Weighted Composition Lambert-Type Operators on *Lp* **Spaces**

Y. Estaremi and M. R. Jabbarzadeh

Abstract. In this paper boundedness of a weighted composition Lamberttype operator $T = M_w E M_u C_\varphi$ acting between two different $L^p(\Sigma)$ spaces is characterized using some properties of conditional expectation operator. Moreover, we establish criteria for hyponormality for these types of operators on $L^2(\Sigma)$.

Mathematics Subject Classification (2000). 47B47.

Keywords. Conditional expectation, multiplication operators, composition operators, hyponormal operators.

1. Introduction and Preliminaries

For $1 \leq p \leq \infty$, the L^p -space $L^p(X, \mathcal{A}, \mu|_{\mathcal{A}})$ is abbreviated by $L^p(\mathcal{A})$, and its norm is denoted by $\|\cdot\|_p$. The support of a measurable function f is defined as $\sigma(f) = \{x \in X; f(x) \neq 0\}$. Suppose that φ is a measurable transformation from X into X such that $\mu \circ \varphi^{-1}$ is absolutely continuous with respect to μ , that is, φ is non-singular. Let h be the Radon–Nikodym derivative $d\mu \circ$ $\varphi^{-1}/d\mu$ and we always assume that h is almost everywhere finite valued or, equivalently $\varphi^{-1}(\Sigma)$ is a sub-sigma finite algebra. We denote the vector space of all equivalence classes of almost everywhere finite-valued measurable functions on X by $L^0(\Sigma)$. All comparisons between two functions or two sets are to be interpreted as holding up to a μ -null set. Let $u \in L^0(\Sigma)$. Then u is said to be conditionable with respect to E if $u \in \mathcal{D}(E) := \{f \in L^0(\Sigma) :$ $E(|f|) \in L^{0}(\mathcal{A})\}$. An A-atom of the measure μ is an element $A \in \mathcal{A}$ with $\mu(A) > 0$ such that for each $F \in \mathcal{A}$, if $F \subseteq A$ then either $\mu(F) = 0$ or $\mu(F) = \mu(A)$. A measure space (X, Σ, μ) with no atoms is called non-atomic measure space. It is well known that every σ -finite measure space $(X, \mathcal{A}, \mu_{\perp})$ can be partitioned uniquely as $X = (\cup_{n \in \mathbb{N}} A_n) \cup B$, where $\{A_n\}_{n \in \mathbb{N}}$ is a countable collection of pairwise disjoint A -atoms and $B \in \mathcal{A}$, being disjoint from each A_n , is non-atomic (see [\[7](#page-9-0)]).

For a sigma-finite algebra $A \subseteq \Sigma$, we denote by E the conditional expectation $E^{\mathcal{A}}$ considered as a bounded linear idempotent transformation from $L^p(\Sigma)$ on to $L^p(\mathcal{A})$. Those properties of E used in our discussion are summarized below. In all cases, f and g are conditionable functions.

- If g is A-measurable, then $E(fg) = E(f)g$.
- (Conditional Jensen's inequality) If $\phi : \mathbb{R} \to \mathbb{R}$ is convex and $\phi(f)$ is conditionable, then $E(\phi(f)) \geq \phi(E(f)).$
- If p and p' are conjugate exponents and $f \in L^p(\Sigma)$ and $g \in L^{p'}(\Sigma)$, then $|E(f \cap L^{p'}(L^{p'})|^{\frac{1}{p'}})E(L^{p'}(L^{p'})|^{\frac{1}{p'}})$ $|E(fg)| \leq E(|f|^p)|^{\frac{1}{p}}E(|g|^{p'})|^{\frac{1}{p'}}.$
For each $f > 0$, $\sigma(f) \subset \sigma(E(f))$
- For each $f \geq 0$, $\sigma(f) \subseteq \sigma(E(f)).$

A detailed discussion and verification of these properties may be found in [\[6](#page-9-1)]. Now, take u and w in $\mathcal{D}(E)$. Then the triple (u, w, φ) induces a weighted composition Lambert-type operator T from $L^p(\Sigma)$ into $L^0(\Sigma)$ defined by $T = M_w E M_u C_\varphi$, where M_u and M_w are multiplication operators and C_φ is a composition operator. Throughout this paper we assume that $u\mathcal{R}(C_{\varphi}) \subset$ $\mathcal{D}(E), w \in \mathcal{D}(E), E = E^{\mathcal{A}}, E_{\varphi} = E^{\varphi^{-1}(\Sigma)}, \varphi$ is non-singular and $T =$ $M_wEM_uC_\varphi$, where $\mathcal{R}(C_\varphi)$ denotes the range of C_φ .

A combination of conditional expectation operators and multiplication operators appears more often in the service of the study of other operators, such as operators generated by random measures [\[2\]](#page-8-0), Markov operators, and Reynolds and averaging operators [\[6\]](#page-9-1).

Some results of this article are a generalization of the work done in [\[4](#page-9-2)[,3](#page-8-1),[1\]](#page-8-2). In the next section, the boundedness of T acting between two different $L^p(\Sigma)$ spaces are characterized by using some properties of conditional expectation operator. In Sect. [2,](#page-1-0) we discuss the measure theoretic characterizations for hyponormality of T on $L^2(\Sigma)$.

2. Weighted Composition Lambert-Type Operators

In this section, we give some sufficient and necessary conditions for boundedness of $T = M_w E M_u C_\varphi$ acting between two $L^p(\Sigma)$ spaces.

