Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Compact Lambert type operators between two L^p spaces

CrossMark

霐

Y. Estaremi^a, M.R. Jabbarzadeh^b

^a Department of Mathematics, Payame Noor University, P. O. Box: 19395-3697, Tehran, Iran
 ^b Faculty of Mathematical Sciences, University of Tabriz, P. O. Box: 5166615648, Tabriz, Iran

ARTICLE INFO

Article history: Received 13 February 2012 Available online 16 May 2014 Submitted by D. Khavinson

Keywords: Conditional expectation Multiplication operators Compact operator Polar decomposition Aluthage transformation

ABSTRACT

We investigate compactness of weighted Lambert type operators between two L^p spaces.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

Let (X, Σ, μ) be a σ -finite measure space and let \mathcal{A} be a sub- σ -algebra of Σ such that (X, \mathcal{A}, μ) is also σ -finite. All functional equations and set relations are taken modulo sets of measure 0. We denote the vector space of all equivalence classes of almost everywhere finite-valued measurable functions on X by $L^0(\Sigma)$. The support of a measurable function f is defined as $\sigma(f) = \{x \in X; f(x) \neq 0\}$.

Let $E = E^{\mathcal{A}}$ be the conditional expectation operator. For any \mathcal{A} -set A and $f \in \bigcup_{p \geq 1} L^p(\Sigma) \cup \{f \in L^0(\Sigma) : f \geq 0\}$, $\int_A f d\mu = \int_A Ef d\mu$. As an operator on $L^p(\Sigma)$, E is idempotent and $E(L^p(\Sigma)) = L^p(\mathcal{A})$. The interested reader can find more extensive list of properties of conditional expectations in [1] and [10].

We recall that an \mathcal{A} -atom of the measure μ is an element $A \in \mathcal{A}$ with $\mu(A) > 0$, such that for each $F \in \mathcal{A}$, if $F \subseteq A$, then either $\mu(F) = 0$ or $\mu(F) = \mu(A)$. A measure space (X, Σ, μ) with no atoms is called non-atomic measure space. It is well-known that every σ -finite measure space (X, \mathcal{A}, μ) can be partitioned uniquely as $X = (\bigcup_{n \in \mathbb{N}} A_n) \cup B$, where $\{A_n\}_{n \in \mathbb{N}}$ is a countable collection of pairwise disjoint \mathcal{A} -atoms and B, being disjoint from each A_n , is non-atomic (see [11]).

If E(f) exists for a function $f \in L^0(\Sigma)$, then we say f is conditionable. Let u and w be conditionable. As defined in [3], the weighted Lambert type operator T is the bounded operator $T := M_w E M_u$ from $L^p(\Sigma)$

E-mail addresses: estaremi@gmail.com, yestaremi@pnu.ac.ir (Y. Estaremi), mjabbar@tabrizu.ac.ir (M.R. Jabbarzadeh).

into $L^q(\Sigma)$, where M_u and M_w are multiplication operators. Throughout this paper, we assume that u and w are conditionable and T is a weighted Lambert type operator.

Our interest in operators of the form $M_w E M_u$ stems from the fact that such products tend to appear often in the study of those operators related to conditional expectation. Multiplication-conditional expectation products appear in [2], where it is shown that every contractive projection on certain L^1 -spaces can be decomposed into an operator of the form $M_w E M_u$ and a nilpotent operator. In [4,5,7] operators that are representable as products involving multiplications and conditional expectations are studied. Also, in [9], S.T.C. Moy has characterized all operators on L^p of the form $E M_u$ and $M_w E M_u$. Some classical properties of the operator $E M_u$ on $L^p(\Sigma)$ spaces are characterized in [6] and [8]. The authors have characterized boundedness of T between two $L^p(\Sigma)$ spaces, polar decomposition and some other classical properties of Ton $L^2(\Sigma)$ in [3]. In this paper we investigate the class of compact linear operators between different L^p -spaces having the form $M_w E M_u$.

2. Compact weighted Lambert type operators

In this section we discuss compactness of the weighted Lambert type operator $T = M_w E M_u$ between two different L^p -spaces. Also, some examples are provided to illustrate some concrete applications of the main results of the paper.

