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Abstract. In this paper we discuss some of the basic operator-theoretic char-

acterizations for conditional expectation type operator T = EMu on Lp spaces.

1. Introduction and Preliminaries

Let L(X, Σ, µ) be a σ-finite measure space. For any complete σ-finite sub-algebra
A ⊆ Σ with 1 ≤ p ≤ ∞, the Lp-space Lp(X,A, µ|A) is abbreviated by Lp(A), and
its norm is denoted by ‖.‖p. We understand Lp(A) as a Banach subspace of Lp(Σ).
The support of a measurable function f is defined by σ(f) = {x ∈ X : f(x) 6= 0}.
All comparisons between two functions or two sets are to be interpreted as holding
up to a µ-null set.

For any non-negative Σ-measurable function f as well as for any f ∈ Lp(Σ), by
the Radon-Nikodym theorem, there exists a unique A-measurable function E(f)
such that ∫

A

Efdµ =
∫

A

fdµ, for all A ∈ A.

Hence we obtain an operator E from Lp(Σ) onto Lp(A) which is called conditional
expectation operator associated with the σ-algebra A. This operator will play a
major role in our work, and we list here some of its useful properties:

• If g is A-measurable then E(fg) = E(f)g.
• |E(f)|p ≤ E(|f |p).
• ‖E(f)‖p ≤ ‖f‖p.
• If f ≥ 0 then E(f) ≥ 0; if f > 0 then E(f) > 0.

Let f be a real-valued measurable function. Consider the set Bf = {x ∈ X :
E(f+)(x) = E(f−)(x) = ∞}. The function f is said to be conditionable with
respect to A, if µ(Bf ) = 0. If f is complex-valued, then f is conditionable if the
real and imaginary parts of f are conditionable and their respective expectations
are not both infinite on the same set of positive measure. We denote the linear
space of all conditionable Σ-measurable functions on X by L0(Σ). It is known that
|E(f)|2 = E(|f |2) if and only if f ∈ L0(A). For more details on the properties of
E see [5], [6] and [9].

Recall that an A-atom of the measure µ is an element A ∈ A with µ(A) > 0
such that for each F ∈ Σ, if F ⊆ A then either µ(F ) = 0 or µ(F ) = µ(A). A
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measure with no atoms is called non-atomic. It is well-known fact that every σ-
finite measure space (X,A, µ|A) can be partitioned uniquely as X =

(⋃
n∈N An

)
∪B,

where {An}n∈N is a countable collection of pairwise disjoint A-atoms and B, being
disjoint from each An, is non-atomic (see [12]). Note that since A is σ- finite, it
follows that µ(An) < ∞ for every n ∈ N.

Combination of conditional expectation operator E and multiplication operator
Mu appears more often in the service of the study of other operators such as multi-
plication operators, weighted composition operators and Lambert operators (see [8]
and [7]). These operators are closely related to averaging operators on order ideals
in Banach lattices and to operators called conditional expectation-type operators
introduced in [1]. In this paper, we investigate some of the basic operator-theoretic
questions for the conditional type operator T = EMu between Lp spaces. For a
beautiful exposition of the study of weighted conditional expectation operators on
Lp-spaces, see [6] and the references therein.

2. The Operator T = EMu

Let 1 ≤ p ≤ ∞. We shall always take u ∈ L0(Σ) for which uf ∈ L0(Σ) for
all f ∈ Lp(Σ). In other words, the operator T = EMu is defined on all Lp(Σ).
A straightforward calculation shows that for 1 ≤ p < ∞, the adjoint operator
T ∗ : Lq(A) → Lq(Σ) is given by T ∗f = ūf , where 1

p + 1
q = 1 (note that we can

consider T ∗ : Lq(Σ) → Lq(Σ) as T ∗ = MūE). Let 1 ≤ q < ∞. It is proved by Alan
Lambert in [8] that T ∗ is a bounded operator if and only if E(|u|q) ∈ L∞(A). In
this case ‖T ∗‖ = ‖E(|u|q)‖1/q

∞ . In the case q = ∞, we claim that T ∗ is bounded if
and only if u ∈ L∞(Σ) and its norm is given by ‖T ∗‖ = ‖u‖∞. Indeed, if u ∈ L∞(Σ)
and f ∈ L∞(A), we have

‖ūf‖L∞(A) = sup
A∈A, 0<µ(A)<∞

1
µ(A)

∫
A

|ūf |dµ

≤ ‖u‖∞ sup
A∈A, 0<µ(A)<∞

1
µ(A)

∫
A

|f |dµ = ‖u‖∞‖f‖L∞(A).

