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Abstract. In this paper boundedness of a weighted composition Lambert-
type operator T = MwEMuCϕ acting between two different Lp(Σ)
spaces is characterized using some properties of conditional expectation
operator. Moreover, we establish criteria for hyponormality for these
types of operators on L2(Σ).
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1. Introduction and Preliminaries

For 1 ≤ p ≤ ∞, the Lp-space Lp(X,A, μ|A) is abbreviated by Lp(A), and its
norm is denoted by ‖.‖p. The support of a measurable function f is defined
as σ(f) = {x ∈ X; f(x) �= 0}. Suppose that ϕ is a measurable transformation
from X into X such that μ ◦ ϕ−1 is absolutely continuous with respect to
μ, that is, ϕ is non-singular. Let h be the Radon–Nikodym derivative dμ ◦
ϕ−1/dμ and we always assume that h is almost everywhere finite valued
or, equivalently ϕ−1(Σ) is a sub-sigma finite algebra. We denote the vector
space of all equivalence classes of almost everywhere finite-valued measurable
functions on X by L0(Σ). All comparisons between two functions or two sets
are to be interpreted as holding up to a μ-null set. Let u ∈ L0(Σ). Then u
is said to be conditionable with respect to E if u ∈ D(E) := {f ∈ L0(Σ) :
E(|f |) ∈ L0(A)}. An A-atom of the measure μ is an element A ∈ A with
μ(A) > 0 such that for each F ∈ A, if F ⊆ A then either μ(F ) = 0 or
μ(F ) = μ(A). A measure space (X,Σ, μ) with no atoms is called non-atomic
measure space. It is well known that every σ-finite measure space (X,A, μ|A)
can be partitioned uniquely as X = (∪n∈NAn) ∪ B, where {An}n∈N is a
countable collection of pairwise disjoint A-atoms and B ∈ A, being disjoint
from each An, is non-atomic (see [7]).

For a sigma-finite algebra A ⊆ Σ, we denote by E the conditional expec-
tation EA considered as a bounded linear idempotent transformation from
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Lp(Σ) on to Lp(A). Those properties of E used in our discussion are sum-
marized below. In all cases, f and g are conditionable functions.

• If g is A-measurable, then E(fg) = E(f)g.
• (Conditional Jensen’s inequality) If φ : R → R is convex and φ(f) is

conditionable, then E(φ(f)) ≥ φ(E(f)).
• If p and p′ are conjugate exponents and f ∈ Lp(Σ) and g ∈ Lp′

(Σ), then
|E(fg)| ≤ E(|f |p)| 1

p E(|g|p′
)| 1

p′ .
• For each f ≥ 0, σ(f) ⊆ σ(E(f)).

A detailed discussion and verification of these properties may be found in
[6]. Now, take u and w in D(E). Then the triple (u,w, ϕ) induces a weighted
composition Lambert-type operator T from Lp(Σ) into L0(Σ) defined by
T = MwEMuCϕ, where Mu and Mw are multiplication operators and Cϕ is
a composition operator. Throughout this paper we assume that uR(Cϕ) ⊂
D(E), w ∈ D(E), E = EA, Eϕ = Eϕ−1(Σ), ϕ is non-singular and T =
MwEMuCϕ, where R(Cϕ) denotes the range of Cϕ.

A combination of conditional expectation operators and multiplication
operators appears more often in the service of the study of other operators,
such as operators generated by random measures [2], Markov operators, and
Reynolds and averaging operators [6].

Some results of this article are a generalization of the work done in
[4,3,1]. In the next section, the boundedness of T acting between two differ-
ent Lp(Σ) spaces are characterized by using some properties of conditional
expectation operator. In Sect. 2, we discuss the measure theoretic character-
izations for hyponormality of T on L2(Σ).

2. Weighted Composition Lambert-Type Operators

In this section, we give some sufficient and necessary conditions for bound-
edness of T = MwEMuCϕ acting between two Lp(Σ) spaces.

Theorem 2.1. Let 1 < p < ∞ and let T : Lp(Σ) → Lp(Σ) be a weighted
composition Lambert-type operator T = MwEMuCϕ.

