Weighted Composition Lambert-Type Operators on L^p Spaces

Y. Estaremi and M. R. Jabbarzadeh

Abstract. In this paper boundedness of a weighted composition Lamberttype operator $T = M_w E M_u C_{\varphi}$ acting between two different $L^p(\Sigma)$ spaces is characterized using some properties of conditional expectation operator. Moreover, we establish criteria for hyponormality for these types of operators on $L^2(\Sigma)$.

Mathematics Subject Classification (2000). 47B47.

Keywords. Conditional expectation, multiplication operators, composition operators, hyponormal operators.

1. Introduction and Preliminaries

Published online: 08 October 2013

For $1 \le p \le \infty$, the L^p -space $L^p(X, \mathcal{A}, \mu|_{\mathcal{A}})$ is abbreviated by $L^p(\mathcal{A})$, and its norm is denoted by $\|.\|_p$. The support of a measurable function f is defined as $\sigma(f) = \{x \in X; f(x) \neq 0\}$. Suppose that φ is a measurable transformation from X into X such that $\mu \circ \varphi^{-1}$ is absolutely continuous with respect to μ , that is, φ is non-singular. Let h be the Radon-Nikodym derivative $d\mu \circ$ $\varphi^{-1}/\mathrm{d}\mu$ and we always assume that h is almost everywhere finite valued or, equivalently $\varphi^{-1}(\Sigma)$ is a sub-sigma finite algebra. We denote the vector space of all equivalence classes of almost everywhere finite-valued measurable functions on X by $L^0(\Sigma)$. All comparisons between two functions or two sets are to be interpreted as holding up to a μ -null set. Let $u \in L^0(\Sigma)$. Then u is said to be conditionable with respect to E if $u \in \mathcal{D}(E) := \{ f \in L^0(\Sigma) : \}$ $E(|f|) \in L^0(\mathcal{A})$. An \mathcal{A} -atom of the measure μ is an element $A \in \mathcal{A}$ with $\mu(A) > 0$ such that for each $F \in \mathcal{A}$, if $F \subseteq A$ then either $\mu(F) = 0$ or $\mu(F) = \mu(A)$. A measure space (X, Σ, μ) with no atoms is called non-atomic measure space. It is well known that every σ -finite measure space $(X, \mathcal{A}, \mu_{\perp_{A}})$ can be partitioned uniquely as $X = (\bigcup_{n \in \mathbb{N}} A_n) \cup B$, where $\{A_n\}_{n \in \mathbb{N}}$ is a countable collection of pairwise disjoint A-atoms and $B \in A$, being disjoint from each A_n , is non-atomic (see [7]).

For a sigma-finite algebra $\mathcal{A} \subseteq \Sigma$, we denote by E the conditional expectation $E^{\mathcal{A}}$ considered as a bounded linear idempotent transformation from

 $L^p(\Sigma)$ on to $L^p(\mathcal{A})$. Those properties of E used in our discussion are summarized below. In all cases, f and g are conditionable functions.

- If g is A-measurable, then E(fg) = E(f)g.
- (Conditional Jensen's inequality) If $\phi : \mathbb{R} \to \mathbb{R}$ is convex and $\phi(f)$ is conditionable, then $E(\phi(f)) \ge \phi(E(f))$.
- If p and p' are conjugate exponents and $f \in L^p(\Sigma)$ and $g \in L^{p'}(\Sigma)$, then $|E(fg)| \leq E(|f|^p)|^{\frac{1}{p}} E(|g|^{p'})|^{\frac{1}{p'}}$.
- For each $f \ge 0$, $\sigma(f) \subseteq \sigma(E(f))$.

A detailed discussion and verification of these properties may be found in [6]. Now, take u and w in $\mathcal{D}(E)$. Then the triple (u, w, φ) induces a weighted composition Lambert-type operator T from $L^p(\Sigma)$ into $L^0(\Sigma)$ defined by $T = M_w E M_u C_{\varphi}$, where M_u and M_w are multiplication operators and C_{φ} is a composition operator. Throughout this paper we assume that $u\mathcal{R}(C_{\varphi}) \subset \mathcal{D}(E)$, $w \in \mathcal{D}(E)$, $E = E^{\mathcal{A}}$, $E_{\varphi} = E^{\varphi^{-1}(\Sigma)}$, φ is non-singular and $T = M_w E M_u C_{\varphi}$, where $\mathcal{R}(C_{\varphi})$ denotes the range of C_{φ} .

A combination of conditional expectation operators and multiplication operators appears more often in the service of the study of other operators, such as operators generated by random measures [2], Markov operators, and Reynolds and averaging operators [6].

Some results of this article are a generalization of the work done in [4,3,1]. In the next section, the boundedness of T acting between two different $L^p(\Sigma)$ spaces are characterized by using some properties of conditional expectation operator. In Sect. 2, we discuss the measure theoretic characterizations for hyponormality of T on $L^2(\Sigma)$.

