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1. Introduction and Preliminaries

Let (X ,Σ,µ) be a complete σ -finite measure space. For any complete σ -finite subalgebra
A ⊆ Σ and 1 ≤ p ≤ ∞, the Lp-space Lp(X ,A ,µ|A ) is abbreviated to Lp(A ) where µ|A is
the restriction of µ to A . Also its norm is denoted by ‖.‖p on which Lp(A ) is a Banach sub-
space of Lp(Σ). We denote the linear space of all complex-valued Σ-measurable functions on
X by L0(Σ). The support of a measurable function f is defined by σ( f ) = {x∈X : f (x) 6= 0}.
Equalities and inequalities between measurable functions and also equality between sets can
be interpreted as the almost everywhere sense, and the set of measure zero, respectively. For
each nonnegative f ∈ L0(Σ) or f ∈ Lp(Σ), by the Radon-Nikodym theorem, there exists a
unique measurable function E( f ) with the following conditions:

(i) E( f ) is A -measurable and integrable,
(ii) If F is any A -measurable set for which

∫
F f dµ exists, we have the functional relation∫

F
f dµ =

∫
F

E( f )dµ.

Now associated with every complete σ -finite subalgebra A ⊆Σ, the mapping E : Lp(Σ)→
Lp(A ), 1≤ p≤∞, uniquely defined by the assignment f 7→ E( f ), is called the conditional
expectation operator with respect to A . The mapping E is a linear operator and, in partic-
ular, it is a contraction operator. In case p = 2, it is the orthogonal projection of L2(Σ) onto
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L2(A ). The role of this operator is important in this note and we list here some of its useful
properties:

• If f is an A -measurable function, then E( f g) = f E(g).
• |E( f )|p ≤ E(| f |p).
• If f ≥ 0 then E( f )≥ 0; if f > 0 then E( f ) > 0.
• σ( f )⊆ σ(E( f )), for each nonnegative f ∈ Lp(Σ).
• E(| f |2) = |E( f )|2 if and only if f ∈ L0(A ).

For more details on the properties of E see [11]. Recall that an A -atom of the measure
µ is an element A ∈ A with µ(A) > 0 such that for each F ∈ Σ, if F ⊆ A then either
µ(F) = 0 or µ(F) = µ(A). A measure space (X ,Σ,µ) with no atoms is called non-atomic
measure space. It is well-known fact that every σ -finite measure space (X ,A ,µ|A ) can
be partitioned uniquely as X = (

⋃
n∈N An)∪B, where {An}n∈N is a countable collection of

pairwise disjoint A -atoms and B, being disjoint from each An, is non-atomic (see [13]).
Let H and K be Hilbert spaces. The set of all bounded linear operators from H into

K is denoted by B(H ,K ). We denote B(H ,H ) simply by B(H ). For T ∈B(H ),
the null-space, the range of T and its spectrum are denoted by N (T ), R(T ) and Sp(T ),
respectively. A subspace M ⊆H is said to be invariant for T ∈B(H ) whenever T (M)⊆
M. Also M reduces T if M is invariant for both T and its adjoint T ∗. Given a B ∈ Σ, we
shall abbreviate the subspace Lp(B,ΣB,µ|ΣB

) to Lp(B) on which ΣB = {B∩∆ : ∆ ∈ Σ}.
Consider L∞(A ) as a subring of the ring L∞(Σ). Define

K∞ := L∞(A )?N (E) =
{[

Mu 0
Mv Mu

]
: u ∈ L∞(A ), v ∈N (E)

}
,

where Mw represents the linear transformation of multiplication by w. This matrix form
for K∞ suggest the viewing K∞ as a ring of L∞(A )-linear operators on the L∞(A )-module
L∞(A )⊕N (E). Note that L∞(A ) = {E f : f ∈ L∞(Σ)} and N (E) = { f −E f : f ∈ L∞(Σ)}.
Since for each g ∈ L∞(A ), f −E f = ( f + g)−E( f + g), thus the representation of the
members of the N (E) is not unique. By these observations, [u] ∈K∞ if and only if

[u] =
[

ME(u) 0
Mu−E(u) ME(u)

]
,

for some u ∈ L∞(Σ). Let u ∈ L0(Σ)∩D(E), where D(E) denotes the domain of E. The
mapping Tu : Lp(Σ)→ Lp(Σ), 1≤ p≤∞, defined by Tu( f ) = uE( f )+ f E(u)−E(u)E( f ) is
called the conditional multiplication operator induced by a weight function u. Note that if u
is an A -measurable function, then Tu = Mu. Define Kp = {Tu : u ∈ L0(Σ)∩D(E) and Tu ∈
B(Lp(Σ))}. For 1≤ p < ∞, although the Lp(Σ) spaces are not rings, however every member
of K∞ has the form Tu ∈B(L∞(Σ)), u ∈ L∞(Σ).