(i) If J1 := hEϕ(E(|v|p′
))p/p′◦ ϕ−1 ∈L∞(Σ), then the operator T is bounded,

where v := u(E(|w|p)1/p and p′ is the conjugate exponents to p.
(ii) If ϕ−1(Σ) ⊆ A and T is bounded, then J2 := hEϕ(|E(v)|)p ◦ ϕ−1 ∈

L∞(Σ), where v := u(E(|w|p)1/p.

Proof. (i) Let f ∈ Lp(Σ) and v = u(E(|w|p))1/p. Then we have

‖Tf‖p
p =

∫

X

|w|p|E(uf ◦ ϕ)|pdμ =
∫

X

E(|w|p)|E(uf ◦ ϕ)|pdμ

=
∫

X

|E(u(E(|w|p)) 1
p f ◦ ϕ)|pdμ = ‖EMvCϕf |pp.

It follows that T is bounded if and only if the operator EMvCϕfrom
Lp(Σ) into Lp(A) is bounded. Now, let f ∈ Lp(Σ). Then, by conditional
type Hölder inequality, we have
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‖EMvCϕf |pp =

∫

X

|E(vf ◦ ϕ)|pdμ ≤
∫

X

(E(|v|p′
))

p
p′ E(|f |p ◦ ϕ)dμ

=

∫

X

(E(|v|p′
))

p
p′ |f |p ◦ ϕdμ=

∫

X

hEϕ((E(|v|p′
))

p
p′ ) ◦ ϕ−1|f |pdμ=

∫

X

J1|f |pdμ.

This implies that ‖T‖ ≤ ‖J1‖1/p
∞ , and so T is bounded.

(ii) Let A ∈ Σ with 0 < μ(A) < ∞. Then∫

A

J2dμ =
∫

X

|E(v)|pχA ◦ ϕdμ =
∫

X

|E(vχA ◦ ϕ)|pdμ

= ‖T (χA)‖p
p ≤ ‖T‖p

∫

X

χAdμ =
∫

A

‖T‖pdμ,

where v = u(E(|w|p))1/p. It follows that J2 ≤ ‖T‖p, and so J2 ∈ L∞(Σ). �

Note that, A = Σ if and only if E = I, the identity operator, and if ϕ
is the identity map, then Eϕ = I. Then we have the following corollary.

Corollary 2.2. (i) If hEϕ(|w|p) ◦ ϕ−1(Eϕ(|u|p′
))p/p′ ◦ ϕ−1 ∈ L∞(Σ), then

the operator Tϕ := MwEϕMuCϕ is bounded on Lp(Σ) with 1 < p < ∞.
Conversely, if Tϕ is bounded, then h(|Eϕ(u)|p ◦ ϕ−1)(Eϕ(|w|p) ◦ ϕ−1) ∈
L∞(Σ).

(ii) The weighted Lambert-type operator MwEMu from Lp(Σ) into Lp(Σ) is
bounded if and only if (E|w|p)1/p(E|u|p′

)1/p′ ∈ L∞(A), and in this case
its norm is given by ‖MwEMu‖ = ‖(E(|w|p))1/p(E(|u|p′

))1/p′‖∞.
(iii) The weighted composition operator uCϕ = MuCϕ from Lp(Σ) into Lp(Σ)

is bounded if and only if Jϕ := hEϕ(|u|p) ◦ ϕ−1 ∈ L∞(Σ).

Theorem 2.3. Let 1 < q < p < ∞ and let p′, q′ be the conjugate exponents to
p and q, respectively. Then the following assertions hold.

(i) If S1 := hEϕ(E(|v|q′
))q/q′ ◦ ϕ−1 and S

1/q
1 ∈ Lr(Σ), then the weighted

composition Lambert-type operator T from Lp(Σ) to Lq(Σ) is bounded,
where v := u(E(|w|q)1/p and 1/p + 1/r = 1/q.