It follows that T ∗(L∞(A)) ⊆ L∞(A) ⊆ L∞(Σ), and ‖T ∗‖ ≤ ‖u‖∞. On the other
hand, if T ∗ is bounded, then

‖u‖∞ = ‖ūχ
X
‖∞ = ‖T ∗χ

X
‖∞ ≤ ‖T ∗‖ < ∞.

These observations establish the following proposition.

Proposition 2.1. (a) T = EMu defines a bounded linear operator from L1(Σ)
into L1(A) if and only if u ∈ L∞(Σ). In this case ‖T‖ = ‖u‖∞.
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(b) Let 1 < p < ∞. T defines a bounded operator from Lp(Σ) into Lp(A) if and
only if E(|u|q) ∈ L∞(A), where 1

p + 1
q = 1. In this case ‖T‖ = ‖E(|u|q)‖1/q

∞ .

In the following theorem we investigate a necessary and sufficient condition for
T to be compact.

Theorem 2.2. Let 1 < p < ∞. Suppose (X,A, µ|A) can be partitioned as
X =

(⋃
n∈N An

)
∪B. Then the bounded linear operator T = EMu from Lp(Σ) into

Lp(A) is compact if and only if u(B) = 0 (u(x) = 0 for µ-almost all x ∈ B) and for
any ε > 0, the set {n ∈ N : µ(An ∩Dε(u)) > 0} is finite, where Dε(u) = {x ∈ X :
E(|u|)(x) ≥ ε}.

Proof. Suppose T is a compact operator. First we show that u(B) = 0. Suppose
the contrary i.e., µ{x ∈ B : u(x) 6= 0}) > 0. Then there is δ > 0 and B0 ∈ A ∩ B
such that 0 < µ(B0 ∩Dδ(u)) < ∞. Since J0 := B0 ∩Dδ(u) ∈ A∩B0 has no atoms,
hence we can choose a sequence {Bn}n∈N ⊆ A ∩ B0, such that Jn+1 ⊆ Jn ⊆ J0,
0 < µ(Jn+1) = µ(Jn)

2 , where Jn := Bn ∩ Dδ(u). Note that for all n ∈ N, Jn is
A-measurable. Put

fn =
ū|u|

q−p
p χJn

{‖E(|u|q)‖∞µ(Jn)}
1
p

, n ∈ N.

Boundedness of T implies that E(|u|q) ∈ L∞(A) and hence ‖fn‖p ≤ 1. Now, for
any m,n ∈ N with m > n we have

‖Tfn − Tfm‖p
p =

∫
X

|E(u(fn − fm))|pdµ

∫
X

[E(|u|
q
p +1)]p

‖E(|u|q)‖∞

∣∣∣∣∣ χ
Jn

µ(Jn)
1
p

−
χ

Jm

µ(Jm)
1
p

∣∣∣∣∣
p

dµ ≥ δ( q
p +1)p

‖E(|u|q)‖∞

∫
Jn\Jm

dµ

µ(Jn)

=
δq+p

‖E(|u|q)‖∞
µ(Jn\Jm)

µ(Jn)
=

δq+p

‖E(|u|q)‖∞

(
1− µ(Jm

µ(Jn)

)
>

δq+p

2‖E(|u|q)‖∞
,

which shows that the sequence {Tfn}n∈N dose not contain a convergent subse-
quence. But this is a contradiction.