Theorem 2.1. Let $1 < p < \infty$ and let $T : L^p(\Sigma) \to L^p(\Sigma)$ be a weighted *composition Lambert-type operator* $T = M_w E M_u C_\varphi$.

- (i) If $J_1 := hE_\varphi(E(|v|^{p'}))^{p/p'} \circ \varphi^{-1} \in L^\infty(\Sigma)$, then the operator T is bounded, *where* $v := u(E(|w|^p)^{1/p}$ *and* p' *is the conjugate exponents to* p *. If* $(0^{-1}(\Sigma)) \subseteq A$ *and* T *is bounded then* $I_2 := bE$ $(|E(v)|)^p$
- (ii) *If* $\varphi^{-1}(\Sigma) \subseteq A$ *and T is bounded, then* $J_2 := hE_{\varphi}(|E(v)|)^p \circ \varphi^{-1} \in$ $L^{\infty}(\Sigma)$ *, where* $v := u(E(|w|^p)^{1/p})$ *.*

Proof. (i) Let
$$
f \in L^p(\Sigma)
$$
 and $v = u(E(|w|^p))^{1/p}$. Then we have

$$
||Tf||_p^p = \int_X |w|^p |E(uf \circ \varphi)|^p d\mu = \int_X E(|w|^p) |E(uf \circ \varphi)|^p d\mu
$$

=
$$
\int_X |E(u(E(|w|^p))^{\frac{1}{p}} f \circ \varphi)|^p d\mu = ||EM_v C_{\varphi} f|_p^p.
$$

It follows that T is bounded if and only if the operator EM_vC_φ from $IP(\Sigma)$ into $IP(\Lambda)$ is bounded. Now let $f \in IP(\Sigma)$. Then by conditional $L^p(\Sigma)$ into $L^p(\mathcal{A})$ is bounded. Now, let $f \in L^p(\Sigma)$. Then, by conditional type Hölder inequality, we have

$$
||EM_v C_{\varphi} f||_p^p = \int_X |E(vf \circ \varphi)|^p d\mu \le \int_X (E(|v|^{p'}))^{\frac{p}{p'}} E(|f|^p \circ \varphi) d\mu
$$

=
$$
\int_X (E(|v|^{p'}))^{\frac{p}{p'}} |f|^p \circ \varphi d\mu = \int_X h E_{\varphi} ((E(|v|^{p'}))^{\frac{p}{p'}}) \circ \varphi^{-1} |f|^p d\mu = \int_X J_1 |f|^p d\mu.
$$

This implies that $||T|| \le ||J_1||_{\infty}^{1/p}$, and so T is bounded.
 $\det A \in \Sigma$ with $0 < \mu(A) < \infty$. Then (ii) Let $A \in \Sigma$ with $0 < \mu(A) < \infty$. Then

$$
\int_{A} J_2 \, \mathrm{d}\mu = \int_{X} |E(v)|^p \chi_A \circ \varphi \, \mathrm{d}\mu = \int_{X} |E(v \chi_A \circ \varphi)|^p \, \mathrm{d}\mu
$$
\n
$$
= \|T(\chi_A)\|_p^p \le \|T\|^p \int_{X} \chi_A \, \mathrm{d}\mu = \int_{A} \|T\|^p \, \mathrm{d}\mu,
$$

where $v = u(E(|w|^p))^{1/p}$. It follows that $J_2 \le ||T||^p$, and so $J_2 \in L^{\infty}(\Sigma)$. \Box

Note that, $\mathcal{A} = \Sigma$ if and only if $E = I$, the identity operator, and if φ is the identity map, then $E_{\varphi} = I$. Then we have the following corollary.

- **Corollary 2.2.** (i) *If* $hE_{\varphi}(|w|^p) \circ \varphi^{-1}(E_{\varphi}(|w|^p))^p/p' \circ \varphi^{-1} \in L^{\infty}(\Sigma)$, then
the operator $T \cdot := M \cdot E \cdot M \cdot C$, is bounded on $L^p(\Sigma)$ with $1 \leq p \leq \infty$ *the operator* $T_{\varphi} := M_w E_{\varphi} M_u C_{\varphi}$ *is bounded on* $L^p(\Sigma)$ *with* $1 < p < \infty$ *. Conversely, if* T_{φ} *is bounded, then* $h(|E_{\varphi}(u)|^p \circ \varphi^{-1})(E_{\varphi}(|w|^p) \circ \varphi^{-1}) \in L^{\infty}(\Sigma)$ $L^{\infty}(\Sigma)$.
- (ii) *The weighted Lambert-type operator* M_wEM_u *from* $L^p(\Sigma)$ *into* $L^p(\Sigma)$ *is bounded if and only if* $(E|w|^p)^{1/p}(E|u|^p)^{1/p'} \in L^{\infty}(\mathcal{A})$ *, and in this case*
its norm is given by $||M|FM|| = ||(E(|w|^p))^{1/p}(E(|u|^p)^{1/p'}||)$ *its norm is given by* $||M_wEM_u|| = ||(E(|w|^p))^{1/p}(E(|u|^p'))^{1/p'}||_{\infty}$.
The weighted composition operator $uC = M C$ from $L^p(\Sigma)$ into
- (iii) *The weighted composition operator* $uC_{\varphi} = M_uC_{\varphi}$ *from* $L^p(\Sigma)$ *into* $L^p(\Sigma)$ *is bounded if and only if* $J_{\varphi} := hE_{\varphi}(|u|^p) \circ \varphi^{-1} \in L^{\infty}(\Sigma)$.