2. Weighted Composition Lambert-Type Operators

In this section, we give some sufficient and necessary conditions for boundedness of $T = M_w E M_u C_{\varphi}$ acting between two $L^p(\Sigma)$ spaces.

Theorem 2.1. Let $1 and let <math>T : L^p(\Sigma) \to L^p(\Sigma)$ be a weighted composition Lambert-type operator $T = M_w E M_u C_{\varphi}$.

- (i) If $J_1 := hE_{\varphi}(E(|v|^{p'}))^{p/p'} \circ \varphi^{-1} \in L^{\infty}(\Sigma)$, then the operator T is bounded, where $v := u(E(|w|^p)^{1/p})$ and p' is the conjugate exponents to p.
- (ii) If $\varphi^{-1}(\Sigma) \subseteq \mathcal{A}$ and T is bounded, then $J_2 := hE_{\varphi}(|E(v)|)^p \circ \varphi^{-1} \in L^{\infty}(\Sigma)$, where $v := u(E(|w|^p)^{1/p})$.

Proof. (i) Let $f \in L^p(\Sigma)$ and $v = u(E(|w|^p))^{1/p}$. Then we have

$$||Tf||_p^p = \int_X |w|^p |E(uf \circ \varphi)|^p d\mu = \int_X E(|w|^p) |E(uf \circ \varphi)|^p d\mu$$
$$= \int_Y |E(u(E(|w|^p))^{\frac{1}{p}} f \circ \varphi)|^p d\mu = ||EM_v C_{\varphi} f|_p^p.$$

It follows that T is bounded if and only if the operator EM_vC_{φ} from $L^p(\Sigma)$ into $L^p(A)$ is bounded. Now, let $f \in L^p(\Sigma)$. Then, by conditional type Hölder inequality, we have

$$\begin{split} \|EM_{v}C_{\varphi}f\|_{p}^{p} &= \int\limits_{X} |E(vf \circ \varphi)|^{p} d\mu \leq \int\limits_{X} (E(|v|^{p'}))^{\frac{p}{p'}} E(|f|^{p} \circ \varphi) d\mu \\ &= \int\limits_{X} (E(|v|^{p'}))^{\frac{p}{p'}} |f|^{p} \circ \varphi d\mu = \int\limits_{X} hE_{\varphi}((E(|v|^{p'}))^{\frac{p}{p'}}) \circ \varphi^{-1} |f|^{p} d\mu = \int\limits_{X} J_{1}|f|^{p} d\mu. \end{split}$$

This implies that $||T|| \le ||J_1||_{\infty}^{1/p}$, and so T is bounded.

(ii) Let $A \in \Sigma$ with $0 < \mu(A) < \infty$. Then

$$\int_{A} J_{2} d\mu = \int_{X} |E(v)|^{p} \chi_{A} \circ \varphi d\mu = \int_{X} |E(v\chi_{A} \circ \varphi)|^{p} d\mu$$
$$= ||T(\chi_{A})||_{p}^{p} \leq ||T||^{p} \int_{X} \chi_{A} d\mu = \int_{A} ||T||^{p} d\mu,$$

where $v = u(E(|w|^p))^{1/p}$. It follows that $J_2 \leq ||T||^p$, and so $J_2 \in L^{\infty}(\Sigma)$.

Note that, $A = \Sigma$ if and only if E = I, the identity operator, and if φ is the identity map, then $E_{\varphi} = I$. Then we have the following corollary.

- Corollary 2.2. (i) If $hE_{\varphi}(|w|^p) \circ \varphi^{-1}(E_{\varphi}(|u|^{p'}))^{p/p'} \circ \varphi^{-1} \in L^{\infty}(\Sigma)$, then the operator $T_{\varphi} := M_w E_{\varphi} M_u C_{\varphi}$ is bounded on $L^p(\Sigma)$ with $1 . Conversely, if <math>T_{\varphi}$ is bounded, then $h(|E_{\varphi}(u)|^p \circ \varphi^{-1})(E_{\varphi}(|w|^p) \circ \varphi^{-1}) \in L^{\infty}(\Sigma)$.
 - (ii) The weighted Lambert-type operator M_wEM_u from $L^p(\Sigma)$ into $L^p(\Sigma)$ is bounded if and only if $(E|w|^p)^{1/p}(E|u|^{p'})^{1/p'} \in L^{\infty}(\mathcal{A})$, and in this case its norm is given by $||M_wEM_u|| = ||(E(|w|^p))^{1/p}(E(|u|^{p'}))^{1/p'}||_{\infty}$.
- (iii) The weighted composition operator $uC_{\varphi} = M_uC_{\varphi}$ from $L^p(\Sigma)$ into $L^p(\Sigma)$ is bounded if and only if $J_{\varphi} := hE_{\varphi}(|u|^p) \circ \varphi^{-1} \in L^{\infty}(\Sigma)$.