(ii) If ϕ−1(A) ⊂ A and T from Lp(Σ) to Lq(Σ) is bounded, then S
1/q
2 ∈

Lr(Σ), where S2 := hEϕ(|E(v)|)q ◦ ϕ−1.

Proof. (i) Let f ∈ Lp(Σ) and S
1/q
1 ∈ Lr(Σ). Then, by Hölder and condi-

tional Jensen’s inequalities, we have

‖Tf‖q
q = ‖EMvCϕf‖q

q =
∫

X

|E(vf ◦ ϕ)|pdμ ≤
∫

X

(E(|v|q′
))

q
q′ E(|f |q ◦ ϕ)dμ

=
∫

X

(E(|v|q′
))

q
q′ |f |q ◦ ϕdμ =

∫

X

hEϕ((E(|v|q′
))

q
q′ ) ◦ ϕ−1|f |qdμ
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≤
⎛
⎝

∫

X

S
r
q

1 dμ

⎞
⎠

q
r

⎛
⎝

∫

X

|f |pdμ

⎞
⎠

q
p

= ‖S
1
q

1 ‖q
r ‖f‖q

p.

This implies that ‖T‖ ≤ ‖S1/q
1 ‖r, and so T is bounded.

(ii) Define linear functional Λ on L
p
q (A) by

Λ(f) =
∫

X

S2fdμ.

Since T is bounded, for each f ∈ L
p
q (A) we get that

|Λ(f)| ≤
∫

X

E
(
hEϕ(|E(v)|)q ◦ ϕ−1

) |f |dμ =
∫

X

|E(v)|q|f | ◦ ϕdμ

=
∫

X

|E(v|f | 1
q ◦ ϕ)|qdμ=‖EMvCϕ(|f | 1

p )‖q
q = ‖T (|f | 1

q )‖q
q ≤ ‖T‖q‖f‖ p

q
.

Hence, Λ is bounded linear functional on L
p
q (A). By the Hahn–Banach

theorem, we can suppose that Λ is a bounded linear functional on L
p
q (Σ)

and ‖Λ‖ ≤ ‖T‖q. Thus by the Riesz representation theorem, S
1/q
2 ∈

Lr(Σ). �
Corollary 2.4. Let 1 < q < p < ∞ and let 1/p + 1/r = 1/q. Then the
weighted composition operator uCϕ from Lp(Σ) to Lq(Σ) is bounded if and
only if Jq := hEϕ(|u|q) ◦ ϕ−1 ∈ Lr/q(Σ).

Suppose that X = (∪n∈NCn) ∪ C, where {Cn}n∈N is a countable collec-
tion of pairwise disjoint Σ-atoms and C ∈ Σ, being disjoint from each Cn, is
non-atomic. Note that (∪n∈NCn) ∩ A ⊆ ∪n∈NAn and B ⊆ C.

Theorem 2.5. Let 1 < p < q < ∞, v = u(E(|w|q)1/p and let T : Lp(Σ) →
Lq(Σ) be a weighted composition Lambert-type operator.

(i) Let K1 := hEϕ(E(|v|q′
))q/q′ ◦ ϕ−1 and let M := supn∈N

K1(Cn)
μ(Cn)q/r , where

p′, q′ be the conjugate exponents to p and q, respectively, and 1/q + 1/r
= 1/p. If K1 = 0 on C and M < ∞, then T is bounded.

(ii) Let ϕ−1(A) ⊂ A and let N =: supn∈N

E(K2)
1/q(An)

μ(An)1/r . If T is bounded, then
K2 := hEϕ(|E(v)|)q ◦ ϕ−1 = 0 on B and N < ∞.

Proof. (i) Let f ∈ Lp(Σ) with ‖f‖p = 1. Then, by conditional Jensen’s
inequality, we have

‖Tf‖q
q = ‖EMvCϕf‖q

q =

∫

X

|E(vf ◦ ϕ)|qdμ ≤
∫

X

(E(|v|q′
))

q
q′ E(|f |q ◦ ϕ)dμ

=

∫

X

(E(|v|q′
))

q
q′ |f |q ◦ ϕdμ =

∫

X

K1|f |qdμ =
∑
n∈N

K1(Cn)|f(Cn)|qμ(Cn)

=
∑
n∈N

K1(Cn)

μ(Cn)
q
r

(|f(Cn)|qμ(Cn))
q
p ≤ M < ∞.

