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1. Introduction and preliminaries

Let (X, M, ) be a complete sigma-finite measure space and let A be a sigma-algebra of M such that (X, A, i)
is also sigma-finite. The collection of (equivalence classes modulo sets of zero measure) M-measurable complex-valued
functions on X will be denoted L%(M), with L°(A4) being likewise defined for .A-measurable functions. Moreover, we let
LP(M) =LP(X, M, ) and LP(A) = LP(X, A, it ), for 1 < p < oo. Also its norm is denoted by ||.[|, on which LP(A) is a
Banach subspace of LP (M). A consequence of the Radon-Nikodym theorem is that to each nonnegative function f € L%(M)
there exists a unique nonnegative £ 4(f) € L9(A) such that

[ ran= [ easran
A A

for all A € A. The function £4(f) is called the conditional expectation of f with respect to .A. This can be extended to
real-valued and complex-valued functions by examining the conditional expectations of the positive and negative parts (in
the case of real-valued functions), and the real and imaginary parts (for complex-valued functions). If £4(f) exists for a
function f € L%(M), then we say f is conditionable. One can show that every LP(X) function is conditionable; therefore,
a linear transformation & 4 : LP (M) — LP(A) can be defined by f > £ 4(f). It is clear that £ 4 is an idempotent, and in the
case of p =2, it is the orthogonal projection of L?>(M) onto L?(.A). For more details on the properties of £4 on abstract
measurable function spaces see [2] and [3]. It seems that in the operator theory of analytic function spaces, the operation
of conditional expectation has not got the attention that it deserves.

Let M be the sigma-algebra of Lebesgue-measurable sets in D = {z € C: |z|] < 1} and let A be the normalized area
measure on D). Recall that the Bergman space L} (D) = LE (D, M, A) consists of all analytic functions in L (D, M, A), that
is, the functions f analytic in D whose area integral

IfFIb =/ |f@)|"dA®)
D

* Corresponding author.
E-mail addresses: mjabbar@tabrizu.ac.ir (M.R. Jabbarzadeh), m_hasanloo@tabrizu.ac.ir (M. Hassanloo).
1 The first author is supported by the University of Tabriz (No. S. 27127613).

0022-247X/$ - see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2011.06.056


http://dx.doi.org/10.1016/j.jmaa.2011.06.056
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:mjabbar@tabrizu.ac.ir
mailto:m_hasanloo@tabrizu.ac.ir
http://dx.doi.org/10.1016/j.jmaa.2011.06.056

M.R. Jabbarzadeh, M. Hassanloo / J. Math. Anal. Appl. 385 (2012) 322-325 323

is finite. The analog of the Riesz projection is the Bergman projection P which (for 1 < p < oo) takes the function f in
LP(D, M, A) to the function P(f) in L¥ (D) and is given by the formula

[ f@
P = [ 22 daa. web.
D

Note that if £4P = PE4 on LP(D, M, A), then LE(D) is invariant under the conditional expectation operator £4; i.e.,
EA(LE D)) C L (D). a

Let A(D) denote the space of all functions analytic on D and continuous on D. The algebra A(DD) is known as the disk
algebra. Let ¢ € A(D). We say that ¢ has finite multiplicity if there exists N € N such that for each w € ¢ (D), the level set
o H(w) = {€j(w)}j>1 contains at most N points. By A = .4(¢) we denote the sigma-algebra generated by {o~1(U): UC
C is open}. Let m be the Lebesgue measure on C. Since the finite measure A o ¢! is absolutely continuous with respect

1 .
to m, we have h := dA;n‘f almost everywhere finite valued.

The conditional expectation operators on the Bergman spaces were first studied by Carswell and Stessin in [1]. Our
purpose in this note is partially answering to this question: which sigma-algebras of measurable subsets of D have the
property that £4P =PE 4. In [1] Carswell and Stessin proved that for ¢(z) = z", this property holds and found the formula
for £4 by assuming E4P = PE 4. We prove this formula without this condition. Also, we extend some results in [1] to
larger classes of conditional expectation operators generated by the symbol function ¢ on the Bergman spaces.