Theorem 2.3. Let $1 < q < p < \infty$ and let p', q' be the conjugate exponents to p and q, respectively. Then the following assertions hold.

- (i) If $S_1 := hE_{\varphi}(E(|v|^{q'}))^{q/q'} \circ \varphi^{-1}$ and $S_1^{1/q} \in L^r(\Sigma)$, then the weighted composition Lambert-type operator T from $L^p(\Sigma)$ to $L^q(\Sigma)$ is bounded, where $v := u(E(|w|^q)^{1/p})$ and 1/p + 1/r = 1/q.
- (ii) If $\varphi^{-1}(A) \subset A$ and T from $L^p(\Sigma)$ to $L^q(\Sigma)$ is bounded, then $S_2^{1/q} \in L^r(\Sigma)$, where $S_2 := hE_{\varphi}(|E(v)|)^q \circ \varphi^{-1}$.
- *Proof.* (i) Let $f \in L^p(\Sigma)$ and $S_1^{1/q} \in L^r(\Sigma)$. Then, by Hölder and conditional Jensen's inequalities, we have

$$||Tf||_{q}^{q} = ||EM_{v}C_{\varphi}f||_{q}^{q} = \int_{X} |E(vf \circ \varphi)|^{p} d\mu \le \int_{X} (E(|v|^{q'}))^{\frac{q}{q'}} E(|f|^{q} \circ \varphi) d\mu$$
$$= \int_{X} (E(|v|^{q'}))^{\frac{q}{q'}} |f|^{q} \circ \varphi d\mu = \int_{X} hE_{\varphi}((E(|v|^{q'}))^{\frac{q}{q'}}) \circ \varphi^{-1} |f|^{q} d\mu$$

$$\leq \left(\int\limits_X S_1^{\frac{r}{q}}\mathrm{d}\mu\right)^{\frac{q}{r}} \left(\int\limits_X |f|^p \mathrm{d}\mu\right)^{\frac{q}{p}} = \|S_1^{\frac{1}{q}}\|_r^q \ \|f\|_p^q.$$

This implies that $||T|| \le ||S_1^{1/q}||_r$, and so T is bounded.

(ii) Define linear functional Λ on $L^{\frac{p}{q}}(\mathcal{A})$ by

$$\Lambda(f) = \int_X S_2 f \mathrm{d}\mu.$$

Since T is bounded, for each $f \in L^{\frac{p}{q}}(\mathcal{A})$ we get that

$$\begin{split} |\Lambda(f)| &\leq \int_X E\left(hE_{\varphi}(|E(v)|)^q \circ \varphi^{-1}\right) |f| \mathrm{d}\mu = \int_X |E(v)|^q |f| \circ \varphi \mathrm{d}\mu \\ &= \int_Y |E(v|f|^{\frac{1}{q}} \circ \varphi)|^q \mathrm{d}\mu = \|EM_v C_{\varphi}(|f|^{\frac{1}{p}})\|_q^q = \|T(|f|^{\frac{1}{q}})\|_q^q \leq \|T\|^q \|f\|_{\frac{p}{q}}. \end{split}$$

Hence, Λ is bounded linear functional on $L^{\frac{p}{q}}(\mathcal{A})$. By the Hahn–Banach theorem, we can suppose that Λ is a bounded linear functional on $L^{\frac{p}{q}}(\Sigma)$ and $\|\Lambda\| \leq \|T\|^q$. Thus by the Riesz representation theorem, $S_2^{1/q} \in L^r(\Sigma)$.

Corollary 2.4. Let $1 < q < p < \infty$ and let 1/p + 1/r = 1/q. Then the weighted composition operator uC_{φ} from $L^p(\Sigma)$ to $L^q(\Sigma)$ is bounded if and only if $J_q := hE_{\varphi}(|u|^q) \circ \varphi^{-1} \in L^{r/q}(\Sigma)$.

Suppose that $X = (\cup_{n \in \mathbb{N}} C_n) \cup C$, where $\{C_n\}_{n \in \mathbb{N}}$ is a countable collection of pairwise disjoint Σ -atoms and $C \in \Sigma$, being disjoint from each C_n , is non-atomic. Note that $(\cup_{n \in \mathbb{N}} C_n) \cap A \subseteq \cup_{n \in \mathbb{N}} A_n$ and $B \subseteq C$.

Theorem 2.5. Let $1 , <math>v = u(E(|w|^q)^{1/p}$ and let $T : L^p(\Sigma) \to L^q(\Sigma)$ be a weighted composition Lambert-type operator.

