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1. Introduction and preliminaries

Let (X, M,μ) be a complete sigma-finite measure space and let A be a sigma-algebra of M such that (X, A,μ|A )

is also sigma-finite. The collection of (equivalence classes modulo sets of zero measure) M-measurable complex-valued
functions on X will be denoted L0(M), with L0(A) being likewise defined for A-measurable functions. Moreover, we let
L p(M) = L p(X, M,μ) and L p(A) = L p(X, A,μ|A ), for 1 � p � ∞. Also its norm is denoted by ‖.‖p on which L p(A) is a
Banach subspace of L p(M). A consequence of the Radon–Nikodym theorem is that to each nonnegative function f ∈ L0(M)

there exists a unique nonnegative E A( f ) ∈ L0(A) such that∫
�

f dμ =
∫
�

EA( f )dμ

for all � ∈ A. The function EA( f ) is called the conditional expectation of f with respect to A. This can be extended to
real-valued and complex-valued functions by examining the conditional expectations of the positive and negative parts (in
the case of real-valued functions), and the real and imaginary parts (for complex-valued functions). If E A( f ) exists for a
function f ∈ L0(M), then we say f is conditionable. One can show that every L p(Σ) function is conditionable; therefore,
a linear transformation E A : L p(M) → L p(A) can be defined by f �→ EA( f ). It is clear that EA is an idempotent, and in the
case of p = 2, it is the orthogonal projection of L2(M) onto L2(A). For more details on the properties of E A on abstract
measurable function spaces see [2] and [3]. It seems that in the operator theory of analytic function spaces, the operation
of conditional expectation has not got the attention that it deserves.

Let M be the sigma-algebra of Lebesgue-measurable sets in D = {z ∈ C: |z| < 1} and let A be the normalized area
measure on D. Recall that the Bergman space L p

a (D) = L p
a (D, M, A) consists of all analytic functions in L p(D, M, A), that

is, the functions f analytic in D whose area integral

‖ f ‖p
p =

∫
D

∣∣ f (z)
∣∣p

dA(z)
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is finite. The analog of the Riesz projection is the Bergman projection P which (for 1 < p < ∞) takes the function f in
L p(D, M, A) to the function P ( f ) in L p

a (D) and is given by the formula

P( f )(w) =
∫
D

f (z)

(1 − wz̄)2
dA(z), w ∈ D.

Note that if EA P = P EA on L p(D, M, A), then L p
a (D) is invariant under the conditional expectation operator E A ; i.e.,

EA(L p
a (D)) ⊆ L p

a (D).
Let A(D) denote the space of all functions analytic on D and continuous on D̄. The algebra A(D) is known as the disk

algebra. Let ϕ ∈ A(D). We say that ϕ has finite multiplicity if there exists N ∈ N such that for each w ∈ ϕ(D), the level set
ϕ−1(w) := {ξ j(w)} j�1 contains at most N points. By A = A(ϕ) we denote the sigma-algebra generated by {ϕ−1(U ): U ⊂
C is open}. Let m be the Lebesgue measure on C. Since the finite measure A ◦ ϕ−1 is absolutely continuous with respect

to m, we have h := dA◦ϕ−1

dm almost everywhere finite valued.
The conditional expectation operators on the Bergman spaces were first studied by Carswell and Stessin in [1]. Our

purpose in this note is partially answering to this question: which sigma-algebras of measurable subsets of D have the
property that EA P = P EA . In [1] Carswell and Stessin proved that for ϕ(z) = zn , this property holds and found the formula
for EA by assuming EA P = P EA . We prove this formula without this condition. Also, we extend some results in [1] to
larger classes of conditional expectation operators generated by the symbol function ϕ on the Bergman spaces.