Theorem 2.1. Let $1 < q < p < \infty$ and let p', q' be conjugate component to p and q, respectively. Then the weighted Lambert type operator T from $L^p(\Sigma)$ into $L^q(\Sigma)$ is compact if and only if

(i) $(E|w|^q)^{1/q}(E|u|^{p'})^{1/p'} = 0$ a.e. on B; (ii) $\sum_{n \in \mathbb{N}} (E(|w|^q))^{p'q'/(q'-p')}(A_n)(E(|u|^{p'}))^{q'/(q'-p')}(A_n)\mu(A_n) < \infty.$

Proof. Let $f \in L^p(\Sigma)$. Then

$$\begin{aligned} \|Tf\|_{q}^{q} &= \int_{X} |w|^{q} |E(uf)|^{q} d\mu = \int_{X} E(|w|^{q}) |E(uf)|^{q} d\mu \\ &= \int_{X} |E(u(E(|w|^{q}))^{\frac{1}{q}} f)|^{q} d\mu = \|EM_{v}f\|_{q}^{q}, \end{aligned}$$

where $v := u(E(|w|^q))^{1/q}$. It follows that the weighted Lambert type operator $T : L^p(\Sigma) \to L^q(\Sigma)$ is compact if and only if $R_v^* = M_{\bar{v}}E = M_{\bar{v}} : L^{q'}(\mathcal{A}) \to L^{p'}(\Sigma)$ is compact. Since $||M_{\bar{v}}f||_{p'} = ||M_{(E(|v|^{p'}))^{1/p'}}f||_{p'}$, we have that $M_{\bar{v}}$ is compact if and only if the multiplication operator $M_{(E(|v|^{p'}))^{1/p'}}$ is compact. Now, suppose that T is compact. Firstly, we show that $E(|v|^{p'}) = 0$ a.e. on B. Assume that there exists some $\delta > 0$ such that the set $B_0 = \{x \in B : E(|v|^{p'})(x) > \delta\}$ has positive measure. We may also assume $\mu(B_0) < \infty$. Since B_0 has no \mathcal{A} -atoms, we can find $E_n \in \mathcal{A}$ of positive measure satisfying $E_{n+1} \subseteq E_n \subseteq B_0$ for all nand $\lim_n \mu(E_n) = 0$. Put $f_n = \chi_{E_n}/(\mu(E_n))^{1/p'}$. Then for each n, f_n is a bounded element in $L^{q'}(\mathcal{A})$ and $\lim_n f_n(x) = 0$ for all $x \in X \setminus \bigcap_n E_n$. It follows that $\lim_n E(|v|^{p'})f_n = 0$ point-wise almost everywhere, because $\mu(\bigcap_n E_n) = 0$. By compactness of $M_{(E(|v|^{p'}))^{1/p'}}$, $\{(E(|v|^{p'}))^{1/p'}f_n\}_n$ is uniformly integrable in $L^{p'}(\Sigma)$. Hence there exists $t \geq 0$ such that

$$\sup_{n \in \mathbb{N}} \int_{\{E(|v|^{p'})f_n \ge t\}} E(|v|^{p'}) f_n^{p'} d\mu < \delta,$$

and so $\int_{E_N} E(|v|^{p'}) f_n^{p'} d\mu < \delta$ for some large $N \in \mathbb{N}$. Then we infer that

$$\delta > \int_{E_N} E(|v|^{p'}) f_N^{p'} d\mu = \left\| M_{(E(|v|^{p'}))^{1/p'}} f_N^{p'} \right\|^{p'} = \frac{1}{\mu(E_N)} \int_{E_N} E(|v|^{p'}) \ge \delta,$$

but this is a contradiction. Next, we examine the condition (ii). Since T is compact we have that M_v is bounded and so by Theorem 2.2 in [3], $E(|v|^{p'})^{1/p'} \in L^{p'q'/(q'-p')}(\mathcal{A})$. Thus $\sum_{n \in \mathbb{N}} (E(|v|^{p'}))^{q'/(q'-p')}(A_n)\mu(A_n) < \infty$.

