

Contents lists available at ScienceDirect Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Conditional expectation operators on the Bergman spaces

M.R. Jabbarzadeh^{*,1}, M. Hassanloo

Faculty of Mathematical Sciences, University of Tabriz, P.O. Box 5166615648, Tabriz, Iran

ARTICLE INFO

ABSTRACT

Article history: Received 23 May 2011 Available online 1 July 2011 Submitted by D. Khavinson

Keywords: Conditional expectation operator Bergman space

In this note, we extend some results in Carswell and Stessin (2008) [1] to larger classes of sigma-algebras associated with the conditional expectation operators on the Bergman spaces.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

Let (X, \mathcal{M}, μ) be a complete sigma-finite measure space and let \mathcal{A} be a sigma-algebra of \mathcal{M} such that $(X, \mathcal{A}, \mu|_{\mathcal{A}})$ is also sigma-finite. The collection of (equivalence classes modulo sets of zero measure) \mathcal{M} -measurable complex-valued functions on X will be denoted $L^0(\mathcal{M})$, with $L^0(\mathcal{A})$ being likewise defined for \mathcal{A} -measurable functions. Moreover, we let $L^p(\mathcal{M}) = L^p(X, \mathcal{M}, \mu)$ and $L^p(\mathcal{A}) = L^p(X, \mathcal{A}, \mu|_{\mathcal{A}})$, for $1 \leq p \leq \infty$. Also its norm is denoted by $\|.\|_p$ on which $L^p(\mathcal{A})$ is a Banach subspace of $L^p(\mathcal{M})$. A consequence of the Radon–Nikodym theorem is that to each nonnegative function $f \in L^0(\mathcal{M})$ there exists a unique nonnegative $\mathcal{E}_{\mathcal{A}}(f) \in L^0(\mathcal{A})$ such that

$$\int_{\Delta} f \, d\mu = \int_{\Delta} \mathcal{E}_{\mathcal{A}}(f) \, d\mu$$

for all $\Delta \in \mathcal{A}$. The function $\mathcal{E}_{\mathcal{A}}(f)$ is called the conditional expectation of f with respect to \mathcal{A} . This can be extended to real-valued and complex-valued functions by examining the conditional expectations of the positive and negative parts (in the case of real-valued functions), and the real and imaginary parts (for complex-valued functions). If $\mathcal{E}_{\mathcal{A}}(f)$ exists for a function $f \in L^0(\mathcal{M})$, then we say f is conditionable. One can show that every $L^p(\Sigma)$ function is conditionable; therefore, a linear transformation $\mathcal{E}_{\mathcal{A}} : L^p(\mathcal{M}) \to L^p(\mathcal{A})$ can be defined by $f \mapsto \mathcal{E}_{\mathcal{A}}(f)$. It is clear that $\mathcal{E}_{\mathcal{A}}$ is an idempotent, and in the case of p = 2, it is the orthogonal projection of $L^2(\mathcal{M})$ onto $L^2(\mathcal{A})$. For more details on the properties of $\mathcal{E}_{\mathcal{A}}$ on abstract measurable function spaces see [2] and [3]. It seems that in the operator theory of analytic function spaces, the operation of conditional expectation has not got the attention that it deserves.

Let \mathcal{M} be the sigma-algebra of Lebesgue-measurable sets in $\mathbb{D} = \{z \in \mathbb{C}: |z| < 1\}$ and let A be the normalized area measure on \mathbb{D} . Recall that the Bergman space $L^p_a(\mathbb{D}) = L^p_a(\mathbb{D}, \mathcal{M}, A)$ consists of all analytic functions in $L^p(\mathbb{D}, \mathcal{M}, A)$, that is, the functions f analytic in \mathbb{D} whose area integral

$$\|f\|_p^p = \int_{\mathbb{D}} \left|f(z)\right|^p dA(z)$$

^{*} Corresponding author.

E-mail addresses: mjabbar@tabrizu.ac.ir (M.R. Jabbarzadeh), m_hasanloo@tabrizu.ac.ir (M. Hassanloo).

 $^{^{1}\,}$ The first author is supported by the University of Tabriz (No. S. 27127613).