Now, we show that for any ε > 0 the set {n ∈ N : µ(An ∩ Dε(u)) > 0} is
finite. By the way of contradiction, for some ε > 0, there is a subsequence {Ak}k∈N
of disjoint atoms in A such that µ(Ak ∩ Dε(u)) > 0, for all k ∈ N. Put Gk =
Ak ∩ Dε(u). Hence, we obtain a sequence of pairwise disjoint sets {Gk}k∈N such
that for every k ∈ N, Gk ∈ A and 0 < µ(Gk) = µ(Ak) < ∞. For any k ∈ N, take
fn = ū|u|

q−p
p χGn/(‖E(|u|q)‖∞µ(Gn))1/p. Then ‖fn‖p ≤ 1. Since for each n 6= m,

Gn ∩Gm = ∅, it follows that

‖Tfn−Tfm‖p
p ≥

∫
X

(E(|u|))q+pχGn

‖E(|u|q)‖∞µ(Gn)
dµ+

∫
X

(E(|u|))q+pχGm

‖E(|u|q)‖∞µ(Gm)
dµ ≥ 2εq+p

|E(|u|q)‖∞
,

which contradicts the compactness of T .

Conversely, suppose that u(B) = 0 and for an arbitrary ε > 0, there exist
at most finite A-atoms {Ak

ε}n
k=1 ⊆ {An}n∈N such that µ(Ak

ε ∩ Dε(u)) > 0. Put
Bε = ∪n

k=1A
k
ε . Then E(|u|) < ε on X \Bε and hence |u| < ε on X \ (Bε ∪B). Set
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v = χBεu and T1 = EMv. It is easy to see that u = v = 0 on B and u = v on Bε.
Now, since Bε ∪B ∈ A, then foe each f ∈ Lp(Σ) we have that

‖(T − T1)f‖p
p =

∫
X

|E(u− v)f |pdµ =
∫

X\(Bε∪B)

|E(uf)|pdµ

≤
∫

X\(Bε∪B)

E(|uf |p)dµ =
∫

X\(Bε∪B)

|uf |dµ ≤ εp

∫
X

|f |pdµ = εp‖f‖p
p.

On the other hand, we have

T1f = E(χBε
uf) = E(

n∑
k=1

χAk
ε
uf) =

n∑
k=1

E(χAk
ε
uf)

=
n∑

k=1

E(uf)(Ak
ε)χAk

ε
=

n∑
k=1

(Tf)(Ak
ε)χAk

ε
.

Therefore, T1 has finite rank and hence T is compact.

Remark 2.3. Under the same assumptions as in Theorem 2.2, if we take fn =
ūχJn

/(‖u‖∞µ(Jn)), then by the same method used in the proof of Theorem 2.2,
T = EMu from L1(Σ) into L1(A) is compact if and only if u(B) = 0 and for any
ε > 0, the set {x ∈ X : E(|u|)(x) ≥ ε} consists of finitely many atoms.

In the following theorem we show that if T = EMu is weakly compact on L1(Σ),
then it is compact. Recall that the operator T : L1(Σ) → L1(Σ) is said to be weakly
compact if it maps bounded subsets of L1(Σ) into weakly sequentially compact
subsets of L1(Σ). We begin with the following lemma, which can be deduced from
Theorem IV.8.9, and its Corollaries 8.10, 8.11 in [4].

Lemma 2.4. Let H be a weakly sequentially compact set in L1(Σ). Then for
each decreasing sequence {En} in Σ such that limn→∞ µ(En) = 0 or ∩∞n=1En = ∅,
the sequence of integrals {

∫
En
|h|dµ} converges to zero uniformly for h in H.

Theorem 2.5. Suppose (X, Σ, µ) can be partitioned as X =
(⋃

n∈N An

)
∪ B.

Then the bounded operator T = EMu is a weakly compact operator on L1(Σ) if
and only if it is compact.

Proof. It suffices to show the “ only if ” part. To prove the theorem, we use
the method which inspired by Takagi [10]. Let T be a weakly compact operator on
L1(Σ). We first show that u(B) = 0. To obtain a contradiction, we may assume
that for some δ > 0 and B0 ⊆ B, 0 < µ(B0 ∩Dδ(u)) < ∞. By the same argument
in the proof of Theorem 2.2, as B0 is non-atomic, we can find a decreasing sequence
{Bn} ⊆ B0 ∩ Σ with 0 < µ(Bn) < 1

n and 0 < µ(Bn ∩Dδ(u)) < ∞. Let U be the
closed unit ball of L1(Σ). Since T (U) is weakly sequentially compact, we can apply
Lemma 2.4, with H = T (U) and En = Bn. Choose ε = δ2/‖u‖∞. Then there
exists an no ∈ N such that

(2.1)
∫

Bno

|Tf |dµ <
δ2

‖u‖∞
, f ∈ U.
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On the other hand if we take fno = ūχJno
/(‖u‖∞µ(Jno)), we have∫

Bno

|Tf |dµ =
∫

Bno

|E
(

uūχJno

‖u‖∞µ(Jno)

)
|dµ

=
∫

Bno

E

( |u|2χJno

‖u‖∞µ(Jno
)

)
dµ =

1
‖u‖∞µ(Jno

)

∫
Bno

|u|2χJno
dµ

=
1

‖u‖∞µ(Jno
)

∫
Jno

|u|2dµ ≥ δ2

‖u‖∞
.