Conversely, assume that the conditions (i) and (ii) hold. By the same preceding discussion, it suffices to establish the compactness of $M_{(E(|v|^{p'}))^{1/p'}} : L^{q'}(\mathcal{A}) \to L^{p'}(\Sigma)$. The condition (ii) implies that for any $\varepsilon > 0$, there exists $N_{\varepsilon} \in \mathbb{N}$ such that $\sum_{n>N_{\varepsilon}} (E(|v|^{p'}))^{q'/(q'-p')}(A_n)\mu(A_n) < \varepsilon$. Put $v_{\varepsilon} := \sum_{n \leq N_{\varepsilon}} (E(|v|^{p'}))^{1/p'}(A_n)\chi_{A_n}$. Obviously, $M_{v_{\varepsilon}}$ is a bounded and finite rank operator from $L^{q'}(\mathcal{A})$ to $L^{p'}(\Sigma)$. Moreover, by the Hölder inequality, for each $f \in L^{q'}(\mathcal{A})$ we have

$$\begin{split} \|M_{(E(|v|p'))^{1/p'}}f - M_{v_{\varepsilon}}f\|_{p'}^{p'} &= \int_{\bigcup_{n>N_{\varepsilon}}A_{n}} E(|v|^{p'})|f|^{p'}d\mu \\ &= \sum_{n>N_{\varepsilon}} E(|v|^{p'})(A_{n})\mu(A_{n})|f(A_{n})|^{p'} \\ &= \sum_{n>N_{\varepsilon}} E(|v|^{p'})(A_{n})\mu(A_{n})^{\frac{q'-p'}{q'}}|f(A_{n})|^{p'}\mu(A_{n})^{\frac{p'}{q'}} \\ &\leq \left(\sum_{n>N_{\varepsilon}} E(|v|^{p'})^{\frac{q'}{q'-p'}}(A_{n})\mu(A_{n})\right)^{\frac{q'-p'}{q'}} \left(\sum_{n>N_{\varepsilon}} |f(A_{n})|^{q'}\mu(A_{n})\right)^{\frac{p'}{q'}} \\ &\leq \varepsilon^{\frac{q'-p'}{q}} \|f\|_{q'}^{p'}. \end{split}$$

It follows that $||M_{(E(|v|^{p'}))^{1/p'}} - M_{v_{\varepsilon}}|| \leq \varepsilon^{(q'-p')/q'}$. So $M_{(E(|v|^{p'}))^{1/p'}}$ is the limit of finite rank operators and is therefore compact. This completes the proof of the theorem. \Box

Theorem 2.2. Let 1 and let <math>p', q' be conjugate component to p and q respectively. Then the weighted Lambert type operator T from $L^p(\Sigma)$ into $L^q(\Sigma)$ is compact if and only if

(i) E(|u|^{p'})^{1/p'}(E(|w|^q))^{1/q} = 0 a.e. on B;
(ii) lim_{n→∞} E(|u|^{p'})(A_n)(E(|w|^q))^{p'/q}(A_n)/(p'-q')/q'} = 0, when the number of A-atoms is not finite.

Proof. Let $f \in L^p(\Sigma)$. Since $||Tf||_q = ||EM_v f||_q$, $v := u(E(|w|^q))^{\frac{1}{q}}$, it follows that $T : L^p(\Sigma) \to L^q(\Sigma)$ is compact if and only if $M_v : L^{q'}(\mathcal{A}) \to L^{p'}(\Sigma)$ is compact. Let T be compact. Hence M_v is compact and so is bounded. Thus by Theorem 2.3 in [3], $E(|v|^{p'}) = 0$ a.e. on B.

Now, if the condition (ii) is not satisfied, we can find a constant $\delta > 0$ such that for each $n \in \mathbb{N}$ there exists $i_n > n$ so that $E(|v|^{p'})(A_{i_n})/\mu(A_{i_n})^{(p'-q')/q'} > \delta$. For each $n \in \mathbb{N}$, define $f_n = \chi_{A_{i_n}}/\mu(A_{i_n})^{1/q'}$. Obviously, $f_n \in L^{q'}(\mathcal{A})$ and $||f_n||_{q'} = 1$. Now, for each $m, n \in \mathbb{N}$ with $m \neq n$ we get that

$$\begin{split} \|M_{\bar{v}}f_m - M_{\bar{v}}f_n\|_{p'}^{p'} &= \int_X |v|^{p'}|f_m - f_n|^{p'}d\mu = \int_X E(|v|^{p'})|f_m - f_n|^{p'}d\mu \\ &\geq \int_{A_{i_m}} E(|v|^{p'})|f_m|^{p'}d\mu + \int_{A_{i_n}} E(|v|^{p'})|f_n|^{p'}d\mu \ge 2\delta. \end{split}$$

But this is a contradiction.