- (i) Let $K_1 := hE_{\varphi}(E(|v|^q))^{q/q'} \circ \varphi^{-1}$ and let $M := \sup_{n \in \mathbb{N}} \frac{K_1(C_n)}{\mu(C_n)^{q/r}}$, where p', q' be the conjugate exponents to p and q, respectively, and 1/q + 1/r = 1/p. If $K_1 = 0$ on C and $M < \infty$, then T is bounded.
- (ii) Let $\varphi^{-1}(\mathcal{A}) \subset \mathcal{A}$ and let $N =: \sup_{n \in \mathbb{N}} \frac{E(K_2)^{1/q}(A_n)}{\mu(A_n)^{1/r}}$. If T is bounded, then $K_2 := hE_{\varphi}(|E(v)|)^q \circ \varphi^{-1} = 0$ on B and $N < \infty$.
- *Proof.* (i) Let $f \in L^p(\Sigma)$ with $||f||_p = 1$. Then, by conditional Jensen's inequality, we have

$$||Tf||_{q}^{q} = ||EM_{v}C_{\varphi}f||_{q}^{q} = \int_{X} |E(vf \circ \varphi)|^{q} d\mu \le \int_{X} (E(|v|^{q'}))^{\frac{q}{q'}} E(|f|^{q} \circ \varphi) d\mu$$

$$= \int_{X} (E(|v|^{q'}))^{\frac{q}{q'}} |f|^{q} \circ \varphi d\mu = \int_{X} K_{1}|f|^{q} d\mu = \sum_{n \in N} K_{1}(C_{n})|f(C_{n})|^{q} \mu(C_{n})$$

$$= \sum_{n \in N} \frac{K_{1}(C_{n})}{\mu(C_{n})^{\frac{q}{r}}} (|f(C_{n})|^{q} \mu(C_{n}))^{\frac{q}{p}} \le M < \infty.$$

This implies that $||T|| \leq M^{1/q}$, and so T is bounded.

(ii) First, we show that $E(K_2) = 0$ on B. Suppose on the contrary. Thus, we can find some $\delta > 0$ such that $\mu(\{x \in B : E(K_2)(x) > \delta\}) > 0$. Take $F = \{x \in B : E(K_2)(x) > \delta\}$. Since $F \subseteq B$ is a A-measurable set and A is σ -finite, then for each $n \in \mathbb{N}$ there exists $F_n \subseteq F$ with $F_n \in A$ such that $\mu(F_n) = \mu(F)/2^n$. Define $f_n = \frac{\chi F_n}{\mu(F_n)^{1/p}}$. Then $f_n \in L^p(A)$ with $\|f_n\|_p = 1$. Since T is bounded and $\frac{q}{n} > 1$, we get that

$$\infty > ||T||^{q} = ||EM_{v}C_{\varphi}||^{q} \ge ||E(vf_{n} \circ \varphi)||_{q}^{q} = \frac{1}{\mu(F_{n})^{\frac{q}{p}}} \int_{F_{n}} |E(v)|^{q} d\mu
= \frac{1}{\mu(F_{n})^{\frac{q}{p}}} \int_{F_{n}} K_{2} d\mu \ge \frac{\delta\mu(F_{n})}{\mu(F_{n})^{\frac{q}{p}}} = \delta\mu(F_{n})^{1-\frac{q}{p}} = \delta\left(\frac{2^{n}}{\mu(F)}\right)^{\frac{q}{p}-1} \longrightarrow \infty,$$

when $n \to \infty$. But, this is a contradiction. It follows that $K_2 = 0$ on B, since $K_2 \ge 0$. It remains to prove $N < \infty$. Take $f_n = \frac{\chi_{A_n}}{\mu(A_n)^{1/p}}$. Hence $f_n \in L^p(\mathcal{A})$ with $||f_n||_p = 1$. Then we have

$$\begin{split} &\frac{E(K_2)(A_n)}{\mu(A_n)^{\frac{q}{r}}} = \frac{E(K_2)(A_n)\mu(A_n)}{\mu(A_n)^{\frac{q}{p}}} = \int\limits_{A_n} \frac{E(K_2)}{\mu(A_n)^{\frac{q}{p}}} \mathrm{d}\mu \\ &= \int\limits_X \frac{E(K_2)\chi_{A_n}}{\mu(A_n)^{\frac{q}{p}}} \mathrm{d}\mu = \int\limits_X \frac{K_2\chi_{A_n}}{\mu(A_n)^{\frac{q}{p}}} \mathrm{d}\mu = \|E(vf_n \circ \varphi)\|_q^q \le \|EM_vC_\varphi\|^q = \|T\|^q. \end{split}$$

Corollary 2.6. Let 1 and let <math>1/q + 1/r = 1/p. Then the weighted composition operator uC_{φ} from $L^p(\Sigma)$ to $L^q(\Sigma)$ is bounded if and only if $J_q = 0$ on C and $\sup_{n \in \mathbb{N}} J_q(C_n)/\mu(C_n)^{q/r} < \infty$.

This implies that $N \leq ||EM_nC_{i,o}|| < \infty$.

Theorem 2.7. Let $1 < q < \infty$, $v = u(E(|w|^q)^{1/q} \text{ and let } T : L^1(\Sigma) \to L^q(\Sigma)$ be a weighted composition Lambert-type operator.