Theorem 2.3. Let $1 < q < p < \infty$ and let p', q' be the conjugate exponents to p and a respectively. Then the following assertions hold p *and* q, *respectively. Then the following assertions hold.*

- (i) If $S_1 := hE_\varphi(E(|v|^{q'}))^{q/q'} \circ \varphi^{-1}$ and $S_1^{1/q} \in L^r(\Sigma)$ *, then the weighted*
composition Lambert-type operator T from $L^p(\Sigma)$ to $L^q(\Sigma)$ is bounded *composition Lambert-type operator* T *from* $L^p(\Sigma)$ *to* $L^q(\Sigma)$ *is bounded, where* $v := u(E(|w|^q)^{1/p}$ and $1/p + 1/r = 1/q$.
- (ii) *If* $\varphi^{-1}(A) \subset A$ *and T from* $L^p(\Sigma)$ *to* $L^q(\Sigma)$ *is bounded, then* $S_2^{1/q} \in L^r(\Sigma)$ *where* $S_2 := b E$ ([$E(\alpha)$])|9 $\circ \varphi^{-1}$ $L^r(\Sigma)$ *, where* $S_2 := hE_{\varphi}(|E(v)|)^q \circ \varphi^{-1}$ *.*
- *Proof.* (i) Let $f \in L^p(\Sigma)$ and $S_1^{1/q} \in L^r(\Sigma)$. Then, by Hölder and conditional Japan's inequalities we have tional Jensen's inequalities, we have

$$
||Tf||_q^q = ||EM_v C_{\varphi} f||_q^q = \int_X |E(vf \circ \varphi)|^p d\mu \le \int_X (E(|v|^{q'}))^{\frac{q}{q'}} E(|f|^q \circ \varphi) d\mu
$$

=
$$
\int_X (E(|v|^{q'}))^{\frac{q}{q'}} |f|^q \circ \varphi d\mu = \int_X h E_{\varphi} ((E(|v|^{q'}))^{\frac{q}{q'}}) \circ \varphi^{-1} |f|^q d\mu
$$

$$
\leq \left(\int\limits_X S_1^{\frac{r}{q}} \mathrm{d}\mu\right)^{\frac{q}{r}} \left(\int\limits_X |f|^p \mathrm{d}\mu\right)^{\frac{q}{p}} = \|S_1^{\frac{1}{q}}\|_r^q \|f\|_p^q.
$$

This implies that $||T|| \leq ||S_1^{1/q}||_r$, and so T is bounded. (ii) Define linear functional Λ on $L^{\frac{p}{q}}(\mathcal{A})$ by

$$
\Lambda(f) = \int\limits_X S_2 f \mathrm{d}\mu.
$$

Since T is bounded, for each $f \in L^{\frac{p}{q}}(\mathcal{A})$ we get that

$$
|\Lambda(f)| \leq \int_{X} E\left(hE_{\varphi}(|E(v)|)^{q} \circ \varphi^{-1}\right) |f| d\mu = \int_{X} |E(v)|^{q} |f| \circ \varphi d\mu
$$

=
$$
\int_{X} |E(v|f|^{\frac{1}{q}} \circ \varphi)|^{q} d\mu = \|EM_{v}C_{\varphi}(|f|^{\frac{1}{p}})\|_{q}^{q} = \|T(|f|^{\frac{1}{q}})\|_{q}^{q} \leq \|T\|^{q} \|f\|_{\frac{p}{q}}.
$$

Hence, Λ is bounded linear functional on $L^{\frac{p}{q}}(\mathcal{A})$. By the Hahn–Banach theorem, we can suppose that Λ is a bounded linear functional on $L^{\frac{p}{q}}(\Sigma)$ theorem, we can suppose that Λ is a bounded linear functional on $L^{\frac{p}{q}}(\Sigma)$
cand $\|\Lambda\|$ \leq $\|\overline{T}\|_q$. Thus by the Piece perceptation theorem $S^{1/q}$ and $||\Lambda|| \leq ||T||^q$. Thus by the Riesz representation theorem, $S_2^{1/q} \in L^r(\Sigma)$ $L^r(\Sigma)$.

Corollary 2.4. Let $1 < q < p < \infty$ and let $1/p + 1/r = 1/q$. Then the *weighted composition operator* uC_{φ} *from* $L^p(\Sigma)$ *to* $L^q(\Sigma)$ *is bounded if and only if* $J_q := hE_\varphi(|u|^q) \circ \varphi^{-1} \in L^{r/q}(\Sigma)$.
Suppose that $X = (1 \cup \varphi(C)) \cup C$.

Suppose that $X = (\cup_{n \in \mathbb{N}} C_n) \cup C$ *, where* $\{C_n\}_{n \in \mathbb{N}}$ *is a countable collection of pairwise disjoint* Σ -atoms and $C \in \Sigma$, being disjoint from each C_n , is *non-atomic.* Note that $(\cup_{n\in\mathbb{N}} C_n) \cap A \subseteq \cup_{n\in\mathbb{N}} A_n$ and $B \subseteq C$.