Conditional multiplication operators are closely related to the integral operators (see Ex-
ample 2.1 (b)), averaging operators on order ideals in Banach lattices and to the operators
called conditional expectation-type operators which have been introduced in [1]. Also in
[3], operators that are representable as products involving multiplications and conditional
expectations are studied. Some properties and the applications of conditional multiplica-
tion operators are also studied in [10] and [7]. In this paper we investigate other operator
properties of the members of Kp such as reducibility, closedness of range and compactness.
Meanwhile, their kernel and their spectrum are characterized. Finally we close this note off
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by presenting some examples to illustrate the utility of the results in part. For a beautiful ex-
position of the study of weighted conditional expectation operators on Lp-spaces, see [4, 5]
and the references therein.

2. Characterization of conditional multiplication operators

First note that since R(E) = L2(A ) and E is a projection, the Hilbert space L2(Σ) can be
decomposed into a direct sum of the subspaces L2(A ) and N (E), such that the assignment

f 7→
[

E( f )
f −E( f )

]
is an isometric isomorphism from L2(Σ) onto L2(A )⊕N (E). Also note that the matrices
of the operators Tu and T ∗u with respect the above decomposition, denoted by [Tu] and [T ∗u ],
are the following forms

(2.1) [Tu] =
[

ME(u) 0
Mu−E(u) ME(u)

]
and [T ∗u ] =

[
ME(u) EMu−E(u)

0 ME(u)

]
.

In sense of matrix theory, it should be considered that [Tu] is bounded if for each f ∈ L2(Σ),
the assignment

f 7→ [Tu]
[

E( f )
f −E( f )

]
defines a bounded operator on L2(Σ). A moment’s consideration of Tu’s matrix in (2.1)
shows that Tu is a bounded operator if and only if ME(u) : L2(A )→ L2(A ), ME(u) : N (E)→
N (E) and Mu−E(u) : L2(A )→N (E) are bounded operators. It is known that the bounded-
ness of ME(u) and Mu−E(u) implies that E(u)∈ L∞(A ) and E(|u−E(u)|2)∈ L∞(A ) respec-
tively (see [9]). Since E(|u|2) = E(|u−E(u)|2)+ |E(u)|2, it follows that E(|u|2) ∈ L∞(Σ).

On the other hand, if E(|u|2) ∈ L∞(A ), then E(u) ∈ L∞(A ), because |E(u)|2 ≤ E(|u|2).
Thus the multiplication operator ME(u) is bounded on the subspaces L2(A ) and N (E).
Moreover, in this case, we claim that Mu−E(u) is also bounded. Let f ∈ L∞(A ) be an
arbitrary. Then we have

‖Mu−E(u) f‖2
2 =

∫
X
|u−E(u)|2| f |2dµ =

∫
X

E(|u−E(u)|2)| f |2dµ

=
∫

X
(E(|u|2)−|E(u)|2)| f |2dµ ≤ ‖E(|u|2)‖∞‖ f‖2

2.

Then ‖Mu−E(u)‖≤
√
‖E(|u|2)‖∞. Consequently, an operator Tu : L2(Σ)→ L2(Σ) is bounded

if and only if E(|u|2) ∈ L∞(A ).
Now, let Tu be a bounded linear operator on L2(Σ). Then it is not difficult to verify that

(2.2) [T ∗u Tu] =

[
M|E(u)|2 +EM|u−E(u)|2 EM(ū−E(u))E(u)

ME(u)(u−E(u)) M|E(u)|2

]
and

(2.3) [TuT ∗u ] =

[
M|E(u)|2 ME(u)EMū−E(u)

ME(u)(u−E(u)) Mu−E(u)EMū−E(u) +M|E(u)|2

]
.
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At first glance it can be readily inferred that the matrices (2.2) and (2.3) are equal (entrywise
equality) whenever u = E(u), i.e., u∈ L0(A ). Therefore, by the preceding argument we get
that ‖u‖∞ ≤

√
‖E(|u|2)‖∞. Hence, Tu is normal if and only if u ∈ L∞(A ). Moreover, by

the equality of the Tu and T ∗u matrices represented in (2.1), Tu is self-adjoint operator if and
only if u ∈ L∞(A ) is real-valued.

It is well known that if a subspace, taking part in a underlying space decomposition, is
invariant for an operator then its corresponding block must be zero in its matrix representa-
tion. These observations establish the following proposition.