⁰⁰²²⁻²⁴⁷X/\$ – see front matter @ 2011 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2011.06.056

is finite. The analog of the Riesz projection is the Bergman projection \mathcal{P} which (for 1) takes the function <math>f in $L^p(\mathbb{D}, \mathcal{M}, A)$ to the function $\mathcal{P}(f)$ in $L^p_a(\mathbb{D})$ and is given by the formula

$$\mathcal{P}(f)(w) = \int_{\mathbb{D}} \frac{f(z)}{(1 - w\bar{z})^2} dA(z), \quad w \in \mathbb{D}.$$

Note that if $\mathcal{E}_{\mathcal{A}}\mathcal{P} = \mathcal{P}\mathcal{E}_{\mathcal{A}}$ on $L^{p}(\mathbb{D}, \mathcal{M}, A)$, then $L^{p}_{a}(\mathbb{D})$ is invariant under the conditional expectation operator $\mathcal{E}_{\mathcal{A}}$; i.e., $\mathcal{E}_{\mathcal{A}}(L^{p}_{a}(\mathbb{D})) \subseteq L^{p}_{a}(\mathbb{D})$.

Let $A(\mathbb{D})$ denote the space of all functions analytic on \mathbb{D} and continuous on $\overline{\mathbb{D}}$. The algebra $A(\mathbb{D})$ is known as the disk algebra. Let $\varphi \in A(\mathbb{D})$. We say that φ has finite multiplicity if there exists $N \in \mathbb{N}$ such that for each $w \in \varphi(\mathbb{D})$, the level set $\varphi^{-1}(w) := \{\xi_j(w)\}_{j \ge 1}$ contains at most N points. By $\mathcal{A} = \mathcal{A}(\varphi)$ we denote the sigma-algebra generated by $\{\varphi^{-1}(U): U \subset \mathbb{C} \text{ is open}\}$. Let m be the Lebesgue measure on \mathbb{C} . Since the finite measure $A \circ \varphi^{-1}$ is absolutely continuous with respect to m, we have $h := \frac{dA \circ \varphi^{-1}}{dm}$ almost everywhere finite valued.

The conditional expectation operators on the Bergman spaces were first studied by Carswell and Stessin in [1]. Our purpose in this note is partially answering to this question: which sigma-algebras of measurable subsets of \mathbb{D} have the property that $\mathcal{E}_{\mathcal{A}}\mathcal{P} = \mathcal{P}\mathcal{E}_{\mathcal{A}}$. In [1] Carswell and Stessin proved that for $\varphi(z) = z^n$, this property holds and found the formula for $\mathcal{E}_{\mathcal{A}}$ by assuming $\mathcal{E}_{\mathcal{A}}\mathcal{P} = \mathcal{P}\mathcal{E}_{\mathcal{A}}$. We prove this formula without this condition. Also, we extend some results in [1] to larger classes of conditional expectation operators generated by the symbol function φ on the Bergman spaces.

2. Main results

Let $\mathbb{D}_0 = \{z \in \mathbb{D}: \varphi'(z) \neq 0\}$. The set $\mathbb{D}\setminus\mathbb{D}_0$ is at most countable. If $z \in \mathbb{D}_0$, then there exists some $r_z > 0$ such that φ is one-to-one on $D(z, r_z)$. The discs $D(z, r_z)$ form a cover for \mathbb{D}_0 and we can pick a countable subcover $\{D(z_n, r_n): n \in \mathbb{N}\}$. Set $D_1 = D(z_1, r_1)$ and $D_n = D(z_n, r_n)\setminus \bigcup_{k=2}^n D_{k-1}$, for $n \ge 2$. So $\{D_n: n \in \mathbb{N}\}$ is a pairwise disjoint Borel cover of \mathbb{D}_0 . Note that $\varphi_n := \varphi|_{D_n}$ maps D_n bijectively to $\varphi(D_n)$. So for any nonnegative functions $g \in L^{\infty}(\varphi(\mathbb{D}), \mathcal{M}_{\varphi(\mathbb{D})}, m|_{\mathcal{M}_{\varphi(\mathbb{D})}})$ and $f \in L^p(\mathbb{D}, \mathcal{M}, A)$ with $p \ge 1$, we have