Theorem 2.5. Let $1 < p < q < \infty$, $v = u(E(|w|^q)^{1/p})$ and let $T : L^p(\Sigma) \to L^q(\Sigma)$ be a weighted composition Lambert-type operator $L^{q}(\Sigma)$ *be a weighted composition Lambert-type operator.*

- (i) Let $K_1 := hE_\varphi(E(|v|^q'))^{q/q'} \circ \varphi^{-1}$ and let $M := \sup_{n \in \mathbb{N}} \frac{K_1(C_n)}{\mu(C_n)q/r}$, where p', q' be the conjugate exponents to p and q, respectively, and $1/q + 1/r$
- $1/n$ If $K_1 = 0$ on C and $M \leq \infty$, then T is bounded $= 1/p$ *. If* $K_1 = 0$ *on* C *and* $M < \infty$ *, then* T *is bounded.*
- (ii) Let $\varphi^{-1}(A) \subset A$ and let $N =: \sup_{n \in \mathbb{N}} \frac{E(K_2)^{1/q}(A_n)}{\mu(A_n)^{1/r}}$. If T is bounded, then $K_2 := hE_{\varphi}(|E(v)|)^q \circ \varphi^{-1} = 0$ *on* B and $N < \infty$ *.*
- *Proof.* (i) Let $f \in L^p(\Sigma)$ with $||f||_p = 1$. Then, by conditional Jensen's inequality, we have

$$
||Tf||_q^q = ||EM_v C_\varphi f||_q^q = \int_X |E(vf \circ \varphi)|^q d\mu \le \int_X (E(|v|^{q'}))^{\frac{q}{q'}} E(|f|^q \circ \varphi) d\mu
$$

=
$$
\int_X (E(|v|^{q'}))^{\frac{q}{q'}} |f|^q \circ \varphi d\mu = \int_X K_1 |f|^q d\mu = \sum_{n \in N} K_1(C_n) |f(C_n)|^q \mu(C_n)
$$

=
$$
\sum_{n \in N} \frac{K_1(C_n)}{\mu(C_n)^{\frac{q}{r}}} (|f(C_n)|^q \mu(C_n))^{\frac{q}{p}} \le M < \infty.
$$

This implies that $||T|| \leq M^{1/q}$, and so T is bounded.

(ii) First, we show that $E(K_2) = 0$ on B. Suppose on the contrary. Thus, we can find some $\delta > 0$ such that $\mu({x \in B : E(K_2)(x) > \delta}) > 0$. Take $F = {x \in B : E(K_2)(x) > \delta}$. Since $F \subset B$ is a *A*-measurable set and $F = \{x \in B : E(K_2)(x) > \delta\}$. Since $F \subseteq B$ is a A-measurable set and A is σ -finite then for each $n \in \mathbb{N}$ there exists $F \subset F$ with $F \subset F$ such A is σ -finite, then for each $n \in \mathbb{N}$ there exists $F_n \subseteq F$ with $F_n \in \mathcal{A}$ such that $\mu(F_n) = \mu(F)/2^n$. Define $f_n = \frac{\chi_{F_n}}{\chi_{F_n}}$. Then $f_n \in L^p(\mathcal{A})$ with that $\mu(F_n) = \mu(F)/2^n$. Define $f_n = \frac{\chi F_n}{\mu(F_n)^{1/p}}$. Then $f_n \in L^p(\mathcal{A})$ with $\|\cdot\|_{\mathcal{A}} = 1$. Since T is bounded and $\frac{q}{\lambda} > 1$, we get that $||f_n||_p = 1$. Since T is bounded and $\frac{q}{p} > 1$, we get that

$$
\infty > ||T||^{q} = ||EM_{v}C_{\varphi}||^{q} \geq ||E(vf_{n} \circ \varphi)||_{q}^{q} = \frac{1}{\mu(F_{n})^{\frac{q}{p}}} \int_{F_{n}} |E(v)|^{q} d\mu
$$

$$
= \frac{1}{\mu(F_{n})^{\frac{q}{p}}} \int_{F_{n}} K_{2} d\mu \geq \frac{\delta \mu(F_{n})}{\mu(F_{n})^{\frac{q}{p}}} = \delta \mu(F_{n})^{1-\frac{q}{p}} = \delta \left(\frac{2^{n}}{\mu(F)}\right)^{\frac{q}{p}-1} \longrightarrow \infty,
$$

when $n \to \infty$. But, this is a contradiction. It follows that $K_2 = 0$ on B, since $K_2 \geq 0$. It remains to prove $N < \infty$. Take $f_n = \frac{\chi A_n}{\mu(A_n)^{1/p}}$. Hence $f_n \in L^p(\mathcal{A})$ with $||f_n||_p = 1$. Then we have

$$
\frac{E(K_2)(A_n)}{\mu(A_n)^{\frac{q}{r}}} = \frac{E(K_2)(A_n)\mu(A_n)}{\mu(A_n)^{\frac{q}{p}}} = \int_{A_n} \frac{E(K_2)}{\mu(A_n)^{\frac{q}{p}}} d\mu
$$

=
$$
\int_{X} \frac{E(K_2)\chi_{A_n}}{\mu(A_n)^{\frac{q}{p}}} d\mu = \int_{X} \frac{K_2\chi_{A_n}}{\mu(A_n)^{\frac{q}{p}}} d\mu = ||E(vf_n \circ \varphi)||_q^q \le ||EM_vC_{\varphi}||^q = ||T||^q.
$$

This implies that $N \leq ||EM_vC_\varphi|| < \infty$.