- (i) If $K_1 = 0$ on C and $M_1 := \sum_{n \in \mathbb{N}} \frac{K_1(C_n)}{\mu(C_n)^{q-1}} < \infty$, then T is bounded.
- (ii) If $\varphi^{-1}(\mathcal{A}) \subset \mathcal{A}$ and T is bounded, then $E(K_2) = 0$ on B and $N_1 := \sup_{n \in \mathbb{N}} \frac{E(K_2)^{1/q}(A_n)}{\mu(A_n)^{1-1/q}} < \infty$.

Proof. (i) Let $f \in L^1(\Sigma)$ with $||f||_1 = 1$. Then, by conditional Jensen's inequality, we have

$$||Tf||_q^q = ||EM_v C_{\varphi} f||_q^q = \int_X |E(vf \circ \varphi)|^q d\mu \le \int_X (E(|v|^{q'}))^{\frac{q}{q'}} E(|f|^q \circ \varphi) d\mu$$

$$= \int_X (E(|v|^{q'}))^{\frac{q}{q'}} |f|^q \circ \varphi d\mu = \int_X K_1 |f|^q d\mu = \sum_{n \in \mathbb{N}} K_1(C_n) |f(C_n)|^q \mu(C_n)$$

$$\sum_{n \in \mathbb{N}} \frac{K_1(C_n)}{\mu(C_n)^{q-1}} (|f(C_n)| \mu(C_n))^q \le M_1$$

This implies that $||T|| \leq M_1^{1/q}$, and thus T is bounded.

(ii) It follows by the same argument in the proof of Theorem 2.5(ii).

Example 2.8. Let $X = [0,1]^2$, $d\mu = dxdy$, Σ the Lebesgue subsets of X and let $\mathcal{A} = \{A \times [0,1] : A$ is a Lebesgue set in $[0,1]\}$. Then, for each f in $L^2([0,1]^2)$, $(Ef)(x,y) = \int_0^1 f(x,t)dt$, which is independent of the second coordinate. Define the Baker transformation $\varphi : [0,1]^2 \to [0,1]^2$ by

$$\varphi(x,y) = \left(2x,\frac{1}{2}y\right)\chi_{[0,\frac{1}{2})\times[0,1]} + \left(2x-1,\frac{1}{2}y+\frac{1}{2}\right)\chi_{[\frac{1}{2},1]\times[0,1]}.$$

Since

$$\varphi^{-1}([0,x]\times[0,y]) = \begin{cases} [0,\frac{x}{2}]\times[0,2y] & 0\leq y<\frac{1}{2}\\ ([0,\frac{1}{2}x]\times[0,1])\cup([\frac{1}{2},\frac{1}{2}+\frac{1}{2}x]\times[0,2y-1]) & \frac{1}{2}\leq y\leq 1, \end{cases}$$

and $E(|v|^2) = E(|u|^2)E(|w|^2)$, we get that

$$J_1(x,y) = (hE_{\varphi}(E|v|^2) \circ \varphi^{-1})(x,y) = \begin{cases} (E|v|^2)(\frac{1}{2}x,2y) & 0 \le y < \frac{1}{2} \\ (E|v|^2)(\frac{1}{2} + \frac{1}{2}x,2y - 1) & \frac{1}{2} \le y \le 1 \end{cases}$$

$$=\begin{cases} (\int_0^1 |u(\frac{1}{2}x,2t)|^2 \mathrm{d}t) (\int_0^1 |w(\frac{1}{2}x,2t)|^2 \mathrm{d}t) & 0 \leq y < \frac{1}{2} \\ (\int_0^1 |u(\frac{1}{2}+\frac{1}{2}x,2t-1)|^2 \mathrm{d}t) (\int_0^1 |w(\frac{1}{2}+\frac{1}{2}x,2t-1)|^2 \mathrm{d}t) & \frac{1}{2} \leq y \leq 1. \end{cases}$$

Now, if $J_1 \in L^{\infty}([0,1]^2)$, by Theorem 2.1(i), the integral operator

$$(Tf)(x,y) = w(x,y) \int_{0}^{1} u(x,t)f(\varphi(x,t))dt$$

on $L^2([0,1]^2)$ is bounded.

3. Hyponormality of Operator $M_w E M_u C_{\varphi}$

In this section, we characterize the hyponormal weighted composition of Lambert-type operators. Our characterization is similar in spirit and statement to Lambert's characterization of hyponormal weighted composition operators [5]. We obtain Lambert's characterization as a corollary whenever w=1 and $\mathcal{A}=\Sigma$.