2. Main results

Let Dp = {z € D: ¢'(z) # 0}. The set D\Dp is at most countable. If z € Dy, then there exists some r, > 0 such that ¢
is one-to-one on D(z,1;). The discs D(z,r;) form a cover for Dy and we can pick a countable subcover {D(z,,r;): n € N}.
Set D1 = D(z1,r1) and D, = D(zn,rn)\UZ:2 Dy_1, for n > 2. So {Dn: n € N} is a pairwise disjoint Borel cover of Dy.
Note that ¢, := ¢|p, maps Dy bijectively to ¢(Dy). So for any nonnegative functions g € L“(w(D),MWD),m‘MW(D)) and
felP(D, M, A) with p > 1, we have
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and so
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For each w € p(D), let {ze D: ¢(2) = w} = {£;(W)}j>1. Then
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for any w ¢ @ (D\Dp). Thus
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If feLl(D), we may write f =3"3_,i*f; with 0< fi € LP(D, M, A) (fo=u, etc.; where u=R(f)). Also, since £ 4(go +
g o ' =E4(g80) 0@ 1 +E4(g1) 0, for all go, g1 € LP(D, M, A), it follows that (2.1) holds for each f € LE (D). Note
that if h is constant, then for each &;(w) and &;(w),

Eaf)(EW)) = Ea()(&j(w)).
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If we take f =1 in (2.1), we get that

1
h = _ 2.2
™ ; /& WP 22
Let w = ¢(§) with & € {§j(w)};>1. Then by (2.1) and (2.2), we have

3o, JE)
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219 Ewy P
Let a,b € Dp. We say that a is equivalent with b with respect to ¢ if ¢(a) = ¢(b) € {§j(W)}j>1, for some w € ¢(Do). The

equivalent classes are denoted by ]D% ={{&j(w)}j>1: w € @(Dp)}. For suitable g € A(D) define the function wg on D by

1
lg & w))?
1

wy(€) = 5 .
JZ21 g w2

Dp.

~

Then the function a)éJ is constant on each element of that is, for each w € (D), a)i;|{5j(w)}j>1 = cy, for some
constant c,,. Let o~ 1(w) = {&(w),...,&(w)} be distinct points in D. Then for i =1,...,n, there exist fi,..., fn in
LY (D) satisfying fi(&i(w)) =1 and fi(£j(w)) =0 for i # j. It follows that w(Jp, = E4(fj) is constant on ¢~1(w). Now, if
6’A(L5(D)) - Lg (D), then the real-valued function € 4(f;) must be analytic. It follows that a)(;, is constant on Dy (see [1,
Lemma 6]). These observations establish the following theorem.

Theorem 2.1. Suppose that A = A(g) for some ¢ € A(ID) with finite multiplicity. For w € (D), let o~ 1 (w) = {£j(W)}j>1 be a level
set. Suppose that none of the £;(w) belongs to {z: ¢’(z) = 0} and that w ¢ f(T). Then for every f in LP(D) and & in o~ 1(w),

o _fEw)
JZ21 19/ (w)) 2
-

EafH)E) =
Yz o’ (Ej(w))[2

Also, the function w defined as

1
g’ (€(w))[?
1 )

w$) =
2z o’ (€j(w))[2

is constant on each level set. In particular if E AP = PE 4, then w is constant on D.
Theorem 2.2. Let A = A(g) for some ¢ € A(D) with finite multiplicity. If for each w € C, |¢'| is constant on the set ¢~ (w) N Dy =
(€1, ..., &n, } N Dy, then EA(LE (D)) C LE (D). Conversely, if £4(LE (D)) € LE (D) and ¢(T) is contained in the boundary of ¢(ID),

then |¢'| is constant on the set Dy.

Proof. If |¢’| is constant on the set {1, ..., &, } N Dy, then by Theorem 2.1, we have

ni f@k),; 1 w
EaNE) = T = = 3 f&
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for all f in LE(D) and every & in f~1(w), which implies that £4(f) € LE (D). Now, suppose that £ 4(LF (D))  LE (D). Since
by Theorem 2.1, w is constant on Dy, then for each &; and £; in the level set e T(w), p&) = @(&j), and so |@' (&) = 1@’ (E))I,
which completes the proof. O

Example 2.3. (a) Let ¢1(z) =z" and let @;(z) = az? + fz+ Y, where «, 8 and y are real numbers. Then lo7] and |@5| are
constant on the level sets. Thus, £ 4(y)P = P& 4(y;)- Indeed, for each f e LP(D), we have

1 n
Eap(NE == f&0),

k=1

1 1
Eap)(NHE) = Ef(f) + §f<—

ﬂ+015>
a

which is the same formula that we derived in the first part of Theorem 2.2.
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(b) If p(z) = 2> — 1, then |¢'| is not constant on the level sets. Then by Theorem 2.2, E4(LE(D)) ¢ LE(D), and so
EAP # PE 4. However if we compute the formula of £ 4, then we obtain this result, since the term |£|2 is appeared in the
formula for £4(f)(€) and |£|? is not analytic. Indeed, for each f e L2 (D), we have

1 1
Eap(NHE) == 1 (f(é)9|$|4 +>
k=1 o' 012
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