Corollary 2.6. *Let* $1 < p < q < \infty$ *and let* $1/q + 1/r = 1/p$ *. Then the weighted composition operator* uC_{φ} *from* $L^p(\Sigma)$ *to* $L^q(\Sigma)$ *is bounded if and only if* $J_q = 0$ *on* C *and* $\sup_{n \in \mathbb{N}} J_q(C_n)/\mu(C_n)^{q/r} < \infty$ *.*

Theorem 2.7. *Let* $1 < q < \infty$, $v = u(E(|w|^q)^{1/q})$ and let $T : L^1(\Sigma) \to L^q(\Sigma)$
be a weighted composition Lambert-type operator *be a weighted composition Lambert-type operator.*

- (i) If $K_1 = 0$ on C and $M_1 := \sum_{n \in \mathbb{N}} \frac{K_1(C_n)}{\mu(C_n)^{q-1}} < \infty$, then T is bounded.
- (ii) *If* $\varphi^{-1}(A) \subset A$ *and T is bounded, then* $E(K_2) = 0$ *on B and* $N_1 :=$
 $\sup_{n \in N} \frac{E(K_2)^{1/q}(A_n)}{\mu(A_n)^{1-1/q}} < \infty$.

Proof. (i) Let $f \in L^1(\Sigma)$ with $||f||_1 = 1$. Then, by conditional Jensen's inequality, we have

$$
||Tf||_q^q = ||EM_v C_\varphi f||_q^q = \int_X |E(vf \circ \varphi)|^q d\mu \le \int_X (E(|v|^{q'}))^{\frac{q}{q'}} E(|f|^q \circ \varphi) d\mu
$$

$$
= \int_X (E(|v|^{q'}))^{\frac{q}{q'}} |f|^q \circ \varphi d\mu = \int_X K_1 |f|^q d\mu = \sum_{n \in N} K_1(C_n) |f(C_n)|^q \mu(C_n)
$$

$$
\sum_{n \in N} \frac{K_1(C_n)}{\mu(C_n)^{q-1}} (|f(C_n)| \mu(C_n))^q \le M_1
$$

This implies that $||T|| \leq M_1^{1/q}$, and thus T is bounded.
(ii) It follows by the same argument in the proof of

(ii) It follows by the same argument in the proof of Theorem [2.5\(](#page-3-0)ii). \Box

Example 2.8. Let $X = [0, 1]^2$, $d\mu = dxdy$, Σ the Lebesgue subsets of X and let $\mathcal{A} = \{A \times [0,1] : A \text{ is a Lebesgue set in } [0,1]\}.$ Then, for each f in $L^2([0,1]^2)$, $(Ef)(x,y) = \int_0^1 f(x,t)dt$, which is independent of the second
coordinate. Define the Baker transformation $\alpha : [0, 1]^2 \rightarrow [0, 1]^2$ by coordinate. Define the Baker transformation $\varphi : [0, 1]^2 \to [0, 1]^2$ by

$$
\varphi(x,y) = \left(2x, \frac{1}{2}y\right) \chi_{[0, \frac{1}{2}) \times [0,1]} + \left(2x - 1, \frac{1}{2}y + \frac{1}{2}\right) \chi_{[\frac{1}{2}, 1] \times [0,1]}.
$$

Since

$$
\varphi^{-1}([0, x] \times [0, y]) = \begin{cases} [0, \frac{x}{2}] \times [0, 2y] & 0 \le y < \frac{1}{2} \\ ([0, \frac{1}{2}x] \times [0, 1]) \cup ([\frac{1}{2}, \frac{1}{2} + \frac{1}{2}x] \times [0, 2y - 1]) & \frac{1}{2} \le y \le 1, \end{cases}
$$

and $E(|v|^2) = E(|u|^2)E(|w|^2)$, we get that

$$
J_1(x,y) = (hE_{\varphi}(E|v|^2) \circ \varphi^{-1})(x,y) = \begin{cases} (E|v|^2)(\frac{1}{2}x, 2y) & 0 \le y < \frac{1}{2} \\ (E|v|^2)(\frac{1}{2} + \frac{1}{2}x, 2y - 1) & \frac{1}{2} \le y \le 1 \end{cases}
$$

$$
= \begin{cases} (\int_0^1 |u(\frac{1}{2}x, 2t)|^2 dt)(\int_0^1 |w(\frac{1}{2}x, 2t)|^2 dt) & 0 \le y < \frac{1}{2} \\ (\int_0^1 |u(\frac{1}{2} + \frac{1}{2}x, 2t - 1)|^2 dt)(\int_0^1 |w(\frac{1}{2} + \frac{1}{2}x, 2t - 1)|^2 dt) & \frac{1}{2} \le y \le 1. \end{cases}
$$

Now, if $J_1 \in L^{\infty}([0,1]^2)$, by Theorem [2.1\(](#page-1-1)i), the integral operator

$$
(Tf)(x,y) = w(x,y) \int_{0}^{1} u(x,t) f(\varphi(x,t)) dt
$$

on $L^2([0,1]^2)$ is bounded.

3. Hyponormality of Operator $M_wEM_uC_\omega$

In this section, we characterize the hyponormal weighted composition of Lambert-type operators. Our characterization is similar in spirit and statement to Lambert's characterization of hyponormal weighted composition operators [\[5\]](#page-9-3). We obtain Lambert's characterization as a corollary whenever $w = 1$ and $\mathcal{A} = \Sigma$.