Proposition 2.1. For a conditional multiplication operator Tu on L2(Σ), the following as-
sertions hold.

(a) Tu is a bounded operator if and only if E(|u|2) ∈ L∞(A ).
(b) The bounded operator Tu is normal if and only if u ∈ L∞(A ).
(c) The bounded operator Tu is self-adjoint operator if and only if u ∈ L∞(A ) is real-

valued.
(d) N (E) is invariant subspace for Tu.
(e) L2(A ) reduces Tu if and only if u is an A -measurable function, i.e., Tu is a multi-

plication operator.

Lemma 2.1. Let Tu : Lp(Σ)→ Lp(Σ), 1 ≤ p < ∞, be a bounded linear operator. Then
Lp(X \σ(E(u))∩N (E)|σ(u)

⊆N (Tu)⊆ Lp(X \σ(E(u)) where N (E)|σ(u)
= { f ∈ Lp(Σ) :

E( f ) = 0 on σ(u)}.
Proof. For given a non-zero function f ∈ Lp(Σ), let f ∈N (Tu). Then uE( f )+ f E(u)−
E(u)E( f )= 0. Taking the conditional expectation E of both sides equation, gives E(u)E( f )=
0. Thus σ(E(u))∩ σ(E( f )) = /0 and so E( f ) /∈ Lp(σ(E(u)). Since E is a contraction
map we have f /∈ Lp(σ(E(u)). Therefore, f ∈ Lp(X \σ(E(u)) because Lp(Σ) = Lp(X \
σ(E(u))⊕Lp(σ(E(u)).

In other hand, let f ∈ Lp(X \ σ(E(u))∩N (E)|σ(u)
be an arbitrary nonzero function.

Then uE( f ) = 0 and f E(u) = 0. Hence E( f )E(u) = 0 which means that f ∈N (Tu).

Remark 2.1. If the weight function u is nonnegative then N (Tu) = Lp(X \σ(E(u)), since
in this case σ(u)⊆ σ(E(u)), and so Lp(X \σ(E(u))∩N (E)|σ(u)

= Lp(X \σ(E(u)).

In the following theorem we give a necessary and sufficient condition for an operator
Tu : Lp(Σ)→ Lp(Σ), 1≤ p < ∞, for which it has closed range.

Theorem 2.1. Suppose Tu : Lp(Σ)→ Lp(Σ), 1≤ p < ∞, is a bounded linear operator. Then
Tu has closed range if and only if E(|u|p)≥ δ a.e on σ(E(u)) for some δ > 0.

Proof. By Lemma 2.1, if Tu has closed range then Tu is bounded below on Lp(σ(E(u)).
Then there exists a constant k > 0 such that

‖Tu f‖σ(E(u)) ≥ k‖ f‖σ(E(u)), f ∈ Lp(σ(E(u))).

Let δ = k/2 and put U = {x ∈ σ(E(u)) : E(|u|p)(x) < δ}. Suppose on contrary µ(U) > 0.
Since (X ,A ,µ|A ) is σ -finite measure space, we can find a set B ∈ A such that Q := B∩
σ(E(u)) ⊆U with 0 < µ(Q) < ∞. Then the A -measurable characteristic function χQ lies
in Lp(σ(E(u))) and satisfies

‖TuχQ‖p
p =

∫
σ(E(u))

|uχQ|pdµ =
∫

σ(E(u))
|u|pχQdµ =

∫
σ(E(u))

E(|u|p)χQdµ
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≤ δ
p
∫

σ(E(u))
χQdµ = δ

p‖χQ‖p
Lp(σ(E(u)).

This is contrary to the choice of k. Therefore, µ(U) = 0 i.e., E(|u|p)≥ δ a.e on σ(E(u)).
Conversely, suppose E(|u|p)≥ δ a.e on σ(E(u)) and {Tu fn}∞

n=0 be an arbitrary sequence
in R(Tu) such that ‖Tu fn−g‖p→ 0 for some g ∈ Lp(Σ). Hence

E(Tu fn) = E(u)E( fn)
Lp
−→ E(g).

Since, by Proposition 2.9 in [8], E(1/|u|p)χσ(E(u)) = (1/E(|u|p))χσ(E(u)), then we have
(E(1/|u|))pχσ(E(u)) ≤ 1/δ , and so we get that E(1/|u|)≤ 1/δ 1/p a.e. on σ(E(u)). There-
fore, we have∣∣∣∣E(g)

E(u)
χσ(E(u))

∣∣∣∣= ∣∣∣∣E(g)E
(1

u

)
χσ(E(u))

∣∣∣∣≤ |E(g)|E(
1
|u|

)χσ(E(u)) ≤
|E(g)|

δ
1
p

χσ(E(u)).

