induction. Since E(g)f = fE(g) for each g ∈ Lp(Σ)

and f ∈ Lq(Σ), we have

(g, T ∗
uf) = (Tug, f) =

∫

(uE(g) + gE(u) − E(g)E(u))f dµ

=

∫

(gE(uf) + E(u)gf − gE(u)E(f)) dµ

=

∫

g
(

E(ūf) + E(u)f − E(u)E(f)
)

dµ

=
(

g, E(ūf) + E(u)f − E(u)E(f)
)

,
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which shows that the result holds for n = 1. Assume now that it holds for n = k

and calculate

T ∗(k+1)
u f = T ∗

u

(

(E(u))k−1
{

kE(ūf) + E(u)(f − kE(f))
})

= (E(u))k
{

(k + 1)E(ūf) − kE(f)E(u)
}

+ (E(u))k
{

kE(ūf) + E(u)(f − kE(f))
}

− (E(u))k
{

kE(ūf) − (k − 1)E(u)E(f)
}

= (E(u))k
{

(k + 1)E(ūf) + E(u)
(

f − (k + 1)E(f)
)}

.

Thus the proposition is proved. �

In what follows we use the symbols N (Tu) and R(Tu) to denote the kernel and

the range of Tu, respectively. We recall that Tu is said to be a Fredholm operator if

R(Tu) is closed, dimN (Tu) < ∞, and codimR(Tu) < ∞.

The next result gives a necessary and sufficient condition for a ⋆-multiplication

operator Tu on Lp(Σ) to be a Fredholm operator, thereby generalizing the result

in [11] for multiplication operators.

Theorem 3.2. Suppose that u ∈ K⋆
p and A is a non-atomic measure space. Then

the operator Tu is Fredholm on Lp(Σ) (1 6 p < ∞) if and only if |E(u)| > δ almost

everywhere on X for some δ > 0.

P r o o f. Suppose that Tu is a Fredholm operator. We first claim that Tu is onto.

Suppose the contrary. Then there exists f0 ∈ Lp(Σ) \ R(Tu). Since R(Tu) is closed,

there exists g0 ∈ Lq(Σ), the dual space of Lp(Σ), such that

(3.1) (g0, f0) =

∫

f̄0g0 dµ = 1

and

(3.2) (g0, Tuf) =

∫

g0Tuf dµ = 0, f ∈ Lp(Σ).

Now (3.1) yields that the set Br = {x ∈ X : |E(f̄0g0)(x)| > r} has positive measure

for some r > 0. As A is non-atomic, we can choose a sequence {An} of subsets of Br

with 0 < µ(An) < ∞ and Am ∩ An = ∅ for m 6= n. Put gn = χAn
g0. Clearly,

gn ∈ Lq(Σ) and is nonzero, because

∫

X

|f̄0gn| dµ >

∫

An

|f̄0gn| dµ =

∫

An

E(|f̄0g0|) >

∫

An

|E(f̄0g0)| dµ > rµ(An) > 0
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for each n. Also, for each f ∈ Lp(Σ), χAn
f ∈ Lp(Σ) and so (3.2) implies that

(T ∗
ugn, f) = (gn, Tuf) =

∫

An

g0Tuf dµ =

∫

X

g0Tu(χAn
f) dµ = (g0, Tu(χAn

f)),

which implies that T ∗
ugn = 0 and so gn ∈ N (T ∗

u ). Since all the sets in {An} are

disjoint, the sequence {gn} forms a linearly independent subset of N (T ∗
u ). This

contradicts the fact that dimN (T ∗u) = codimR(Tu) < ∞. Hence Tu is onto. Let

Z(E(u)) := σ(E(u))c = {x ∈ X : E(u)(x) = 0}. Then µ(Z(E(u))) = 0. Since

µ(Z(E(u))) > 0, there is an F ⊆ Z(E(u)) with 0 < µ(F ) < ∞. If χF ∈ R(Tu), then

there exists f ∈ Lp(Σ) such that Tuf = χF . Then

µ(F ) =

∫

X

χ
F

dµ =

∫

F

Tuf dµ =

∫

F

E(Tuf) dµ =

∫

F

E(u)E(f) dµ = 0,

and this is a contradiction. So χF ∈ Lp(Σ) \ R(Tu), which contradicts the fact that

Tu is onto. For each n = 1, 2, . . ., let

Hn =

{

x ∈ X :
‖E(|u|p)‖∞

(n + 1)2
< |E(u)|p(x) 6

‖E(|u|p)‖∞
n2

}

and H = {n ∈ N : µ(Hn) > 0}. Then the Hn’s are pairwise disjoint, X =
∞
⋃

n=1
Hn

and µ(Hn) < ∞ for each n > 1. Take

f(x) =







|E(u)|

µ(Hn)1/p
, x ∈ Hn, n ∈ H,

0 otherwise.