Since fno
∈ U , this contradicts (2.1). According to the Theorem 2.2, it remains to

show that for any ε > 0, the set A := {n ∈ N : µ(An ∩ Dε(u)) > 0} is finite. To
this end, without loss of generality, we can assume that A = N for some ε > 0. Put
Kn = {Ak : k ≥ n}. It follows that ∩∞n=1Kn = ∅. Applying Lemma 2.4 once more,
there exists an N ∈ N such that∫

KN

|Tf |dµ <
ε2

‖u‖∞
, f ∈ U.

Now, for any n with n ≥ N, let gn = ūχAn/(‖u‖∞µ(An)). Then we have∫
KN

|Tgn|dµ =
∫

KN

E

(
|u|2χAn

‖u‖∞µ(An)

)
dµ =

1
‖u‖∞µ(An)

∫
An

|u|2dµ ≥ ε2

‖u‖∞
.

Since gn ∈ U , this contradicts (2.1). This completes the proof of the theorem.

Corollary 2.6. Let 1 ≤ p < ∞ and E(|u|) > 0 a.e. on X. If the bounded
operator T = EMu : Lp(Σ) → Lp(A) is (weakly) compact, then A is purely atomic.

Let H and K be separable Hilbert spaces. The set of all bounded linear operators
from K into H is denoted by B(K,H). If H = K, B(H,H) will be written by B(H).
For A ∈ B(K,H), the range and the null-space of A are denoted by R(A) and
N (A), respectively. If A ∈ B(H), the spectrum of A is denoted by Sp(A).

Now, we consider matrix form of T = EMu. Notice that L2(Σ) is the direct sum
of the R(E) = L2(A) with N (E) = {f − Ef : f ∈ L2(Σ)}. With respect to the
direct sum decomposition, L2(Σ) = L2(A)⊕N (E), the matrix form of T is

(2.2) T =
[

ETE ET (I − E)
(I − E)TE (I − E)T (I − E)

]
=

[
MEu EMu

0 0

]
.

In this sequel, we investigate closedness of range and spectrum of T on L2(Σ). We
begin with the following lemma, which can be deduced from Theorem 2.3 in [2] and
Example 7 in [3].

Lemma 2.7. Let H and K be separable Hilbert spaces. Suppose that A ∈ B(H),
B ∈ B(K) and C ∈ B(K,H).

(i) If A and B are normal operators, then Sp
([

A C
0 B

])
= Sp(A)∪ Sp(B).
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(ii) If R(A) and R(B) are closed, then the range R
([

A C
0 B

])
is closed if

and only if at least one of dimN (A∗) or dimN (B) is finite.

Theorem 2.8. Suppose that the operator T = EMu : L2(Σ) → L2(A) is
bounded. Then

(i) Sp(T ) ∪ {0} = ess range {E(u)} ∪ {0}.
(ii) Let |E(u)| ≥ δ a.e. on σ(E(u)) for some δ > 0. Then T has closed range if

and only if |E(u)| > 0 a.e. on X except at most on finitely many atoms.

Proof. (i) If A 6= Σ, then R(T ) ⊆ L2(A) ⊂ L2(Σ). Therefore T is not surjective
and so 0 ∈ Sp(T ). On the other hand, by Lemma 2.7 (i), since Sp(MEu) = ess
range {E(u)}, the result holds.

(ii) It is known that the multiplication operator MEu has closed range if and
only if |E(u)| ≥ δ a.e. on σ(E(u)) for some δ > 0. Now, by Lemma 2.7 (i) and
(2.2) we have:

R(T ) is closed ⇐⇒ R
([

MEu EMu

0 0

])
is closed ⇐⇒ dimN (MEu) < ∞

⇐⇒ |E(u)| > 0 a.e. on X except at most on finitely many atoms.