This follows that E(g)/(E(u))χσ(E(u)) ∈ Lp(σ(E(u))). Consequently,

E( fn)
Lp
−→ E(g)

E(u)
χσ(E(u))

and so

fn
Lp
−→

{
g+E(g)− uE(g)

E(u)

}
χσ(E(u))

E(u)
:= f .

Thus Tu fn
Lp
−→ Tu f and hence g = Tu f , which implies that Tu has closed range.

Lemma 2.2. Let H and K be separable Hilbert spaces. Suppose that A ∈B(H ), B ∈
B(K ) and C ∈B(K ,H ). If A and B are normal operators, then

Sp
([

A C
0 B

])
= Sp(A)∪Sp(B).

Proof. See [2].

Theorem 2.2. Let u be a nonnegative weight function. Then for a bounded conditional
multiplication operator Tu : L2(Σ)→ L2(Σ) we have

Sp(Tu)∪{0}= ess rang{E(u)}∪{0}.

Proof. Let Z = X\σ(E(u)) 6= /0. Since σ(u) ⊆ σ(E(u)) so by making use of T ∗u ’s matrix,
represented in (2.1), we get that L2(Z,A|Z ,µ|Z ) ⊆ N (T ∗u ). Then R(Tu) = N (T ∗u )⊥ ⊆
L2(Zc,A|Zc ,µ|Zc ) which means that Tu is not onto and so 0 ∈ Sp(Tu). On the other hand, a
moment’s consideration of the matrix of T ∗u and Lemma 2.5 show that Sp(Tu) = Sp(T ∗u ) =
Sp(ME(u)) = ess rangE(u).

Theorem 2.3. Suppose (X ,A ,µ|A ) can be partitioned as X = (
⋃

n∈N An)∪B. Then the
bounded linear operator Tu on Lp(Σ) is compact if and only if u(x) = 0 for µ-almost all
x ∈ B and for any ε > 0, the set {n ∈ N : µ(An∩Dε(u)) > 0} is finite, where Dε(u) = {x ∈
X : E(|u|)(x)≥ ε}.

Proof. Recall that Tu is compact if and only if T ∗u = EMū +ME(u)(I−E) is compact. Since
ET ∗u = EMū, so if Tu is compact then EMu is compact. In other hand, if EMu is compact
then ME(u) is compact one since EMu|L2(A ) = Mu. Thus ME(u) is compact operator([12]).
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Eventually T ∗u and in turn Tu are compact operators. Consequently, the compactness of Tu is
equivalent to the compactness of EMu, which is in turn equivalent to the asserted statement
by Theorem 2.2 in [6].

Corollary 2.1. Suppose that (X ,Σ,µ) is a non-atomic measure space. Then the bounded
linear operator Tu on L2(Σ) is compact if and only if it is a zero operator.

Define Lp = {u ∈ L0(Σ)∩D(E) : Tu ∈Kp}. Then for 1 ≤ p < ∞, u ∈ Lp if and only
if E(|u|p) ∈ L∞(A ) (see [7]). Hence for u ∈ Lp one can define its norm by ‖u‖Lp :=

‖E(|u|p)‖1/p
∞ such that (Lp,‖ · ‖Lp) is respected as a normed algebra.

Theorem 2.4. (Lp,‖ · ‖Lp) is a Banach space and for each u ∈ Lp the inequality ‖u‖Lp ≤
‖Tu‖ ≤ 3‖u‖Lp holds.

Proof. First we show that the inequality ‖u‖Lp ≤ ‖Tu‖ ≤ 3‖u‖Lp holds. Suppose u ∈ Lp

and f ∈ L1(A ). Then∫
X

E(|u|p)| f |dµ =
∫

X
|Tu(| f |

1
p )|pdµ = ‖Tu(| f |

1
p )‖p

p ≤ ‖Tu‖p‖ f‖1.

It follows that ‖u‖Lp ≤‖Tu‖. On the other hand, by the properties of conditional expectation
operators, it is easy to see that for each f ∈ Lp(Σ) with ‖ f‖p ≤ 1,

max{‖E(u) f‖p,‖uE( f )‖p,‖E(u)E( f )‖p} ≤ ‖E(|u|p)‖
1
p ,

and so ‖Tu‖ ≤ 3‖u‖Lp .
Now, let {un}∞

n=1 be a Cauchy sequence with respect to the norm ‖ · ‖Lp and let f ∈
Lp(Σ),g ∈ Lq(Σ) with 1/p+1/q = 1 be arbitrary elements. Since

|
∫

X
Tun−um( f )ḡdµ| ≤ 3‖un−um‖Lp‖ f‖p‖g‖q,(2.4)

{Tun}∞
n=1 is a Cauchy sequence in the weak operator topology. By Theorem 4.1 in [10]

the subalgebra {Tu : u ∈ Lp} is a maximal abelian and so it is weakly closed. Therefore,
{Tun−u0}∞

n=1 is weakly convergent to 0 for some u0 ∈ Lp. By the dominated convergence
theorem we have ∫

X
lim
n→∞

(un−u0) f gdµ = lim
n→∞

∫
X

Tun−u0( f )gdµ = 0.