Let (X, Σ, m) be a complete σ -finite measure space. A bounded operator T on $L_m^2 = L^2(X, \Sigma, m)$ is hyponormal if $\|T^*f\| \leq \|Tf\|$ for every f in L_m^2 . Throughout this section, we assume that u and w are non-negative Σ -measurable functions on X and $J = hE_{\varphi}(E(v^2)) \circ \varphi^{-1} \in L^{\infty}(\Sigma)$, where $v = u(E(w^2))^{1/2}$. Note that by Theorem 2.1(i), $J \in L^{\infty}(\Sigma)$ implies that $T = M_w E M_u C_{\varphi}$ is bounded on L_m^2 . Let μ be the measure defined on (X, Σ) by $d\mu = Jdm$. Then μ is supported on $A := \sigma(J)$. It is easy to see that $L_m^2 \subseteq L_\mu^2$ and so the set L_m^2 is dense in the Hilbert space L_μ^2 . For any $f, g \in \mathcal{D}(E)$ with $\sigma(f) \subseteq \sigma(g)$, we use the notational convention of $\frac{f}{g}$ for $(\frac{f}{g})\chi_{\sigma(f)}$.

Theorem 3.1. Let $T: L^2(\Sigma) \to L^2(\Sigma)$ be a bounded weighted composition Lambert-type operator.

Weighted Composition Lambert-Type Operators

- (i) If T is hyponormal, then $\sigma(wE(u)) \subseteq A$.
- (ii) If T is hyponormal and $\varphi^{-1}(\Sigma) \subseteq \mathcal{A}$, then

$$(h \circ \varphi)E_{\varphi}\left(\frac{(wE(u))^2}{J}\right) \le \chi_{\sigma(E_{\varphi}(uE(w)))}, \quad a.e. dm.$$

(iii) If $\sigma(E(u)) \subseteq A$, $(h \circ \varphi)E_{\varphi}((wE(u))^2/J) \le 1$, (a.e. dm) and for each $f \in L^2_m$,

$$|E(vf \circ \varphi)|^2 = E(|v|^2)E(|f|^2 \circ \varphi),$$

$$\int_X h^2 \circ \varphi(E_{\varphi}(uE(wf)))^2 dm \le \int_X h^2 \circ \varphi(E_{\varphi}(E(u)wf))^2 dm,$$

then T is hyponormal.

Proof. (i) Let $B \subseteq X - A$ be a measurable set of finite measure in Σ . Then by hyponormality of T, we have

$$||T^*(\chi_B)||_m^2 = \int_X h^2 E_{\varphi}(uE(w\chi_B))^2 \circ \varphi^{-1} dm \le ||T(\chi_B)||_m^2$$
$$= \int_X |wE(u\chi_B \circ \varphi)|^2 dm \le \int_X E(v^2) E(\chi_B \circ \varphi) dm = \int_X J\chi_B dm = 0,$$

so $hE_{\varphi}(uE(w\chi_B))\circ\varphi^{-1}=0$, a.e. dm. It follows that

$$\int_{B} wE(u)dm = \int_{X} uE(w\chi_{B})dm = \int_{X} hE_{\varphi}(uE(w\chi_{B})) \circ \varphi^{-1}dm = 0.$$

Hence, wE(u)=0, a.e. dm on B, and so wE(u)=0, a.e. dm on X-A, that is $\sigma(wE(u))\subseteq A$.

(ii) Suppose that $\varphi^{-1}(\Sigma) \subseteq \mathcal{A}$, thus $L^0(\varphi^{-1}(\Sigma)) \subseteq L^0(\mathcal{A}) \subseteq L^0(\Sigma)$. Now, for any $f \in L_m^2$,

$$\begin{split} \|T^*(f)\|_m^2 &= \int\limits_X h^2 E_\varphi(uE(wf))^2 \circ \varphi^{-1} \mathrm{d}m = \int\limits_A h^2 E_\varphi(uE(wf))^2 \circ \varphi^{-1} \mathrm{d}m \\ &= \int\limits_A \frac{h^2 E_\varphi(uE(wf))^2 \circ \varphi^{-1}}{J} \mathrm{d}\mu = \int\limits_A \frac{h E_\varphi(uE(wf))^2 \circ \varphi^{-1}}{E_\varphi(v^2) \circ \varphi^{-1}} \mathrm{d}\mu. \end{split}$$

For $f \in L_m^2$, define

$$F(f) = \left(\frac{h}{E_{\varphi}(v^2) \circ \varphi^{-1}}\right)^{\frac{1}{2}} E_{\varphi}(uE(wf)) \circ \varphi^{-1}.$$

