J. Math. Anal. Appl. $\bullet \bullet \bullet (\bullet \bullet \bullet \bullet) \bullet \bullet - \bullet \bullet$

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

Gunnal of
MATHEMATICAL
ANALYSIS AND
APPLICATIONS

APPLICAT

www.elsevier.com/locate/jmaa

A substitution vector-valued integral operator

H. Emamalipour*, M.R. Jabbarzadeh, Z. Moayyerizadeh

Department of Mathematical Sciences, University of Tabriz, 5166617766, Tabriz, Iran

ARTICLE INFO

Article history: Received 1 December 2014 Available online xxxx

Submitted by J.A. Ball

Keywords: Integral operator Conditional expectation Weakly measurable function ABSTRACT

In this paper we introduce a substitution vector-valued integral operator T_u^{φ} on $L^2(X)$ associated with the pair (u,φ) and investigate some fundamental properties of T_u^{φ} by the language of conditional expectation operators.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

Let (X, Σ, μ) be a σ -finite measure space and $\varphi : X \to X$ be a non-singular measurable transformation; i.e. $\mu \circ \varphi^{-1} \ll \mu$. Here the non-singularity of φ guarantees that the composition operator $C_{\varphi} : f \mapsto f \circ \varphi$ is well defined as a mapping on $L^0(\Sigma)$ where $L^0(\Sigma)$ denotes the linear space of all equivalence classes of Σ -measurable functions on X. Let $h_0 = d\mu \circ \varphi^{-1}/d\mu$ be the Radon–Nikodym derivative. Recall that C_{φ} is bounded on $L^2(\Sigma)$ if and only if $h_0 \in L^{\infty}(\Sigma)$ (see [7]). We have the following change of variable formula:

$$\int_{\varphi^{-1}(A)} f \circ \varphi d\mu = \int_A h_0 f d\mu, \quad A \in \Sigma, \ f \in L^1(\Sigma).$$

The support of a measurable function f is defined by $\sigma(f) = \{x \in X : f(x) \neq 0\}$. All comparisons between two functions or two sets are to be interpreted as holding up to a μ -null set. For a sub- σ -finite algebra $\mathcal{A} \subseteq \Sigma$, the conditional expectation operator associated with \mathcal{A} is the mapping $f \to E^{\mathcal{A}} f$, defined for all non-negative f as well as for all $f \in L^p(\Sigma)$, $1 \leq p \leq \infty$, where $E^{\mathcal{A}} f$, by Radon–Nikodym theorem, is the unique \mathcal{A} -measurable function satisfying

E-mail addresses: h.emamali@tabrizu.ac.ir (H. Emamalipour), mjabbar@tabrizu.ac.ir (M.R. Jabbarzadeh), z moayerizadeh@tabrizu.ac.ir (Z. Moayyerizadeh).

http://dx.doi.org/10.1016/j.jmaa.2015.05.078

 $0022\text{-}247\text{X}/\odot$ 2015 Elsevier Inc. All rights reserved.

^{*} Corresponding author.

H. Emamalipour et al. / J. Math. Anal. Appl. • • • $(\bullet \bullet \bullet \bullet)$ • • • - • •

$$\int_{A} f d\mu = \int_{A} E^{\mathcal{A}} f d\mu, \quad \forall A \in \mathcal{A}.$$

We recall that $E^{\mathcal{A}}: L^2(\Sigma) \to L^2(\mathcal{A})$ is an orthogonal projection. Throughout this paper, we assume that $\mathcal{A} = \varphi^{-1}(\Sigma)$ and $E^{\varphi^{-1}(\Sigma)} = E$. It is well known that for each non-negative Σ -measurable function f or for each $f \in L^2(\Sigma)$, there exists a Σ -measurable function g such that $E(f) = g \circ \varphi$. We can assume that $\sigma(g) \subseteq \sigma(h_0)$ and there exists only one g with this property. We then write $g = E(f) \circ \varphi^{-1}$ though we make no assumptions regarding the invertibility of φ (see [1]). Let $u \in L^0(\Sigma)$. Thus u is said to be conditionable with respect to E if $u \in \mathcal{D}(E) \subseteq L^0(\Sigma)$, where $\mathcal{D}(E)$ denotes the domain of E. For more details on the properties of $E^{\mathcal{A}}$ see [4,6].