Thus limn→∞(un−u0) = 0 a.e. on X and hereby limn→∞ E(|un−u0|p) = 0 a.e. on X since
E is a contraction map. Eventually, ‖un−u0‖Lp → 0 as n→ ∞.

Example 2.1. (a) Let X = [−π/2,π/2], µ be the Lebesgue measure on the σ -algebra Σ con-
sisting of all Lebesgue measurable subsets of X . Moreover, suppose A is the σ -subalgebra
generated by the all symmetric intervals about origin. For given a f ∈ Lp(Σ), then under the
above hypotheses, E( f ) is just equal to the even part of f i.e., ( f (x)+ f (−x))/2. Define
u(x) = x2 + sinx+1. Then we have

Tu f = (
1
2

sinx+ x2 +1) f (x)+
1
2

sinx f (−x).

It is easy to see that 1≤ E(|u|p) ∈ L∞(A ) on X . Hence by Theorem 2.4 and Theorem 2.10,
Tu is bounded and has closed range.

(b) Let X = [0,1]× [0,1], dµ = dxdy, Σ the Lebesgue subsets of X and let A = {A×
[0,1] : A is a Lebesgue set in [0,1]}. Then, for each f in Lp(Σ), (E f )(x,y) =

∫ 1
0 f (x, t)dt,
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which is independent of the second coordinate. Now, if we take u(x,y) = y−x/8 with p≥ 1,
then for all f ∈ Lp(Σ) we have

(Tu f )(x,y) = (y
−x
8 − 8

8− x
)
∫ 1

0
f (x, t)dt +

8
8− x

f (x,y).

Since E(|u|p)(x,y) = 8/|8− px|, then

‖E(|u|p)‖∞ =
{ 8

8−p 1≤ p < 8
∞ p≥ 8.

Thus, the operator integral Tu is bounded operator on Lp(Σ) if and only if 1 ≤ p < 8.
In this case ‖Tu‖ = (8/(8− p))1/p. Also, X is nonatomic and 1 ≤ E(|u|p) ∈ L∞(A ) on X ,
then by Theorem 2.1 and Corollary 2.1, the bounded operator Tu has closed range but not
compact operator on Lp(Σ). Moreover, when p = 2 then Sp(Tu)∪{0} = [1,8/7]∪{0} by
Theorem 2.2.

Acknowledgment. The authors would like to thank the referee(s) for very helpful com-
ments and valuable suggestions.

References
[1] P. G. Dodds, C. B. Huijsmans and B. de Pagter, Characterizations of conditional expectation-type operators,

Pacific J. Math. 141 (1990), no. 1, 55–77.
[2] H. K. Du and P. Jin, Perturbation of spectrums of 2×2 operator matrices, Proc. Amer. Math. Soc. 121 (1994),

no. 3, 761–766.
[3] J. J. Grobler and B. de Pagter, Operators representable as multiplication-conditional expectation operators, J.

Operator Theory 48 (2002), no. 1, 15–40.
[4] J. D. Herron, Weighted Conditional Expectation Operators of L(p) Space, ProQuest LLC, Ann Arbor, MI,

2004.
[5] J. D. Herron, Weighted conditional expectation operators, Oper. Matrices 5 (2011), no. 1, 107–118.
[6] M. R. Jabbarzadeh, A conditional expectation type operator on Lp spaces, Oper. Matrices 4 (2010), no. 3,

445–453.
[7] M. R. Jabbarzadeh and S. Khalil Sarbaz, Lambert multipliers between Lp spaces, Czechoslovak Math. J.

60(135) (2010), no. 1, 31–43.
[8] A. Lambert, Measurable majorants in L1, Glasgow Math. J. 39 (1997), no. 2, 183–192.
[9] A. Lambert, Lp multipliers and nested sigma-algebras, in Nonselfadjoint Operator Algebras, Operator The-

ory, and Related Topics, 147–153, Oper. Theory Adv. Appl., 104 Birkhäuser, Basel, 1998.
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