Let (X, Σ, m) be a complete σ -finite measure space. A bounded operator T on $L_m^2 = L^2(X, \Sigma, m)$ is hyponormal if $||T^*f|| \le ||Tf||$ for every f in L^2 . Throughout this section, we assume that u and u are non-negative Σ . L_m^2 . Throughout this section, we assume that u and w are non-negative Σ -
massurable functions on X and $I = hE(E(u^2)) \circ \varphi^{-1} \in L^{\infty}(\Sigma)$ where measurable functions on X and $J = hE_{\varphi}(E(v^2)) \circ \varphi^{-1} \in L^{\infty}(\Sigma)$, where $v = u(E(w^2))^{1/2}$. Note that by Theorem [2.1\(](#page-1-1)i), $J \in L^{\infty}(\Sigma)$ implies that $T = M_w E M_u C_\varphi$ is bounded on L_m^2 . Let μ be the measure defined on (X, Σ)
by $d\mu = Idm$. Then μ is supported on $A := \sigma(I)$. It is easy to see that by $d\mu = Jdm$. Then μ is supported on $A := \sigma(J)$. It is easy to see that $L_m^2 \subseteq L_\mu^2$ and so the set L_m^2 is dense in the Hilbert space L_μ^2 . For any $f,g \in \mathcal{D}(E)$ with $\sigma(f) \subseteq \sigma(g)$, we use the notational convention of $\frac{1}{g}$ for $\left(\frac{f}{g}\right)\chi_{\sigma(f)}.$

Theorem 3.1. *Let* $T: L^2(\Sigma) \to L^2(\Sigma)$ *be a bounded weighted composition Lambert-type operator.*

- (i) If T is hyponormal, then $\sigma(wE(u)) \subseteq A$.
 ii) If T is hyponormal and $\sigma^{-1}(\Sigma) \subset A$, the
- (ii) *If* T *is hyponormal and* $\varphi^{-1}(\Sigma) \subseteq A$ *, then*

$$
(h \circ \varphi) E_{\varphi} \left(\frac{(wE(u))^2}{J} \right) \leq \chi_{\sigma(E_{\varphi}(uE(w)))}, \qquad a.e. \text{ dm}.
$$

(iii) *If* $\sigma(E(u)) \subseteq A$, $(h \circ \varphi)E_{\varphi}((wE(u))^2/J) \leq 1$, (a.e. dm) and for each $f \in L^2$ $f \in L^2_m$,

$$
|E(vf\circ\varphi)|^2 = E(|v|^2)E(|f|^2\circ\varphi),
$$

$$
\int_{X} h^{2} \circ \varphi (E_{\varphi}(uE(wf)))^{2} dm \leq \int_{X} h^{2} \circ \varphi (E_{\varphi}(E(u)wf))^{2} dm,
$$

 $then T is hyponormal.$

Proof. (i) Let $B \subseteq X - A$ be a measurable set of finite measure in Σ . Then by hyponormality of T , we have

$$
||T^*(\chi_B)||_m^2 = \int_X h^2 E_\varphi(uE(w\chi_B))^2 \circ \varphi^{-1} dm \le ||T(\chi_B)||_m^2
$$

=
$$
\int_X |wE(u\chi_B \circ \varphi)|^2 dm \le \int_X E(v^2)E(\chi_B \circ \varphi) dm = \int_X J\chi_B dm = 0,
$$

so $hE_{\varphi}(uE(w\chi_B)) \circ \varphi^{-1} = 0$, a.e. dm. It follows that

$$
\int_{B} wE(u) \mathrm{d}m = \int_{X} uE(w\chi_{B}) \mathrm{d}m = \int_{X} hE_{\varphi}(uE(w\chi_{B})) \circ \varphi^{-1} \mathrm{d}m = 0.
$$

Hence, $wE(u) = 0$, a.e. dm on B, and so $wE(u) = 0$, a.e. dm on A that is $\sigma(wE(u)) \subset A$ $X - A$, that is $\sigma(wE(u)) \subseteq A$.
Suppose that $\phi^{-1}(\Sigma) \subset A$ the

(ii) Suppose that $\varphi^{-1}(\Sigma) \subseteq \mathcal{A}$, thus $L^0(\varphi^{-1}(\Sigma)) \subseteq L^0(\mathcal{A}) \subseteq L^0(\Sigma)$. Now, for any $f \in L^2$ for any $f \in L^2_m$,

$$
||T^*(f)||_m^2 = \int_X h^2 E_\varphi(uE(wf))^2 \circ \varphi^{-1} dm = \int_A h^2 E_\varphi(uE(wf))^2 \circ \varphi^{-1} dm
$$

=
$$
\int_A \frac{h^2 E_\varphi(uE(wf))^2 \circ \varphi^{-1}}{J} d\mu = \int_A \frac{hE_\varphi(uE(wf))^2 \circ \varphi^{-1}}{E_\varphi(v^2) \circ \varphi^{-1}} d\mu.
$$

For $f \in L^2_m$, define

$$
F(f) = \left(\frac{h}{E_{\varphi}(v^2) \circ \varphi^{-1}}\right)^{\frac{1}{2}} E_{\varphi}(uE(wf)) \circ \varphi^{-1}.
$$

(This is well defined, since $\sigma(hE_{\varphi}(uE(wf)) \circ \varphi^{-1}) \subseteq A$). It follows that

$$
||F(f)||_{\mu}^{2} = \int \frac{h}{E_{\varphi}(v^{2}) \circ \varphi^{-1}} (E_{\varphi}(uE(wf)))^{2} \circ \varphi^{-1} d\mu = ||T^{*}(f)||_{n}^{2}
$$

$$
\leq ||Tf||_{m}^{2} = \int \int |wE(uf \circ \varphi)|^{2} dm \leq \int \int |f|^{2} d\mu = ||f||_{\mu}^{2},
$$

since L_m^2 is dense in L_μ^2 , and F extends to a contraction on L_μ^2 . Now, let $f \circ L^2$ Then we have $f,g \in L^2_m$. Then we have

$$
\langle F(f), g \rangle_{\mu} = \int_{X} \left(\frac{h}{E_{\varphi}(v^2) \circ \varphi^{-1}} \right)^{\frac{1}{2}} E_{\varphi}(uE(wf)) \circ \varphi^{-1} \bar{g} d\mu
$$