It is well known that every operator T can be decomposed into T = U |T | with a
partial isometry U , where |T | = (T ∗T )

1
2 . U is determined uniquely by the kernel

conditionN (U) = N (T ), then this decomposition is called the polar decomposition.

Now, by the operator matrices method we obtain the polar decomposition of
T = EMu. Direct computations show that

T ∗T =
[

M|E(u)|2 EMuEu

MūEu MūEMu

]
and |T | =

 M |E(u)|2√
E(|u|2)

EM uEu√
E(|u|2)

M ūE(u)−|E(u)|2√
E(|u|2)

M ū−Eu√
E(|u|2)

EMu

 .

Then for each f ∈ L2(Σ) we have that

|T |
[

Ef f − Ef
]

=

 M |E(u)|2√
E(|u|2)

EM uEu√
E(|u|2)

M ūE(u)−|E(u)|2√
E(|u|2)

M ū−Eu√
E(|u|2)

EMu

 Ef

f − Ef



=
[

E(u)E(uf)√
E(|u|2)

ūE(uf)√
E(|u|2)

− E(u)E(uf)√
E(|u|2)

]
.

Notice that, since for each conditionable function u, E(|u|) = 0 implies that
E(u) = 0 = u, we used the notational convention of u√

E(|u|2)
for u√

E(|u|2)
χσ(u).

Now, since the mapping f 7→
[

Ef f − Ef
]

is an isometric isomorphism
from L2(Σ) onto L2(A)⊕N (E), then we get that |T |(f) = ūE(uf)√

E(|u|2)
. Hence for any
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f ∈ L2(Σ), E(uf) = U( ūE(uf)√
E(|u|2)

). It is easy to check that U(f) = E(uf)√
E(|u|2)

and U is

a partial isometry (see [6]). These calculations establish the following proposition.

Proposition 2.9. The polar decomposition of T = EMu on L2(Σ) is U |T |,
where U = M

1/
√

E(|u|2)T and |T | = M
ū/
√

E(|u|2)T

Let p ∈ (0,∞). Recall that an operator A on a Hilbert space H is p-hyponormal
if (A∗A)p ≥ (AA∗)p; A is ∞-hyponormal if A is p-hyponormal for all p; and A is
p-quasihyponormal if A∗(A∗A)pA ≥ A∗(AA∗)pA. For all unit vectors x ∈ H, if
‖|A|pU |A|px‖ ≥ ‖|A|px‖2, then A is called a p-paranormal operator. By using the
property of real quadratic forms (see [11]), A is p-paranormal if and only if

(2.3) |A|pU∗|A|2pU |A|p − 2k|A|2p + k2 ≥ 0, for all k ≥ 0.

The following lemma is significant amount of consideration for the next computa-
tions.

Lemma 2.10. Let f ∈ L2(Σ) and Af := ūE(uf). Then for all p ∈ (0,∞)

Apf = ū[E(|u|2)]p−1E(uf).

Proof. Suppose f ∈ L2(Σ), then by induction we obtain

A
1
n f = ū[E(|u|2)]

1−n
n E(uf), n ∈ N.

Now the reiteration of powers of operator A
1
n , yields

A
m
n f = ū[E(|u|2)]

(1−n)m
n [E(|u|2)]m−1E(uf), m, n ∈ N.

Finally, by using of the functional calculus the desired formula is proved.

Lemma 2.11. Let T = EMu be a bounded operator on L2(Σ). Then T is
∞-hyponormal if and only id u ∈ L∞(A).

Proof. By Lemma 2.10, it is easy to verify that (T ∗T )p = Mū[E(|u|2)]p−1T and
(TT ∗)p = M[E(|u|2)]p , for all 0 < p < ∞. Then we get that (T ∗T )p ≥ (TT ∗)p if and
only if

M[E(|u|2)]p−1(MūT −ME(|u|2)) ≥ 0 ⇐⇒ MūT −ME(|u|2) ≥ 0,

where we have used the fact that T1T2 ≥ 0 if T1 ≥ 0, T2 ≥ 0 and T1T2 = T2T1 for
all Ti ∈ B(H). Thus for any 0 < f ∈ L2(A) we have

0 ≤ (MūTf −ME(|u|2)f, f) =
∫

X

(ūE(uf)− E(|u|2)f)f̄dµ

=
∫

X

(ūE(u)− E(|u|2))|f |2dµ =
∫

X

(|E(u)|2 − E(|u|2))|f |2dµ.