(This is well defined, since $\sigma(hE_{\varphi}(uE(wf))\circ\varphi^{-1})\subseteq A$). It follows that

$$||F(f)||_{\mu}^{2} = \int_{X} \frac{h}{E_{\varphi}(v^{2}) \circ \varphi^{-1}} (E_{\varphi}(uE(wf)))^{2} \circ \varphi^{-1} d\mu = ||T^{*}(f)||_{m}^{2}$$

$$\leq ||Tf||_{m}^{2} = \int_{Y} |wE(uf \circ \varphi)|^{2} dm \leq \int_{Y} |f|^{2} d\mu = ||f||_{\mu}^{2},$$

since L_m^2 is dense in L_μ^2 , and F extends to a contraction on L_μ^2 . Now, let $f, g \in L_m^2$. Then we have

$$\begin{split} \langle F(f),g\rangle_{\mu} &= \int\limits_{X} \left(\frac{h}{E_{\varphi}(v^2)\circ\varphi^{-1}}\right)^{\frac{1}{2}} E_{\varphi}(uE(wf))\circ\varphi^{-1}\bar{g}\mathrm{d}\mu\\ &= \int\limits_{X} (hE_{\varphi}(v^2)\circ\varphi^{-1})^{\frac{1}{2}} E_{\varphi}(uE(wf))\circ\varphi^{-1}\bar{g}h\mathrm{d}m\\ &= \int\limits_{X} (h\circ\varphi E_{\varphi}(v^2))^{\frac{1}{2}} E_{\varphi}(uE(wf))\bar{g}\circ\varphi\mathrm{d}m\\ &= \int\limits_{X} wf(h\circ\varphi E_{\varphi}(v^2))^{\frac{1}{2}} E(u)\bar{g}\circ\varphi\mathrm{d}m = \int\limits_{X} f\frac{wE(u)(J\circ\varphi)^{\frac{1}{2}}\bar{g}\circ\varphi}{J}\mathrm{d}\mu. \end{split}$$
 Thus, $F^*(g) = \frac{wE(u)(J\circ\varphi)^{1/2}g\circ\varphi}{J}$, and so
$$\|F^*(g)\|_{\mu}^2 = \int\limits_{X} \frac{w^2E(u)^2J\circ\varphi|g|^2\circ\varphi}{J^2}\mathrm{d}\mu = \int\limits_{X} \frac{w^2E(u)^2J\circ\varphi|g|^2\circ\varphi}{J}\mathrm{d}m\\ &= \int\limits_{X} E_{\varphi}\left(\frac{w^2E(u)^2}{J}\right)J\circ\varphi|g|^2\circ\varphi\mathrm{d}m = \int\limits_{X} hE_{\varphi}\left(\frac{w^2E(u)^2}{J}\right)J|g|^2\mathrm{d}m\\ &= \int\limits_{X} hE_{\varphi}\left(\frac{w^2E(u)^2}{J}\right)|g|^2\mathrm{d}\mu \leq \int\limits_{X} |g|^2\mathrm{d}\mu, \end{split}$$

since F^* is a contraction on L^2_{μ} . It follows that $hE_{\varphi}((w^2E(u))^2/J) \circ \varphi^{-1} \leq 1$, a.e. $d\mu$ on $\sigma(J)$ and vanishes on $X \setminus \sigma(J)$, so $hE_{\varphi}((w^2E(u))^2/J) \circ \varphi^{-1} \leq \chi_{\sigma(J)}$. Since $\varphi^{-1}(\sigma(J)) = \sigma(J \circ \varphi) = \sigma(E_{\varphi}(uE(w)))$, we get that $(h \circ \varphi)E_{\varphi}((wE(u))^2/J) \leq \chi_{\sigma(J)} \circ \varphi = \chi_{\sigma(E_{\varphi}(uE(w)))}$, and (ii) holds.

(iii) By assumptions of this part, we can define the operator G on L_m^2 , for any $f \in L_m^2$,

$$G(f) = \frac{wE(u)(J \circ \varphi)^{\frac{1}{2}} f \circ \varphi}{I}.$$

Hence,

$$\begin{aligned} \|G(f)\|_{\mu}^2 &= \int\limits_X \frac{|wE(u)(J\circ\varphi)^{\frac{1}{2}}f\circ\varphi|^2}{J^2} \mathrm{d}\mu \\ &= \int\limits_X hE_{\varphi}\left(\frac{(wE(u))^2}{J}\right)\circ\varphi^{-1}|f|^2 \mathrm{d}\mu \\ &\leq \int\limits_Y |f|^2 \mathrm{d}\mu = \|f\|_{\mu}^2. \end{aligned}$$

It follows that G is a contraction on L_m^2 . In particular, G extends to a contraction on L_μ^2 . By similar computation of part (ii), for f in L_m^2

$$G^*(f) = \left(\frac{h}{E_{\varphi}(v^2) \circ \varphi^{-1}}\right)^{\frac{1}{2}} E_{\varphi}(wE(u)f) \circ \varphi^{-1}$$

and $||T^*(f)||_m^2 \le ||G^*(f)||_\mu^2$. Since G^* is a contraction, we have for all f in L_m^2

$$\|T^*(f)\|_m^2 \le \|G^*(f)\|_\mu^2 \le \|f\|_\mu^2 = \|T(f)\|_m^2$$

that is T is hyponormal.