2. Main results

Let D0 = {z ∈ D: ϕ′(z) �= 0}. The set D\D0 is at most countable. If z ∈ D0, then there exists some rz > 0 such that ϕ
is one-to-one on D(z, rz). The discs D(z, rz) form a cover for D0 and we can pick a countable subcover {D(zn, rn): n ∈ N}.
Set D1 = D(z1, r1) and Dn = D(zn, rn)\⋃n

k=2 Dk−1, for n � 2. So {Dn: n ∈ N} is a pairwise disjoint Borel cover of D0.
Note that ϕn := ϕ|Dn maps Dn bijectively to ϕ(Dn). So for any nonnegative functions g ∈ L∞(ϕ(D), Mϕ(D),m|Mϕ(D)

) and
f ∈ L p(D, M, A) with p � 1, we have∫

Dn

(g ◦ ϕ) f dA =
∫
Dn

g ◦ ϕ
f

|ϕ′|2
∣∣ϕ′∣∣2

dA =
∫

ϕ(Dn)

g
f ◦ ϕ−1

n

|ϕ′ ◦ ϕ−1
n |2 dm

and so ∫
ϕ(D)

ghEA( f ) ◦ ϕ−1 dm =
∫
D

(g ◦ ϕ) f dA =
∫
D0

(g ◦ ϕ) f dA =
∞∑

n=1

∫
Dn

(g ◦ ϕ) f dA

=
∞∑

n=1

∫
ϕ(D0)

gχϕ(Dn)

f ◦ ϕ−1
n

|ϕ′ ◦ ϕ−1
n |2 dm =

∫
ϕ(D0)

g

( ∞∑
n=1

χϕ(Dn)

f ◦ ϕ−1
n

|ϕ′ ◦ ϕ−1
n |2

)
dm.

For each w ∈ ϕ(D), let {z ∈ D: ϕ(z) = w} = {ξ j(w)} j�1. Then

∞∑
n=1

χϕ(Dn)(w)
f ◦ ϕ−1

n

|ϕ′ ◦ ϕ−1
n |2 =

∑
{z∈D0: ϕ(z)=w}

f (z)

|ϕ′(z)|2 =
∑
j�1

f (ξ j(w))

|ϕ′(ξ j(w))|2 ,

for any w /∈ ϕ(D\D0). Thus

∫
ϕ(D)

ghEA( f ) ◦ ϕ−1 dm =
∫

ϕ(D)

g(w)

(∑
j�1

f (ξ j(w))

|ϕ′(ξ j(w))|2
)

dm(w),

and so

h(w)EA( f ) ◦ ϕ−1(w) =
∑
j�1

f (ξ j(w))

|ϕ′(ξ j(w))|2
(

w ∈ ϕ(D)
)
. (2.1)

If f ∈ L p
a (D), we may write f = ∑3

k=0 ik fk with 0 � fk ∈ L p(D, M, A) ( f0 = u+ , etc.; where u = 
( f )). Also, since E A(g0 +
g1) ◦ ϕ−1 = EA(g0) ◦ ϕ−1 + EA(g1) ◦ ϕ−1, for all g0, g1 ∈ L p(D, M, A), it follows that (2.1) holds for each f ∈ L p

a (D). Note
that if h is constant, then for each ξi(w) and ξ j(w),

EA( f )
(
ξi(w)

) = EA( f )
(
ξ j(w)

)
.
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If we take f = 1 in (2.1), we get that

h(w) =
∑
j�1

1

|ϕ′(ξ j(w))|2 . (2.2)

Let w = ϕ(ξ) with ξ ∈ {ξ j(w)} j�1. Then by (2.1) and (2.2), we have

EA( f )(ξ) =
∑

j�1
f (ξ j(w))

|ϕ′(ξ j(w))|2∑
j�1

1
|ϕ′(ξ j(w))|2

.

Let a,b ∈ D0. We say that a is equivalent with b with respect to ϕ if ϕ(a) = ϕ(b) ∈ {ξ j(w)} j�1, for some w ∈ ϕ(D0). The

equivalent classes are denoted by D0∼ = {{ξ j(w)} j�1: w ∈ ϕ(D0)}. For suitable g ∈ A(D) define the function ωg on D by

ω
j
g(ξ) =

1
|g(ξ j(w))|2∑

j�1
1

|g(ξ j(w))|2
.