Then
∫

X

|f |p dµ =
∑

n∈H

∫

Hn

|E(u)|p

µ(Hn)
dµ 6

∑

n∈H

‖E(|u|p)‖∞
n2

< ∞.

Therefore f ∈ Lp(A) and so there exist g ∈ Lp(Σ) such that Tug = f . Hence

E(u)E(g) = E(Tug) = f . Since E(g) = f/E(u) off Z(E(u)) and µ(Z(E(u))) = 0, it

follows that

∫

X

|g|p dµ =

∫

X

E(|g|p) dµ >

∫

X

|E(g)|p dµ

=

∫

X

|f |p

|E(u)|p
dµ =

∑

n∈H

∫

Hn

1

µ(Hn)
dµ =

∑

n∈H

1.
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This implies that H must be a finite set. So there is an n0 such that n > n0 implies

µ(Hn) = 0. Together with µ(Z(E(u))) = 0, we obtain

µ

({

x ∈ X : |E(u)|p(x) 6
‖E(|u|p)‖∞

n2
0

})

= µ

( ∞
⋃

n=n0

Hn ∪ Z(E(u))

)

= 0,

that is |E(u)| > ((‖E(|u|p)‖∞)/n2
0)

1/p := δ almost everywhere on X .

Conversely, suppose that |E(u)| > δ a.e. on X for some δ > 0. Let f ∈ N (T ∗
u ).

We have T ∗
uf = E(ūf) + E(u)(f − E(f)) = 0 and so E(ūf) = E(T ∗

uf) = 0. Thus

∫

X

ūf dµ =

∫

X

E(ūf) dµ = 0,

which implies that

N (T ∗
u ) ⊆

{

f ∈ Lp(Σ):

∫

X

ūf dµ = 0

}

⊆ Lp(Z(u), ΣZ(u), µ|Z(u)).

Also, since E(|u|) > |E(u)| > δ and X is a σ-finite measure space, we have |u| > δ

and hence µ(Z(u)) = 0. It follows that

codimR(Tu) = dimN (T ∗
u ) = 0.

Now, we shall show that Tu has closed range. Let {Tufn} be an arbitrary sequence

in R(Tu) and let ‖Tufn − g‖p → 0 for some g ∈ Lp(Σ). Hence we have E(u)E(fn) =

E(Tufn)
Lp

→ E(g). Since by hypothesis |E(u)| > δ, it follows that E(g)/E(u) ∈ Lp(A)

and E(fn)
Lp

→ E(g)/E(u). Consequently,

fn
Lp

→
1

E(u)

{

g + E(g) −
uE(g)

E(u)

}

:= f

and hence Tufn
Lp

→ Tuf . Therefore g = Tuf , which implies that Tu has closed range.

Thus the theorem is proved. �

Now, we consider the particular case when p = 2. An operator T on a Hilbert

space H is normal if TT ∗ = T ∗T , and T is self-adjoint if T = T ∗.
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Proposition 3.3. Let u ∈ K⋆
2 . Then the following claims are true:

(i) Tu is a normal operator if and only if u ∈ L∞(A).

(ii) Tu is a self-adjoint operator if and only if u ∈ L∞(A) is real valued.

P r o o f. (i) Assume Tu is normal. Then for each f ∈ L2(Σ) we have E(TuT ∗
uf) =

E(u)E(ūf) and E(T ∗
uTuf) = E(f)E(|u|2)+E(u)E(ūf)−E(ū)E(u)E(f). Therefore

we obtain that E(|u|2) = |E(u)|2. Consequently u ∈ L∞(A). Conversely, suppose

that u ∈ L∞(A) and take f ∈ L2(Σ). Then T ∗
uTuf = TuT ∗

uf = |u|2f , and hence

Tu is normal.

(ii) follows from (i). �

Example 3.4. Let X = [−1, 1], dµ = dx, let Σ be the Lebesgue sets, and A

the σ-subalgebra generated by the sets symmetric about the origin. Put 0 < a 6 1.

Then for each f ∈ L2(Σ) we have

∫ a

−a

E(f)(x) dx =

∫ a

−a

f(x) dx

=

∫ a

−a

{f(x) + f(−x)

2
+

f(x) − f(−x)

2

}

dx

=

∫ a

−a

f(x) + f(−x)

2
dx.

Consequently, (Ef)(x) = (f(x) + f(−x))/2. Now, if we take u(x) = cosx + sin x,

then the ⋆-multiplication operator Tu : L2(Σ) → L2(Σ) has the form

(Tuf)(x) =
(

cosx +
1

2
sin x

)

f(x) +
1

2
sin xf(−x).

Direct computation shows that (T ∗
uf)(x) =

(

cosx+sin x/2)f(x)− sin x/2f(−x) and

|E(u)| > cos 1. Therefore, Tu is a Fredholm but not a normal operator. �
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