This implies that ‖T‖ ≤ M1/q, and so T is bounded.
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(ii) First, we show that E(K2) = 0 on B. Suppose on the contrary. Thus, we
can find some δ > 0 such that μ({x ∈ B : E(K2)(x) > δ}) > 0. Take
F = {x ∈ B : E(K2)(x) > δ}. Since F ⊆ B is a A-measurable set and
A is σ-finite, then for each n ∈ N there exists Fn ⊆ F with Fn ∈ A such
that μ(Fn) = μ(F )/2n. Define fn = χFn

μ(Fn)1/p . Then fn ∈ Lp(A) with
‖fn‖p = 1. Since T is bounded and q

p > 1, we get that

∞ > ‖T‖q = ‖EMvCϕ‖q ≥ ‖E(vfn ◦ ϕ)‖q
q =

1

μ(Fn)
q
p

∫

Fn

|E(v)|qdμ

=
1

μ(Fn)
q
p

∫

Fn

K2dμ ≥ δμ(Fn)

μ(Fn)
q
p

= δμ(Fn)1− q
p = δ

(
2n

μ(F )

) q
p −1

−→ ∞,

when n → ∞. But, this is a contradiction. It follows that K2 = 0 on B,
since K2 ≥ 0. It remains to prove N < ∞. Take fn = χAn

μ(An)1/p . Hence
fn ∈ Lp(A) with ‖fn‖p = 1. Then we have
E(K2)(An)

μ(An)
q
r

=
E(K2)(An)μ(An)

μ(An)
q
p

=

∫

An

E(K2)

μ(An)
q
p

dμ

=

∫

X

E(K2)χAn

μ(An)
q
p

dμ=

∫

X

K2χAn

μ(An)
q
p

dμ=‖E(vfn ◦ ϕ)‖q
q ≤ ‖EMvCϕ‖q = ‖T‖q.

This implies that N ≤ ‖EMvCϕ‖ < ∞. �

Corollary 2.6. Let 1 < p < q < ∞ and let 1/q + 1/r = 1/p. Then the
weighted composition operator uCϕ from Lp(Σ) to Lq(Σ) is bounded if and
only if Jq = 0 on C and supn∈N Jq(Cn)/μ(Cn)q/r < ∞.

Theorem 2.7. Let 1 < q < ∞, v = u(E(|w|q)1/q and let T : L1(Σ) → Lq(Σ)
be a weighted composition Lambert-type operator.

(i) If K1 = 0 on C and M1 :=
∑

n∈N

K1(Cn)
μ(Cn)q−1 < ∞, then T is bounded.

(ii) If ϕ−1(A) ⊂ A and T is bounded, then E(K2) = 0 on B and N1 :=
supn∈N

E(K2)
1/q(An)

μ(An)1−1/q < ∞.

Proof. (i) Let f ∈ L1(Σ) with ‖f‖1 = 1. Then, by conditional Jensen’s
inequality, we have

‖Tf‖q
q = ‖EMvCϕf‖q

q =
∫

X

|E(vf ◦ ϕ)|qdμ ≤
∫

X

(E(|v|q′
))

q
q′ E(|f |q ◦ ϕ)dμ

=
∫

X

(E(|v|q′
))

q
q′ |f |q ◦ ϕdμ =

∫

X

K1|f |qdμ =
∑
n∈N

K1(Cn)|f(Cn)|qμ(Cn)

∑
n∈N

K1(Cn)
μ(Cn)q−1

(|f(Cn)|μ(Cn))q ≤ M1

This implies that ‖T‖ ≤ M
1/q
1 , and thus T is bounded.