$$\int_{D_n} (g \circ \varphi) f \, dA = \int_{D_n} g \circ \varphi \frac{f}{|\varphi'|^2} |\varphi'|^2 \, dA = \int_{\varphi(D_n)} g \frac{f \circ \varphi_n^{-1}}{|\varphi' \circ \varphi_n^{-1}|^2} \, dm$$

and so

$$\int_{\varphi(\mathbb{D})} gh\mathcal{E}_{\mathcal{A}}(f) \circ \varphi^{-1} dm = \int_{\mathbb{D}} (g \circ \varphi) f dA = \int_{\mathbb{D}_{0}} (g \circ \varphi) f dA = \sum_{n=1}^{\infty} \int_{D_{n}} (g \circ \varphi) f dA$$
$$= \sum_{n=1}^{\infty} \int_{\varphi(\mathbb{D}_{0})} g\chi_{\varphi(D_{n})} \frac{f \circ \varphi_{n}^{-1}}{|\varphi' \circ \varphi_{n}^{-1}|^{2}} dm = \int_{\varphi(\mathbb{D}_{0})} g\left(\sum_{n=1}^{\infty} \chi_{\varphi(D_{n})} \frac{f \circ \varphi_{n}^{-1}}{|\varphi' \circ \varphi_{n}^{-1}|^{2}}\right) dm.$$

For each $w \in \varphi(\mathbb{D})$, let $\{z \in \mathbb{D}: \varphi(z) = w\} = \{\xi_j(w)\}_{j \ge 1}$. Then

$$\sum_{n=1}^{\infty} \chi_{\varphi(D_n)}(w) \frac{f \circ \varphi_n^{-1}}{|\varphi' \circ \varphi_n^{-1}|^2} = \sum_{\{z \in \mathbb{D}_0: \ \varphi(z) = w\}} \frac{f(z)}{|\varphi'(z)|^2} = \sum_{j \ge 1} \frac{f(\xi_j(w))}{|\varphi'(\xi_j(w))|^2},$$

for any $w \notin \varphi(\mathbb{D} \setminus \mathbb{D}_0)$. Thus

$$\int_{\varphi(\mathbb{D})} gh\mathcal{E}_{\mathcal{A}}(f) \circ \varphi^{-1} dm = \int_{\varphi(\mathbb{D})} g(w) \left(\sum_{j \ge 1} \frac{f(\xi_j(w))}{|\varphi'(\xi_j(w))|^2} \right) dm(w),$$

and so

$$h(w)\mathcal{E}_{\mathcal{A}}(f)\circ\varphi^{-1}(w) = \sum_{j\geqslant 1} \frac{f(\xi_j(w))}{|\varphi'(\xi_j(w))|^2} \quad (w\in\varphi(\mathbb{D})).$$
(2.1)

If $f \in L^p_a(\mathbb{D})$, we may write $f = \sum_{k=0}^3 i^k f_k$ with $0 \leq f_k \in L^p(\mathbb{D}, \mathcal{M}, A)$ ($f_0 = u^+$, etc.; where $u = \Re(f)$). Also, since $\mathcal{E}_{\mathcal{A}}(g_0 + g_1) \circ \varphi^{-1} = \mathcal{E}_{\mathcal{A}}(g_0) \circ \varphi^{-1} + \mathcal{E}_{\mathcal{A}}(g_1) \circ \varphi^{-1}$, for all $g_0, g_1 \in L^p(\mathbb{D}, \mathcal{M}, A)$, it follows that (2.1) holds for each $f \in L^p_a(\mathbb{D})$. Note that if h is constant, then for each $\xi_i(w)$ and $\xi_j(w)$,

$$\mathcal{E}_{\mathcal{A}}(f)\big(\xi_i(w)\big) = \mathcal{E}_{\mathcal{A}}(f)\big(\xi_j(w)\big).$$

If we take f = 1 in (2.1), we get that

$$h(w) = \sum_{j \ge 1} \frac{1}{|\varphi'(\xi_j(w))|^2}.$$
(2.2)

Let $w = \varphi(\xi)$ with $\xi \in \{\xi_j(w)\}_{j \ge 1}$. Then by (2.1) and (2.2), we have

$$\mathcal{E}_{\mathcal{A}}(f)(\xi) = \frac{\sum_{j \ge 1} \frac{f(\xi_j(w))}{|\varphi'(\xi_j(w))|^2}}{\sum_{j \ge 1} \frac{1}{|\varphi'(\xi_j(w))|^2}}.$$