Conversely, assume both (i) and (ii) hold. By the same argument in the proof of Theorem 2.1, it suffices to establish the compactness of $M_{(E(|v|^{p'}))^{1/p'}}$. From (ii), for any $\varepsilon > 0$ there exists $N_{\varepsilon} \in \mathbb{N}$ such that $E(|v|^{p'})(A_n)/\mu(A_n)^{(p'-q')/q'} < \varepsilon$, for all $n > N_{\varepsilon}$. Take $v_{\varepsilon} := \sum_{i < N_{\varepsilon}} E(|v|^{p'})^{1/p'}(A_i)\chi_{A_i}$. Then $M_{v_{\varepsilon}}$ is a bounded and finite rank operator from $L^{q'}(\mathcal{A})$ to $L^{p'}(\Sigma)$. Moreover, for each $f \in L^{q'}(\mathcal{A})$ with $||f||_{q'} = 1$, we have $|f(A_n)|^{q'}\mu(A_n) \leq ||f||_{q'}^{q'} = 1$. Since p'/q' > 1, then $(|f(A_n)|^{q'}\mu(A_n))^{p'/q'} \leq |f(A_n)|^{q'}\mu(A_n)$. Thus we have

$$\begin{split} \|M_{(E(|v|^{p'}))^{1/p'}}f - M_{v_{\varepsilon}}f\|_{p'}^{p'} &= \int_{\bigcup_{n>N_{\varepsilon}}A_{n}} E(|v|^{p'})|f|^{p'}d\mu \\ &= \sum_{n>N_{\varepsilon}} E(|v|^{p'})(A_{n})\mu(A_{n})|f(A_{n})|^{p'} \\ &= \sum_{n>N_{\varepsilon}}\frac{E(|v|^{p'})(A_{n})}{\mu(A_{n})^{(p'-q')/q'}} \left(|f(A_{n})|^{q'}\mu(A_{n})\right)^{\frac{p'}{q'}} \leq \varepsilon \|f\|_{q'}^{p'}. \end{split}$$

Therefore $||M_{(E(|v|^{p'}))^{1/p'}} - M_{v_{\varepsilon}}|| \leq \varepsilon^{1/q'}$, and so $M_{(E(|v|^{p'}))^{1/p'}}$ is compact. \Box

Remark 2.3. (a) According to the procedure used in the proof of Theorem 2.1, the weighted Lambert type operator T from $L^p(\Sigma)$ into $L^p(\Sigma)$ is compact if and only if $\nu = 0$ a.e. on B and $\lim_{n \to \infty} \nu(A_n) = 0$, where $\nu = (E|w|^p)^{1/p} (E|u|^{p'})^{1/p'}$. See Lemma 2.5 in [3] for another characterization.

(b) If q = 1, then by the procedure used in the proof of Theorem 2.2, by taking $f_n = \chi_{A_{in}}$ we get that the weighted Lambert type operator T from $L^p(\Sigma)$ into $L^1(\Sigma)$ is compact if and only if $\sum_{n \in \mathbb{N}} E(|u|^{p'})(A_n)(E(|w|))^{p'}(A_n)\mu(A_n) < \infty \text{ and } E(|u|^{p'})^{1/p'}E(|w|) = 0 \text{ a.e. on } B.$

(c) Let (X, \mathcal{A}, μ) be a non-atomic measure space. Since for each $\alpha > 0$ and $\beta > 0$, $\sigma(w) = \sigma(|w|^{\alpha}) \subseteq$ $\sigma(E(|w|^{\alpha})) = \sigma((E(|w|^{\alpha}))^{\beta})$, then by the previous results, the weighted Lambert type operator T from $L^q(\Sigma)$ into $L^p(\Sigma)$ with $1 and <math>1 \le q < \infty$ is compact if and only if it is a zero operator.