Then the function ω
j
ϕ is constant on each element of D0∼ ; that is, for each w ∈ ϕ(D), ω

j
ϕ |{ξ j(w)} j�1 = cw , for some

constant cw . Let ϕ−1(w) = {ξ1(w), . . . , ξn(w)} be distinct points in D. Then for i = 1, . . . ,n, there exist f1, . . . , fn in
L p

a (D) satisfying f i(ξi(w)) = 1 and f i(ξ j(w)) = 0 for i �= j. It follows that ω
j
ϕ′ = EA( f j) is constant on ϕ−1(w). Now, if

EA(L p
a (D)) ⊆ L p

a (D), then the real-valued function E A( f j) must be analytic. It follows that ω
j
ϕ′ is constant on D0 (see [1,

Lemma 6]). These observations establish the following theorem.

Theorem 2.1. Suppose that A = A(ϕ) for some ϕ ∈ A(D) with finite multiplicity. For w ∈ ϕ(D), let ϕ−1(w) = {ξ j(w)} j�1 be a level
set. Suppose that none of the ξ j(w) belongs to {z: ϕ′(z) = 0} and that w /∈ f (T). Then for every f in L p

a (D) and ξ in ϕ−1(w),

EA( f )(ξ) =
∑

j�1
f (ξ j(w))

|ϕ′(ξ j(w))|2∑
j�1

1
|ϕ′(ξ j(w))|2

.

Also, the function ω defined as

ω(ξ) =
1

|ϕ′(ξ j(w))|2∑
j�1

1
|ϕ′(ξ j(w))|2

,

is constant on each level set. In particular if E A P = P EA , then ω is constant on D.

Theorem 2.2. Let A = A(ϕ) for some ϕ ∈ A(D) with finite multiplicity. If for each w ∈ C, |ϕ′| is constant on the set ϕ−1(w) ∩ D0 =
{ξ1, . . . , ξnw } ∩ D0 , then EA(L p

a (D)) ⊆ L p
a (D). Conversely, if EA(L p

a (D)) ⊆ L p
a (D) and ϕ(T) is contained in the boundary of ϕ(D),

then |ϕ′| is constant on the set D0 .

Proof. If |ϕ′| is constant on the set {ξ1, . . . , ξnw } ∩ D0, then by Theorem 2.1, we have

EA( f )(ξ) =
∑nw

k=1 f (ξk)
1

|ϕ′(ξk)|2∑nw
k=1

1
|ϕ′(ξk)|2

= 1

nw

nw∑
k=1

f (ξk)

for all f in L p
a (D) and every ξ in f −1(w), which implies that E A( f ) ∈ L p

a (D). Now, suppose that EA(L p
a (D)) ⊆ L p

a (D). Since
by Theorem 2.1, ω is constant on D0, then for each ξi and ξ j in the level set ϕ−1(w), ϕ(ξi) = ϕ(ξ j), and so |ϕ′(ξi)| = |ϕ′(ξ j)|,
which completes the proof. �
Example 2.3. (a) Let ϕ1(z) = zn and let ϕ2(z) = αz2 + βz + γ , where α,β and γ are real numbers. Then |ϕ′

1| and |ϕ′
2| are

constant on the level sets. Thus, E A(ϕi)P = P EA(ϕi) . Indeed, for each f ∈ L p
a (D), we have

EA(ϕ1 )( f )(ξ) = 1

n

n∑
k=1

f (ξk),

EA(ϕ2 )( f )(ξ) = 1

2
f (ξ) + 1

2
f

(
−β + αξ

α

)
which is the same formula that we derived in the first part of Theorem 2.2.
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(b) If ϕ(z) = z3 − 1, then |ϕ′| is not constant on the level sets. Then by Theorem 2.2, E A(L p
a (D)) � L p

a (D), and so
EA P �= P EA . However if we compute the formula of E A , then we obtain this result, since the term |ξ |2 is appeared in the
formula for EA( f )(ξ) and |ξ |2 is not analytic. Indeed, for each f ∈ L p

a (D), we have

EA(ϕ)( f )(ξ) = 1∑3
k=1

1
|ϕ′(ξk)|2

(
f (ξ)

1

9|ξ |4 + · · ·
)

.
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