Let $a, b \in \mathbb{D}_0$. We say that a is equivalent with b with respect to φ if $\varphi(a) = \varphi(b) \in \{\xi_j(w)\}_{j \ge 1}$, for some $w \in \varphi(\mathbb{D}_0)$. The equivalent classes are denoted by $\frac{\mathbb{D}_0}{\sim} = \{\{\xi_j(w)\}_{j \ge 1}: w \in \varphi(\mathbb{D}_0)\}$. For suitable $g \in A(\mathbb{D})$ define the function ω_g on \mathbb{D} by

$$\omega_{g}^{j}(\xi) = \frac{\frac{1}{|g(\xi_{j}(w))|^{2}}}{\sum_{j \ge 1} \frac{1}{|g(\xi_{j}(w))|^{2}}}$$

Then the function ω_{φ}^{j} is constant on each element of $\frac{\mathbb{D}_{0}}{\sim}$; that is, for each $w \in \varphi(\mathbb{D})$, $\omega_{\varphi}^{j}|_{\{\xi_{j}(w)\}_{j\geq 1}} = c_{w}$, for some constant c_{w} . Let $\varphi^{-1}(w) = \{\xi_{1}(w), \dots, \xi_{n}(w)\}$ be distinct points in \mathbb{D} . Then for $i = 1, \dots, n$, there exist f_{1}, \dots, f_{n} in $L_{a}^{p}(\mathbb{D})$ satisfying $f_{i}(\xi_{i}(w)) = 1$ and $f_{i}(\xi_{j}(w)) = 0$ for $i \neq j$. It follows that $\omega_{\varphi'}^{j} = \mathcal{E}_{\mathcal{A}}(f_{j})$ is constant on $\varphi^{-1}(w)$. Now, if $\mathcal{E}_{\mathcal{A}}(L_{a}^{p}(\mathbb{D})) \subseteq L_{a}^{p}(\mathbb{D})$, then the real-valued function $\mathcal{E}_{\mathcal{A}}(f_{j})$ must be analytic. It follows that $\omega_{\varphi'}^{j}$ is constant on \mathbb{D}_{0} (see [1, Lemma 6]). These observations establish the following theorem.

Theorem 2.1. Suppose that $\mathcal{A} = \mathcal{A}(\varphi)$ for some $\varphi \in \mathcal{A}(\mathbb{D})$ with finite multiplicity. For $w \in \varphi(\mathbb{D})$, let $\varphi^{-1}(w) = \{\xi_j(w)\}_{j \ge 1}$ be a level set. Suppose that none of the $\xi_j(w)$ belongs to $\{z: \varphi'(z) = 0\}$ and that $w \notin f(\mathbb{T})$. Then for every f in $L^p_a(\mathbb{D})$ and ξ in $\varphi^{-1}(w)$,

$$\mathcal{E}_{\mathcal{A}}(f)(\xi) = \frac{\sum_{j \ge 1} \frac{f(\xi_j(w))}{|\varphi'(\xi_j(w))|^2}}{\sum_{j \ge 1} \frac{1}{|\varphi'(\xi_j(w))|^2}}.$$

Also, the function ω defined as

$$\omega(\xi) = \frac{\frac{1}{|\varphi'(\xi_j(w))|^2}}{\sum_{j \ge 1} \frac{1}{|\varphi'(\xi_j(w))|^2}},$$

is constant on each level set. In particular if $\mathcal{E}_{\mathcal{A}}\mathcal{P} = \mathcal{P}\mathcal{E}_{\mathcal{A}}$, then ω is constant on \mathbb{D} .

Theorem 2.2. Let $\mathcal{A} = \mathcal{A}(\varphi)$ for some $\varphi \in \mathcal{A}(\mathbb{D})$ with finite multiplicity. If for each $w \in \mathbb{C}$, $|\varphi'|$ is constant on the set $\varphi^{-1}(w) \cap \mathbb{D}_0 = \{\xi_1, \ldots, \xi_{n_w}\} \cap \mathbb{D}_0$, then $\mathcal{E}_{\mathcal{A}}(L^p_a(\mathbb{D})) \subseteq L^p_a(\mathbb{D})$. Conversely, if $\mathcal{E}_{\mathcal{A}}(L^p_a(\mathbb{D})) \subseteq L^p_a(\mathbb{D})$ and $\varphi(\mathbb{T})$ is contained in the boundary of $\varphi(\mathbb{D})$, then $|\varphi'|$ is constant on the set \mathbb{D}_0 .