Theorem 2.4. Let $1 < q < \infty$ and let $X = (\bigcup_{n \in \mathbb{N}} C_n) \cup C$, where $\{C_n\}_{n \in \mathbb{N}}$ is a countable collection of pairwise disjoint Σ -atoms and $C \in \Sigma$, being disjoint from each C_n , is non-atomic. Then:

- (a) If the weighted Lambert type operator T from $L^1(\Sigma)$ into $L^q(\Sigma)$ is compact, then
 - (i) $E(|u|^{q'})^{1/q'}(E(|w|^q))^{1/q} = 0$ a.e. on B;
 - (ii) $\lim_{n\to\infty} \frac{E(|u|^{q'})(A_n)(E(|w|^q))^{q'/q}(A_n)}{\mu(A_n)} = 0$, when the number of \mathcal{A} -atoms is not finite.
- (b) The weighted Lambert type operator T from $L^1(\Sigma)$ into $L^q(\Sigma)$ is compact, if the following conditions hold:
 - (i) $u(E(|w|^q))^{1/q} = 0$ a.e. on C, and
 - (ii) $\lim_{n\to\infty} \frac{E(|u|^{q'})(C_n)(E(|w|^q))^{q'/q}(C_n)}{\mu(C_n)} = 0$, when the number of Σ -atoms is not finite.

Proof. (a) Let $f \in L^1(\Sigma)$. Then $||Tf||_q = ||EM_v f||_q$, where $v := u(E(|w|^q))^{\frac{1}{q}}$. It follows that $T: L^1(\Sigma) \to U(\Sigma)$ $L^q(\Sigma)$ is compact if and only if the operator $EM_v: L^1(\Sigma) \to L^q(\Sigma)$ is compact. Suppose that EM_v is compact. Then by Theorem 2.4(b) in [3], $E(|v|^{q'}) = 0$ a.e. on B. Now, we examine the condition (ii). Assume on the contrary, thus we can find a constant $\delta > 0$ such that for each $n \in \mathbb{N}$ there exists $i_n > n$ so that $E(|v|^{p'})(A_n)/\mu(A_n) > \delta$, for all $n \in \mathbb{N}$. For every $n \in \mathbb{N}$, define $f_n = \chi_{A_{i_n}}/\mu(A_{i_n})^{1/q'}$. Then $f_n \in L^{q'}(\mathcal{A})$ and $||f_n||_{q'} = 1$. Thus, for any $m, n \in \mathbb{N}$ with $m \neq n$, we obtain

$$\|M_{\bar{v}}f_m - M_{\bar{v}}f_n\|_{\infty}^{q'} \ge \frac{1}{\mu(A_{i_n})^2} \int_{A_{i_n}} E(|v|^{p'})d\mu = \frac{E(|v|^{p'})(A_{i_n})}{\mu(A_{i_n})} \ge \delta.$$

But this is a contradiction.

(b) Assume that the conditions (i) and (ii) hold. Then for any $\varepsilon > 0$, there exists some $N_{\varepsilon} \in \mathbb{N}$ such that $E(|v|^{q'})(C_n)/\mu(C_n) < \varepsilon$ for all $n > N_{\varepsilon}$. Take $v_{\varepsilon} := \sum_{n \le N_{\varepsilon}} v(C_n)\chi_{C_n}$. It follows that $EM_{v_{\varepsilon}}$ is a bounded and finite rank operator. Moreover, for any $f \in L^1(\Sigma)$ with $||f||_1 = 1$ we get that $|f(A_n)|\mu(A_n) \le ||f||_1 = 1$. Since q > 1, then $(|f(A_n)|\mu(A_n))^q \le |f(A_n)|\mu(A_n)$. Now, by the conditional type Hölder inequality we have