\n
$$
= \int_{X} (hE_{\varphi}(v^2) \circ \varphi^{-1})^{\frac{1}{2}} E_{\varphi}(uE(wf)) \circ \varphi^{-1} \bar{g} h dm
$$

\n
$$
= \int_{X} (h \circ \varphi E_{\varphi}(v^2))^{\frac{1}{2}} E_{\varphi}(uE(wf)) \bar{g} \circ \varphi dm
$$

\n
$$
= \int_{X} w f(h \circ \varphi E_{\varphi}(v^2))^{\frac{1}{2}} E(u) \bar{g} \circ \varphi dm = \int_{X} f \frac{wE(u)(J \circ \varphi)^{\frac{1}{2}} \bar{g} \circ \varphi}{J} d\mu.
$$

Thus, $F^*(g) = \frac{wE(u)(J \circ \varphi)^{1/2} g \circ \varphi}{J}$, and so

$$
||F^*(g)||^2_{\mu} = \int_X \frac{w^2 E(u)^2 J \circ \varphi |g|^2 \circ \varphi}{J^2} d\mu = \int_X \frac{w^2 E(u)^2 J \circ \varphi |g|^2 \circ \varphi}{J} dm
$$

=
$$
\int_X E_{\varphi} \left(\frac{w^2 E(u)^2}{J} \right) J \circ \varphi |g|^2 \circ \varphi dm = \int_X h E_{\varphi} \left(\frac{w^2 E(u)^2}{J} \right) J |g|^2 dm
$$

=
$$
\int_X h E_{\varphi} \left(\frac{w^2 E(u)^2}{J} \right) |g|^2 d\mu \le \int_X |g|^2 d\mu,
$$

since F^* is a contraction on L^2_{μ} . It follows that $hE_{\varphi}((w^2E(u))^2/J) \circ \varphi^{-1}$
 ≤ 1 , a.e. du on $\sigma(J)$ and vanishes on $X \setminus \sigma(J)$, so $hF((w^2F(u))^2/J) \circ$ ≤ 1 , a.e. dµ on $\sigma(J)$ and vanishes on $X\setminus \sigma(J)$, so $hE_{\varphi}((w^2E(u))^2/J) \circ$ $\varphi^{-1} \leq \chi_{\sigma(J)}$. Since $\varphi^{-1}(\sigma(J)) = \sigma(J \circ \varphi) = \sigma(E_{\varphi}(uE(w))),$ we get that $(h \circ \varphi) \in \chi_{\sigma(J)}(uE(w))^2 / I \leq \chi_{\sigma(J)}(uE(w))$ and (ii) holds $(h \circ \varphi)E_{\varphi}((wE(u))^2/J) \leq \chi_{\sigma(J)} \circ \varphi = \chi_{\sigma(E_{\varphi}(uE(w)))}$, and (ii) holds.

(iii) By assumptions of this part, we can define the operator G on L_m^2 , for any $f \in L^2$ any $f \in L^2_m$,

$$
G(f) = \frac{wE(u)(J \circ \varphi)^{\frac{1}{2}} f \circ \varphi}{J}.
$$

Hence,

$$
||G(f)||_{\mu}^{2} = \int \frac{|wE(u)(J \circ \varphi)^{\frac{1}{2}} f \circ \varphi|^{2}}{J^{2}} d\mu
$$

=
$$
\int_{X} hE_{\varphi} \left(\frac{(wE(u))^{2}}{J} \right) \circ \varphi^{-1} |f|^{2} d\mu
$$

$$
\leq \int_{X} |f|^{2} d\mu = ||f||_{\mu}^{2}.
$$

It follows that G is a contraction on L_m^2 . In particular, G extends to a contraction on L^2 . By similar computation of part (ii) for f in L^2 contraction on L^2_{μ} . By similar computation of part (ii), for f in L^2_m

$$
G^*(f) = \left(\frac{h}{E_{\varphi}(v^2) \circ \varphi^{-1}}\right)^{\frac{1}{2}} E_{\varphi}(wE(u)f) \circ \varphi^{-1}
$$

and $||T^*(f)||_m^2 \leq ||G^*(f)||_\mu^2$. Since G^* is a contraction, we have for all f in I^2 in L_m^2

$$
||T^*(f)||_m^2 \le ||G^*(f)||_\mu^2 \le ||f||_\mu^2 = ||T(f)||_m^2
$$

that is T is hyponormal. \Box

- **Corollary 3.2.** (i) *If* $T_{\varphi} = M_w E_{\varphi} M_u C_{\varphi}$ *is hyponormal, then* $\sigma(w E_{\varphi}(u)) \subseteq$
 $\sigma(J)$ and $(h \circ \varphi) E_{\varphi}(u^2) E_{\varphi}(w^2 / J) \leq \chi(E_{\varphi}(u)) \circ E_{\varphi}(u)$, where $J =$ $\sigma(J)$ and $(h \circ \varphi)E_{\varphi}(u^2)E_{\varphi}(w^2/J) \leq \chi_{\sigma(E_{\varphi}(u)) \cap E_{\varphi}(\sigma(w))}$, where $J =$
 $h F_{\sigma}(u^2) \circ \varphi^{-1}$ with $u = u(F_{\sigma}(u^2))^{1/2}$ $hE_{\varphi}(v^2) \circ \varphi^{-1}$ with $v = u(E_{\varphi}(w^2))^{1/2}$.