Proof. If $|\varphi'|$ is constant on the set $\{\xi_1, \ldots, \xi_{n_w}\} \cap \mathbb{D}_0$, then by Theorem 2.1, we have

$$\mathcal{E}_{\mathcal{A}}(f)(\xi) = \frac{\sum_{k=1}^{n_w} f(\xi_k) \frac{1}{|\varphi'(\xi_k)|^2}}{\sum_{k=1}^{n_w} \frac{1}{|\varphi'(\xi_k)|^2}} = \frac{1}{n_w} \sum_{k=1}^{n_w} f(\xi_k)$$

for all f in $L^p_a(\mathbb{D})$ and every ξ in $f^{-1}(w)$, which implies that $\mathcal{E}_{\mathcal{A}}(f) \in L^p_a(\mathbb{D})$. Now, suppose that $\mathcal{E}_{\mathcal{A}}(L^p_a(\mathbb{D})) \subseteq L^p_a(\mathbb{D})$. Since by Theorem 2.1, ω is constant on \mathbb{D}_0 , then for each ξ_i and ξ_j in the level set $\varphi^{-1}(w)$, $\varphi(\xi_i) = \varphi(\xi_j)$, and so $|\varphi'(\xi_i)| = |\varphi'(\xi_j)|$, which completes the proof. \Box

Example 2.3. (a) Let $\varphi_1(z) = z^n$ and let $\varphi_2(z) = \alpha z^2 + \beta z + \gamma$, where α, β and γ are real numbers. Then $|\varphi'_1|$ and $|\varphi'_2|$ are constant on the level sets. Thus, $\mathcal{E}_{\mathcal{A}(\varphi_i)}\mathcal{P} = \mathcal{P}\mathcal{E}_{\mathcal{A}(\varphi_i)}$. Indeed, for each $f \in L^p_a(\mathbb{D})$, we have

$$\mathcal{E}_{\mathcal{A}(\varphi_1)}(f)(\xi) = \frac{1}{n} \sum_{k=1}^n f(\xi_k),$$

$$\mathcal{E}_{\mathcal{A}(\varphi_2)}(f)(\xi) = \frac{1}{2} f(\xi) + \frac{1}{2} f\left(-\frac{\beta + \alpha\xi}{\alpha}\right)$$

which is the same formula that we derived in the first part of Theorem 2.2.

(b) If $\varphi(z) = z^3 - 1$, then $|\varphi'|$ is not constant on the level sets. Then by Theorem 2.2, $\mathcal{E}_{\mathcal{A}}(L_a^p(\mathbb{D})) \not\subseteq L_a^p(\mathbb{D})$, and so $\mathcal{E}_{\mathcal{A}}\mathcal{P} \neq \mathcal{P}\mathcal{E}_{\mathcal{A}}$. However if we compute the formula of $\mathcal{E}_{\mathcal{A}}$, then we obtain this result, since the term $|\xi|^2$ is appeared in the formula for $\mathcal{E}_{\mathcal{A}}(f)(\xi)$ and $|\xi|^2$ is not analytic. Indeed, for each $f \in L_a^p(\mathbb{D})$, we have

$$\mathcal{E}_{\mathcal{A}(\varphi)}(f)(\xi) = \frac{1}{\sum_{k=1}^{3} \frac{1}{|\varphi'(\xi_k)|^2}} \bigg(f(\xi) \frac{1}{9|\xi|^4} + \cdots \bigg).$$

Acknowledgments

The authors would like to thank the referees for their useful comments.

References

- [1] B.J. Carswell, M.I. Stessin, Conditional expectation and the Bergman projection, J. Math. Anal. Appl. 341 (2008) 270-275.
- [2] A. Lambert, Localizing sets for sigma-algebras and related point transformations, Proc. Roy. Soc. Edinburgh Sect. A 188 (1991) 111-118.
- [3] M.M. Rao, Conditional Measure and Applications, Marcel Dekker, New York, 1993.