$$\begin{split} \|EM_{v}f - EM_{v_{\varepsilon}}f\|_{q}^{q} &= \int_{X} \left| E(v\chi_{\bigcup_{n>N_{\varepsilon}}C_{n}}f) \right|^{q} d\mu \\ &\leq \int_{X} \left(E(|v|^{q'}) \right)^{\frac{q}{q'}} E(\chi_{\bigcup_{n>N_{\varepsilon}}C_{n}}|f|^{q}) d\mu = \int_{\bigcup_{n>N_{\varepsilon}}C_{n}} \left(E(|v|^{q'}) \right)^{\frac{q}{q'}}|f|^{q} d\mu \\ &\sum_{n>N_{\varepsilon}} \frac{\left(E(|v|^{q'}) \right)^{\frac{q}{q'}}(C_{n})}{\mu(C_{n})^{q-1}} \left(|f(C_{n})|\mu(C_{n}) \right)^{q} \leq \varepsilon^{\frac{q}{q'}} \sum_{n>N_{\varepsilon}} |f(C_{n})|\mu(C_{n}) \leq \varepsilon^{\frac{q}{q'}}. \end{split}$$

This implies that EM_v is compact. \Box

Example 2.5. (a) Let $X = [0, \infty) \times [0, \infty)$, $d\mu = dxdy$, Σ the Lebesgue subsets of X and let $\mathcal{A} = \{A \times [0, \infty) : A$ is a Lebesgue set in $[0, \infty)\}$. Put w = 1/y and u = 1. Then, for each f in $L^p(\Sigma)$ with p > 1,

$$(Tf)(x,y) = \frac{1}{y}E(f)(x,y) = \frac{1}{y}\int_{0}^{\infty}f(x,t)dt$$

Since $\int_0^\infty 1/t^p dt = E(|w|^p) \notin L^\infty(\mathcal{A})$, so the averaging operator T is not compact because it is not bounded (see [3, Theorem 2.1(a)]).

(b) Let $\nu = \{m_n\}_{n=1}^{\infty}$ be a sequence of positive real numbers. Consider the measure space $(\mathbb{N}, 2^{\mathbb{N}}, \mu)$ with $\mu(\{n\}) = m_n$. Let $\varphi : \mathbb{N} \to \mathbb{N}$ be a measurable transformation. Take $\mathcal{A} = \varphi^{-1}(2^{\mathbb{N}})$. Then for all non-negative sequence $f = \{f_n\}_{n=1}^{\infty}$ and $k \in \mathbb{N}$, we have

$$E(f)(k) = \frac{\sum_{j \in \varphi^{-1}(\varphi(k))} f_j m_j}{\sum_{j \in \varphi^{-1}(\varphi(k))} m_j}.$$

Now, set $\varphi = \chi_{\{1\}} + (n-1)\chi_{\{n \in \mathbb{N}: n \geq 2\}}$ and let $\mu(\{n\}) = 1$ for all $n \in \mathbb{N}$. Then \mathcal{A} is generated by the atoms

$$\{1,2\}, \{3\}, \{4\}, \ldots$$

Hence for $w = \{w_n\} \in l^0(2^{\mathbb{N}}), u = \{u_n\} \in \mathcal{D}(E) \text{ and } f = \{f_n\} \in L^p(\Sigma) \text{ we have }$

$$Tf = wE(uf) = \left(\frac{w_1(u_1f_1 + u_2f_2)}{2}, \frac{w_2(u_1f_1 + u_2f_2)}{2}, w_3u_3f_3, w_4u_4f_4, \ldots\right).$$

In particular, by Theorem 2.1, $T: L^3(\Sigma) \to L^2(\Sigma)$ is compact if and only if $\sum_{n=3}^{\infty} (w_n u_n)^6 < \infty$. Hence, by Theorem 2.2, $T: L^2(\Sigma) \to L^3(\Sigma)$ is compact if and only if $w_n u_n \to 0$ as $n \to \infty$.

(c) Let $X = \mathbb{N}, \Sigma = 2^{\mathbb{N}}$ and let μ be the counting measure. Put

$$A = \{\{2\}, \{4,6\}, \{8,10,12\}, \{14,16,18,20\}, \cdots \} \cup \{\{1\}, \{3\}, \{5\}, \cdots \}.$$