Since f > 0, this gives |E(u)|2 ≥ E(|u|2). On the other hand we always have
|E(u)|2 ≤ E(|u|2). Hence u ∈ L∞(A). Notice that if u ∈ L∞(A), then it is easy to
see that (T ∗T )p ≥ (TT ∗)p.

Theorem 2.12. Let T = EMu be a bounded operator on L2(Σ). Then the
following are equivalent:

(i) T is ∞-hyponormal.
(ii) T is p-hyponormal.
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(iii) T is p-quasihyponormal.
(iv) T is p-paranormal.
(v) u ∈ L∞(A).

Proof. By Lemma 2.11, we complete the proof by showing (iii)⇔ (v) and (iv)⇔
(v) below.

(iii)⇔ (v) By Lemma 2.10, it is easy to verify that T ∗(TT ∗)pT = Mū[E(|u|2)]pT
and T ∗(T ∗T )pT = Mū|E(u)|2[E(|u|2)]p−1T . Therefore, T ∗(T ∗T )p ≥ T ∗(TT ∗)pT if
and only if M[E(|u|2)]p−1(Mū|E(u)|2−ūE(|u|2)T ) ≥ 0. Therefore, for any 0 < f ∈
L2(A) we have

0 ≤
∫

X

(ū|E(u)|2 − ūE(|u|2))E(u)|f |2dµ =
∫

X

(|E(u)|4 − |E(u)|2E(|u|2))|f |2dµ.

It follows that |E(u)|2 ≥ E(|u|2) and hence |E(u)|2 = E(|u|2). Thus u ∈ L∞(A).
Conversely, if u ∈ L∞(A), then

T ∗(T ∗T )pT = T ∗(TT ∗)pT = Mū|u|2pT,

which proves the desired implication.

We now prove (iv)⇔ (v). Since |T |(f) = ū
4
√

E(|u|2)
E( uf

4
√

E(|u|2)
), by Lemma 2.10

we get that
|T |p(f) = ū[E(|u|2)]

p−2
2 E(uf), f ∈ L2(Σ).

Also since U∗(f) = ū√
E(|u|2)

E(f), by a direct computation, we have

|T |pU∗|T |2pU |T |pf = ū[E(|u|2)]2p−2|E(u)|2E(uf), f ∈ L2(Σ).

By condition (2.3), T is p-paranormal if and only if

k2 − 2kMū[E(|u|2)]p−1T + Mū[E(|u|2)]2p−2|E(u)|2T ≥ 0, for all k ≥ 0

⇐⇒ Mū[E(|u|2)]2p−2|E(u)|2T ≥ (Mū[E(|u|2)]p−1T )2 = Mū[E(|u|2)]2p−2|E(|u|2)T.

Therefore, for any 0 < f ∈ L2(A) we have∫
X

|E(u)|2(E(|u|2)2p−2
(
|E(u)|2 − E(|u|2)

)
|f |2dµ ≥ 0.

It follows that |E(u)|2 ≥ E(|u|2) and hence u ∈ L∞(A). Conversely, if u ∈ L∞(A),
it is easy to check that condition (2.3) holds for all k ≥ 0. Hence the proof is
complete.

Example 2.13. Let X = [−1, 1], dµ = dx, Σ the Lebesgue sets, and A the
σ-subalgebra generated by the symmetric sets about the origin. Now any real
valued function on X can be written uniquely as a sum of an even function and
an odd function, one simply uses the functions fe(x) = (f(x) + f(−x))/2 and
fo(x) = (f(x) − f(−x))/2. Put 0 < a ≤ 1. Then for each f ∈ L2(Σ) we have∫ a

−a
E(f)(x)dx =

∫ a

−a
fe(x)dx and consequently, Ef = fe. This example is due

to Alan Lambert [8]. Now, if u is an even and continuous function on X, then
T = EMu is ∞-hyponormal and hence is p-paranormal. Note that if u(x) = 1 + x,
then T is not p-paranormal.
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