- **Corollary 3.2.** (i) If $T_{\varphi} = M_w E_{\varphi} M_u C_{\varphi}$ is hyponormal, then $\sigma(w E_{\varphi}(u)) \subseteq \sigma(J)$ and $(h \circ \varphi) E_{\varphi}(u^2) E_{\varphi}(w^2/J) \leq \chi_{\sigma(E_{\varphi}(u)) \cap E_{\varphi}(\sigma(w))}$, where $J = h E_{\varphi}(v^2) \circ \varphi^{-1}$ with $v = u(E_{\varphi}(w^2))^{1/2}$.
 - (ii) If $\sigma(E_{\varphi}(u)) \subseteq \sigma(J)$ and $(h \circ \varphi)E_{\varphi}(u^2)E_{\varphi}(w^2/J) \le 1$ with $J = hE_{\varphi}(v^2) \circ \varphi^{-1}$, then T_{φ} is hyponormal.
- (iii) Let $J_{\varphi} = hE_{\varphi}(u^2) \circ \varphi^{-1} \in L^{\infty}(\Sigma)$. Then the bounded weighted composition operator uC_{φ} on $L^2(\Sigma)$ is hyponormal if and only if
 - (a) $\sigma(u) \subseteq \sigma(J_{\varphi})$,
 - (b) $(h \circ \varphi)E_{\varphi}(\frac{u^2}{I_{co}}) \leq 1$, a.e. dm.

Example 3.3. Let $m = \{m_n\}_{n=1}^{\infty}$ be a sequence of positive real numbers. Consider the space $l^2(m) = L^2(\mathbb{N}, 2^{\mathbb{N}}, \mu)$, where $2^{\mathbb{N}}$ is the power set of natural numbers and μ is a measure on $2^{\mathbb{N}}$ defined by $\mu(\{n\}) = m_n$. Let $u = \{u_n\}_{n=1}^{\infty}$ be a sequence of non-negative real numbers. Let $\varphi : \mathbb{N} \to \mathbb{N}$ be a non-singular measurable transformation, i.e. $\mu \circ \varphi^{-1} \ll \mu$. Direct computation shows that

$$h(k) = \frac{1}{m_k} \sum_{j \in \varphi^{-1}(k)} m_j, \quad E_{\varphi}(f)(k) = \frac{\sum_{j \in \varphi^{-1}(\varphi(k))} f_j m_j}{\sum_{j \in \varphi^{-1}(\varphi(k))} m_j} ,$$

for all non-negative sequence $f = \{f_n\}_{n=1}^{\infty}$ and $k \in \mathbb{N}$. Since $\sigma(J_{\varphi}) = \sigma(h) \cap \sigma(E_{\varphi}(u))$, by Corollary 3.2(ii), uC_{φ} is hyponormal on $l^2(m)$ if and only if $\sigma(u) \subseteq \{k \in \varphi(\mathbb{N}) : u(\varphi^{-1}(\varphi(k))) \neq \{0\}\}$ and

$$(h \circ \varphi)(k)E_{\varphi}\left(\frac{u^2}{J_{\varphi}}\right)(k) = \frac{1}{m_k} \sum_{j \in \varphi^{-1}(\varphi(k))} \frac{u(j)^2 m_j}{J_{\varphi}(j)} \le 1$$

on $\sigma(u)$, where for each $j \in \mathbb{N}$,

$$J_{\varphi}(j) = \frac{1}{m_j} \sum_{i \in \varphi^{-1}(j)} u(i)^2 m_i \le M$$

for some $M \geq 0$.

References

- [1] Estaremi, Y., Jabbarzadeh, M.R.: Weighted lambert type operators on L^p -spaces. Oper. Matrices. 7, 101–116 (2013)
- [2] Grobler, J.J., de Pagter, B.: Operators representable as multiplication-conditional expectation operators. J. Oper. Theory 48, 15–40 (2002)
- [3] Herron, J.: Weighted conditional expectation operators on L^p spaces, UNC Charlotte Doctoral Dissertation (2004)

- [4] Lambert, A.: L^p multipliers and nested sigma-algebras. Oper. Theory Adv. Appl. 104, 147–153 (1998)
- [5] Lambert, A.: Hyponormal composition operators. Bull. Lond. Math. Soc. 18, 395–400 (1986)
- [6] Rao, M.M.: Conditional measure and applications. Marcel Dekker, New York (1993)
- [7] Zaanen, A.C.: Integration, 2nd edn. North-Holland, Amsterdam (1967)

Y. Estaremi

Faculty of Mathematical Sciences

Payame Noor University

Tehran, Iran

e-mail: estaremi@gmail.com

M. R. Jabbarzadeh

Faculty of Mathematical Sciences

University of Tabriz

P. O. Box: 5166615648, Tabriz, Iran e-mail: mjabbar@tabrizu.ac.ir

Received: January 29, 2013. Accepted: August 29, 2013.