(ii) It follows by the same argument in the proof of Theorem 2.5(ii). �
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Example 2.8. Let X = [0, 1]2, dμ = dxdy, Σ the Lebesgue subsets of X
and let A = {A × [0, 1] : A is a Lebesgue set in [0, 1]}. Then, for each f

in L2([0, 1]2), (Ef)(x, y) =
∫ 1

0
f(x, t)dt, which is independent of the second

coordinate. Define the Baker transformation ϕ : [0, 1]2 → [0, 1]2 by

ϕ(x, y) =
(

2x,
1
2
y

)
χ[0, 1

2 )×[0,1] +
(

2x − 1,
1
2
y +

1
2

)
χ[ 12 ,1]×[0,1].

Since

ϕ−1([0, x] × [0, y])=

{
[0, x

2 ] × [0, 2y] 0≤y < 1
2

([0, 1
2x] × [0, 1]) ∪ ([12 , 1

2 + 1
2x] × [0, 2y − 1]) 1

2 ≤y ≤ 1,

and E(|v|2) = E(|u|2)E(|w|2), we get that

J1(x, y) = (hEϕ(E|v|2) ◦ ϕ−1)(x, y) =

{
(E|v|2)(1

2x, 2y) 0 ≤ y < 1
2

(E|v|2)(1
2 + 1

2x, 2y − 1) 1
2 ≤ y ≤ 1

=

{
(
∫ 1

0
|u( 1

2x, 2t)|2dt)(
∫ 1

0
|w( 1

2x, 2t)|2dt) 0 ≤ y < 1
2

(
∫ 1

0
|u( 1

2 + 1
2x, 2t − 1)|2dt)(

∫ 1

0
|w( 1

2 + 1
2x, 2t−1)|2dt) 1

2 ≤ y ≤ 1.

Now, if J1 ∈ L∞([0, 1]2), by Theorem 2.1(i), the integral operator

(Tf)(x, y) = w(x, y)

1∫

0

u(x, t)f(ϕ(x, t))dt

on L2([0, 1]2) is bounded.

3. Hyponormality of Operator MwEMuCϕ

In this section, we characterize the hyponormal weighted composition of
Lambert-type operators. Our characterization is similar in spirit and state-
ment to Lambert’s characterization of hyponormal weighted composition
operators [5]. We obtain Lambert’s characterization as a corollary whenever
w = 1 and A = Σ.

Let (X,Σ,m) be a complete σ-finite measure space. A bounded operator
T on L2

m = L2(X,Σ,m) is hyponormal if ‖T ∗f‖ ≤ ‖Tf‖ for every f in
L2

m. Throughout this section, we assume that u and w are non-negative Σ-
measurable functions on X and J = hEϕ(E(v2)) ◦ ϕ−1 ∈ L∞(Σ), where
v = u(E(w2))1/2. Note that by Theorem 2.1(i), J ∈ L∞(Σ) implies that
T = MwEMuCϕ is bounded on L2

m. Let μ be the measure defined on (X,Σ)
by dμ = Jdm. Then μ is supported on A := σ(J). It is easy to see that
L2

m ⊆ L2
μ and so the set L2

m is dense in the Hilbert space L2
μ. For any

f, g ∈ D(E) with σ(f) ⊆ σ(g), we use the notational convention of f
g for

( f
g )χσ(f).

Theorem 3.1. Let T : L2(Σ) → L2(Σ) be a bounded weighted composition
Lambert-type operator.
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(i) If T is hyponormal, then σ(wE(u)) ⊆ A.
(ii) If T is hyponormal and ϕ−1(Σ) ⊆ A, then

(h ◦ ϕ)Eϕ

(
(wE(u))2

J

)
≤ χσ(Eϕ(uE(w))), a.e. dm.

(iii) If σ(E(u)) ⊆ A, (h ◦ ϕ)Eϕ((wE(u))2/J) ≤ 1, (a.e. dm) and for each
f ∈ L2

m,

|E(vf ◦ ϕ)|2 = E(|v|2)E(|f |2 ◦ ϕ),
∫

X

h2 ◦ ϕ(Eϕ(uE(wf)))2dm ≤
∫

X

h2 ◦ ϕ(Eϕ(E(u)wf))2dm,

then T is hyponormal.