If $\sigma(E_{\varphi}(u)) \subset \sigma(L)$ and $(h \circ \varphi)E_{\varphi}(u^2)E$.
- (ii) $If \sigma(E_{\varphi}(u)) \subseteq \sigma(J)$ and $(h \circ \varphi)E_{\varphi}(u^2)E_{\varphi}(w^2/J) \leq 1$ with $J = hE_{\varphi}(v^2) \circ$ φ^{-1} *, then* T_{φ} *is hyponormal.*
- (iii) Let $J_{\varphi} = hE_{\varphi}(u^2) \circ \varphi^{-1} \in L^{\infty}(\Sigma)$. Then the bounded weighted composi*tion operator* $\mathrm{u}C_{\varphi}$ *on* $L^2(\Sigma)$ *is hyponormal if and only if* (a) $\sigma(u) \subseteq \sigma(J_{\varphi}),$ (b) $(h \circ \varphi) E_{\varphi}(\frac{u^2}{J_{\varphi}}) \leq 1$, *a.e.* dm.

Example 3.3*.* Let $m = \{m_n\}_{n=1}^{\infty}$ be a sequence of positive real numbers.
Consider the space $l^2(m) = L^2(\mathbb{N}^3)^{\mathbb{N}}(u)$ where $2^{\mathbb{N}}$ is the power set of natural Consider the space $l^2(m) = L^2(N, 2^N, \mu)$, where 2^N is the power set of natural
numbers and u is a measure on 2^N defined by $u(\lbrace n \rbrace) = m$. Let $u = \lbrace u, \rbrace^{\infty}$. numbers and μ is a measure on $2^{\mathbb{N}}$ defined by $\mu({n}) = m_n$. Let $u = {u_n}_{n=1}^{\infty}$ manders and μ is a measure on 2 defined by $\mu_1(\mu_f) = m_n$. Let $a = \mu_n f_{n=1}$
be a sequence of non-negative real numbers. Let $\varphi : \mathbb{N} \to \mathbb{N}$ be a non-singular
measurable transformation i.e. $\mu_0/a^{-1} \ll \mu$. Direct c measurable transformation, i.e. $\mu \circ \varphi^{-1} \ll \mu$. Direct computation shows that

$$
h(k) = \frac{1}{m_k} \sum_{j \in \varphi^{-1}(k)} m_j, \ \ E_{\varphi}(f)(k) = \frac{\sum_{j \in \varphi^{-1}(\varphi(k))} f_j m_j}{\sum_{j \in \varphi^{-1}(\varphi(k))} m_j},
$$

for all non-negative sequence $f = \{f_n\}_{n=1}^{\infty}$ and $k \in \mathbb{N}$. Since $\sigma(J_{\varphi}) = \sigma(h) \cap$
 $\sigma(E(u))$ by Corollary 3.2(ii) uC is hyponormal on $l^2(m)$ if and only if $\sigma(E_{\varphi}(u))$, by Corollary [3.2\(](#page-8-3)ii), uC_{φ} is hyponormal on $l^2(m)$ if and only if $\sigma(u) \subset I_k \in \mathcal{Q}(\mathbb{N}) \setminus \mathcal{U}(\mathcal{Q}^{-1}(\mathcal{Q}(k))) \neq I_0 \mathcal{W}$ and $\sigma(u) \subseteq \{k \in \varphi(\mathbb{N}) : u(\varphi^{-1}(\varphi(k))) \neq \{0\}\}\$ and

$$
(h \circ \varphi)(k) E_{\varphi}\left(\frac{u^2}{J_{\varphi}}\right)(k) = \frac{1}{m_k} \sum_{j \in \varphi^{-1}(\varphi(k))} \frac{u(j)^2 m_j}{J_{\varphi}(j)} \le 1
$$

on $\sigma(u)$, where for each $j \in \mathbb{N}$,

$$
J_{\varphi}(j) = \frac{1}{m_j} \sum_{i \in \varphi^{-1}(j)} u(i)^2 m_i \le M
$$

for some $M \geq 0$.

References

- [1] Estaremi, Y., Jabbarzadeh, M.R.: Weighted lambert type operators on L^p spaces. Oper. Matrices. **7**, 101–116 (2013)
- [2] Grobler, J.J., de Pagter, B.: Operators representable as multiplicationconditional expectation operators. J. Oper. Theory **48**, 15–40 (2002)
- [3] Herron, J.: Weighted conditional expectation operators on L^p spaces, UNC Charlotte Doctoral Dissertation (2004)
- [4] Lambert, A.: L^p multipliers and nested sigma-algebras. Oper. Theory Adv. Appl. **104**, 147–153 (1998)
- [5] Lambert, A.: Hyponormal composition operators. Bull. Lond. Math. Soc. **18**, 395–400 (1986)
- [6] Rao, M.M.: Conditional measure and applications. Marcel Dekker, New York (1993)
- [7] Zaanen, A.C.: Integration, 2nd edn. North-Holland, Amsterdam (1967)

Y. Estaremi Faculty of Mathematical Sciences Payame Noor University Tehran, Iran e-mail: estaremi@gmail.com

M. R. Jabbarzadeh Faculty of Mathematical Sciences University of Tabriz P. O. Box: 5166615648, Tabriz, Iran e-mail: mjabbar@tabrizu.ac.ir

Received: January 29, 2013. Accepted: August 29, 2013.