If we let $A_1 = \{2\}$, $A_2 = \{4, 6\}$, $A_3 = \{8, 10, 12\}$, \cdots , then we see that $\mu(A_n) = n$ and for every $n \in \mathbb{N}$, there exists $k_n \in \mathbb{N}$ such that $A_n = \{2k_n, 2(k_n + 1), \cdots, 2(k_n + n - 1)\}$. Let \mathcal{A} be the σ -algebra generated

by the partition A of \mathbb{N} . Note that, \mathcal{A} is a sub- σ -finite algebra of Σ and each of element of \mathcal{A} is an \mathcal{A} -atom. It is known that the conditional expectation of any $f \in \mathcal{D}(E)$ relative to \mathcal{A} is

$$E(f) = \sum_{n=1}^{\infty} \left(\frac{1}{\mu(A_n)} \int_{A_n} f d\mu \right) \chi_{A_n} + \sum_{n=1}^{\infty} f(2n-1) \chi_{\{2n-1\}}.$$

Put u(n) = n and $w(n) = \frac{1}{n^3}$, for all $n \in \mathbb{N}$. For each even number $m \in \mathbb{N}$, there exists $n_m \in \mathbb{N}$ such that $m \in A_{n_m}$. Thus for all $1 \leq p, q < \infty$ we get that

$$E(|w|^{q})(m) = \frac{1}{(2k_{n_m})^{3q}} + \dots + \frac{1}{(2k_{n_m} + 2n_m - 2)^{3q}}$$

and $E(|u|^p)(m) = 2^p k_{n_m}^p + 2^p (k_{n_m} + 1)^p + \dots + 2^p (k_{n_m} + n_m - 1)^p$. Since $n_m \le k_{n_m}$, we have

$$(E(|w|^q))^{\frac{1}{q}}(m)(E(|u|^p))^{\frac{1}{p}}(m) \le \frac{4k_{n_m}}{2^3k_{n_m}^3}$$

Also, for all $n \in \mathbb{N}$

$$\left(E\left(|w|^{q}\right)\right)^{\frac{1}{q}}(2n-1)\left(E\left(|u|^{p}\right)\right)^{\frac{1}{p}}(2n-1) \leq \frac{1}{(2n-1)^{2}}$$

It is easy to see that

$$\lim_{n \to \infty} \frac{E(|u|^{p'})(A_n)(E(|w|^q))^{p'/q}(A_n)}{n^{(p'-q')/q'}} = 0;$$
$$\lim_{n \to \infty} E(|u|^{p'})(2n-1)(E(|w|^q))^{p'/q}(2n-1) = 0.$$

Thus by Theorem 2.2, the weighted Lambert type operator T from $L^p(\Sigma)$ into $L^q(\Sigma)$ is compact, when 1 . Also, since we have

$$\lim_{n \to \infty} E(|u|^{q'})(n) \left(E(|w|^q) \right)^{q'/q}(n) = 0,$$

by Theorem 2.4, T is a compact operator from $L^1(\Sigma)$ into $L^q(\Sigma)$, for $1 < q < \infty$.

References

- [1] James T. Campbell, William E. Hornor, Seminormal composition operators, J. Operator Theory 29 (1993) 323–343.
- [2] R.G. Douglas, Contractive projections on an L_1 space, Pacific J. Math. 15 (1965) 443–462.
- [3] Y. Estaremi, M.R. Jabbarzadeh, Weighted Lambert type operators on L^p spaces, Oper. Matrices 7 (2013) 101–116.
- [4] J. Grobler, B. de Pagter, Operators representable as multiplication-conditional expectation operators, J. Operator Theory 48 (2002) 15–40.
- [5] J. Grobler, B. de Pagter, Operators represented by conditional expectations and random measures, Positivity 9 (2005) 369–383.
- [6] J. Herron, Weighted conditional expectation operators on L^p spaces, UNC Charlotte Doctoral Dissertation, 2004.
- [7] J. Herron, Weighted conditional expectation operators, Oper. Matrices 1 (2011) 107–118.
- [8] A. Lambert, L^p multipliers and nested sigma-algebras, Oper. Theory Adv. Appl. 104 (1998) 147–153.
- [9] Shu-Teh Chen Moy, Characterizations of conditional expectation as a transformation on function spaces, Pacific J. Math. 4 (1954) 47–63.
- [10] M.M. Rao, Conditional Measure and Applications, Marcel Dekker, New York, 1993.
- [11] A.C. Zaanen, Integration, 2nd ed., North-Holland, Amsterdam, 1967.