Proof. (i) Let B ⊆ X −A be a measurable set of finite measure in Σ. Then
by hyponormality of T, we have

‖T ∗(χB)‖2
m =

∫

X

h2Eϕ(uE(wχB))2 ◦ ϕ−1dm ≤ ‖T (χB)‖2
m

=
∫

X

|wE(uχB ◦ ϕ)|2dm ≤
∫

X

E(v2)E(χB ◦ ϕ)dm =
∫

X

JχBdm = 0,

so hEϕ(uE(wχB)) ◦ ϕ−1 = 0, a.e. dm. It follows that∫

B

wE(u)dm =
∫

X

uE(wχB)dm =
∫

X

hEϕ(uE(wχB)) ◦ ϕ−1dm = 0.

Hence, wE(u) = 0, a.e. dm on B, and so wE(u) = 0, a.e. dm on
X − A, that is σ(wE(u)) ⊆ A.

(ii) Suppose that ϕ−1(Σ) ⊆ A, thus L0(ϕ−1(Σ)) ⊆ L0(A) ⊆ L0(Σ). Now,
for any f ∈ L2

m,

‖T ∗(f)‖2
m =

∫

X

h2Eϕ(uE(wf))2 ◦ ϕ−1dm =
∫

A

h2Eϕ(uE(wf))2 ◦ ϕ−1dm

=
∫

A

h2Eϕ(uE(wf))2 ◦ ϕ−1

J
dμ =

∫

A

hEϕ(uE(wf))2 ◦ ϕ−1

Eϕ(v2) ◦ ϕ−1
dμ.

For f ∈ L2
m, define

F (f) =
(

h

Eϕ(v2) ◦ ϕ−1

) 1
2

Eϕ(uE(wf)) ◦ ϕ−1.

(This is well defined, since σ(hEϕ(uE(wf)) ◦ ϕ−1) ⊆ A). It follows that

‖F (f)‖2
μ =

∫

X

h

Eϕ(v2) ◦ ϕ−1
(Eϕ(uE(wf)))2 ◦ ϕ−1dμ = ‖T ∗(f)‖2

m

≤ ‖Tf‖2
m =

∫

X

|wE(uf ◦ ϕ)|2dm ≤
∫

X

|f |2dμ = ‖f‖2
μ,
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since L2
m is dense in L2

μ, and F extends to a contraction on L2
μ. Now, let

f, g ∈ L2
m. Then we have

〈F (f), g〉μ =
∫

X

(
h

Eϕ(v2) ◦ ϕ−1

) 1
2

Eϕ(uE(wf)) ◦ ϕ−1ḡdμ

=
∫

X

(hEϕ(v2) ◦ ϕ−1)
1
2 Eϕ(uE(wf)) ◦ ϕ−1ḡhdm

=
∫

X

(h ◦ ϕEϕ(v2))
1
2 Eϕ(uE(wf))ḡ ◦ ϕdm

=
∫

X

wf(h ◦ ϕEϕ(v2))
1
2 E(u)ḡ ◦ ϕdm =

∫

X

f
wE(u)(J ◦ ϕ)

1
2 ḡ ◦ ϕ

J
dμ.

Thus, F ∗(g) = wE(u)(J◦ϕ)1/2g◦ϕ
J , and so

‖F ∗(g)‖2
μ =

∫

X

w2E(u)2J ◦ ϕ|g|2 ◦ ϕ

J2
dμ =

∫

X

w2E(u)2J ◦ ϕ|g|2 ◦ ϕ

J
dm

=
∫

X

Eϕ

(
w2E(u)2

J

)
J ◦ ϕ|g|2 ◦ ϕdm =

∫

X

hEϕ

(
w2E(u)2

J

)
J |g|2dm

=
∫

X

hEϕ

(
w2E(u)2

J

)
|g|2dμ ≤

∫

X

|g|2dμ,

since F ∗ is a contraction on L2
μ. It follows that hEϕ((w2E(u))2/J)◦ ϕ−1

≤ 1, a.e. dμ on σ(J) and vanishes on X\σ(J), so hEϕ((w2E(u))2/J) ◦
ϕ−1 ≤ χσ(J). Since ϕ−1(σ(J)) = σ(J ◦ ϕ) = σ(Eϕ(uE(w))), we get that
(h ◦ ϕ)Eϕ((wE(u))2/J) ≤ χσ(J) ◦ ϕ = χσ(Eϕ(uE(w))), and (ii) holds.

(iii) By assumptions of this part, we can define the operator G on L2
m, for

any f ∈ L2
m,

G(f) =
wE(u)(J ◦ ϕ)

1
2 f ◦ ϕ

J
.

Hence,

‖G(f)‖2
μ =

∫

X

|wE(u)(J ◦ ϕ)
1
2 f ◦ ϕ|2

J2
dμ

=
∫

X

hEϕ

(
(wE(u))2

J

)
◦ ϕ−1|f |2dμ

≤
∫

X

|f |2dμ = ‖f‖2
μ.

It follows that G is a contraction on L2
m. In particular, G extends to a

contraction on L2
μ. By similar computation of part (ii), for f in L2

m
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G∗(f) =
(

h

Eϕ(v2) ◦ ϕ−1

) 1
2

Eϕ(wE(u)f) ◦ ϕ−1

and ‖T ∗(f)‖2
m ≤ ‖G∗(f)‖2

μ. Since G∗ is a contraction, we have for all f

in L2
m

‖T ∗(f)‖2
m ≤ ‖G∗(f)‖2

μ ≤ ‖f‖2
μ = ‖T (f)‖2

m

that is T is hyponormal. �
Corollary 3.2. (i) If Tϕ = MwEϕMuCϕ is hyponormal, then σ(wEϕ(u)) ⊆

σ(J) and (h ◦ ϕ)Eϕ(u2)Eϕ(w2/J) ≤ χσ(Eϕ(u))∩Eϕ(σ(w)), where J =
hEϕ(v2) ◦ ϕ−1 with v = u(Eϕ(w2))1/2.

(ii) If σ(Eϕ(u)) ⊆ σ(J) and (h◦ϕ)Eϕ(u2)Eϕ(w2/J) ≤ 1 with J = hEϕ(v2)◦
ϕ−1, then Tϕ is hyponormal.

(iii) Let Jϕ = hEϕ(u2) ◦ ϕ−1 ∈ L∞(Σ). Then the bounded weighted composi-
tion operator uCϕ on L2(Σ) is hyponormal if and only if

(a) σ(u) ⊆ σ(Jϕ),
(b) (h ◦ ϕ)Eϕ( u2

Jϕ
) ≤ 1, a.e. dm.

Example 3.3. Let m = {mn}∞
n=1 be a sequence of positive real numbers.

Consider the space l2(m) = L2(N, 2N, μ), where 2N is the power set of natural
numbers and μ is a measure on 2N defined by μ({n}) = mn. Let u = {un}∞

n=1

be a sequence of non-negative real numbers. Let ϕ : N → N be a non-singular
measurable transformation, i.e. μ ◦ ϕ−1 � μ. Direct computation shows that

h(k) =
1

mk

∑
j∈ϕ−1(k)

mj , Eϕ(f)(k) =

∑
j∈ϕ−1(ϕ(k)) fjmj∑
j∈ϕ−1(ϕ(k)) mj

,

for all non-negative sequence f = {fn}∞
n=1 and k ∈ N. Since σ(Jϕ) = σ(h) ∩

σ(Eϕ(u)), by Corollary 3.2(ii), uCϕ is hyponormal on l2(m) if and only if
σ(u) ⊆ {k ∈ ϕ(N) : u(ϕ−1(ϕ(k))) �= {0}} and

(h ◦ ϕ)(k)Eϕ

(
u2

Jϕ

)
(k) =

1
mk

∑
j∈ϕ−1(ϕ(k))

u(j)2mj

Jϕ(j)
≤ 1

on σ(u), where for each j ∈ N,

Jϕ(j) =
1

mj

∑
i∈ϕ−1(j)

u(i)2mi ≤ M

for some M ≥ 0.
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