An atom of the measure μ is an element $A \in \Sigma$ with $\mu(A) > 0$, such that for each $B \in \Sigma$, if $B \subset A$ then either $\mu(B) = 0$ or $\mu(B) = \mu(A)$. A measure with no atoms is called non-atomic. We can easily check the following well-known facts (see[8]):

(a) Every σ -finite measure space (X, Σ, μ) can be partitioned uniquely as

$$X = (\cup_{n \in \mathbb{N}} A_n) \cup B,\tag{1.1}$$

where $\{A_n\}_{n\in\mathbb{N}}\subseteq\Sigma$ is a countable collection of pairwise disjoint atoms and B, being disjoint from each A_n , is non-atomic.

(b) Let E be a non-atomic set with $\mu(E) > 0$. Then there exists a sequence of positive disjoint Σ -measurable subsets of E, $\{E_n\}_{n\in\mathbb{N}}$ such that $\mu(E_n) > 0$ for each $n\in\mathbb{N}$ and $\lim_{n\to\infty}\mu(E_n) = 0$.

For a given complex Hilbert space \mathcal{H} with inner product $\langle \cdot, \cdot \rangle$, let $L^2(X, \mathcal{H})$ be the class of all measurable mappings $f: X \to \mathcal{H}$ such that $||f||_2^2 := \int_X ||f(x)||^2 d\mu < \infty$. Let $f, g \in L^2(X, \mathcal{H})$. By using the polar identity, the mapping $x \mapsto \langle f(x), g(x) \rangle$ from X into \mathbb{C} is measurable. It follows that $L^2(X, \mathcal{H})$ is a Hilbert space with inner product

$$(f,g) = \int_{X} \langle f(x), g(x) \rangle d\mu, \quad f, g \in L^{2}(X, \mathcal{H}).$$

We shall write $L^2(X)$ for $L^2(X, \mathcal{H})$ when $\mathcal{H} = \mathbb{C}$. Let $u: X \to \mathcal{H}$ be a mapping. We say that u is weakly measurable if for each $h \in \mathcal{H}$ the mapping $x \mapsto \langle u(x), h \rangle$ from X into \mathbb{C} is measurable. We will denote this map by $\langle u, h \rangle$.

The aim of this article is to carry some of the results obtained for the weighted composition operators in [2,3,7] to a substitution vector-valued integral operator. In this paper, first we consider some basic properties of substitution vector-valued integral operators and then we give some necessary and sufficient conditions for boundedness, compactness and semi-Fredholmness of these type operators.

2. The main results

2

Definition 2.1. Let $u: X \to \mathcal{H}$ be a weakly measurable function. We say that u is a weakly bounded function if for some $B \ge A > 0$,

$$\sqrt{A}||h|| \le ||\langle u, h \rangle||_2 \le \sqrt{B}||h||, \quad \forall h \in \mathcal{H}.$$
(2.1)

In the same way, u is said to be semi-weakly bounded function if u only satisfies the right hand side of the above inequalities.

Please cite this article in press as: H. Emamalipour et al., A substitution vector-valued integral operator, J. Math. Anal. Appl. (2015), http://dx.doi.org/10.1016/j.jmaa.2015.05.078

Note that if $u \in L^2(X, \mathcal{H})$, then for all $h \in \mathcal{H}$, $\int_X |\langle u, h \rangle|^2 d\mu \leq B \|h\|^2$, where $B = \|u\|_2^2$. So u is a semi-weakly bounded function. In addition, if u is a semi-weakly bounded function with an upper bound B > 0 and dim $\mathcal{H} = n$, with the natural basis $\{e_i\}_{i \in \mathbb{N}}$, then

$$\int\limits_{Y} \|u(x)\|^2 d\mu = \sum_{i=1}^n \int\limits_{Y} |\langle u(x), e_i \rangle|^2 d\mu(x) \le nB < \infty,$$

and so $u \in L^2(X, \mathcal{H})$. Now, let $u \in L^2(X, \mathcal{H})$ be a weakly bounded function and let $\{e_\alpha\}_{\alpha \in I}$ be an orthonormal basis for \mathcal{H} . Put $h = e_\alpha$. By Parseval's identity and (2.1) we obtain

$$A\sum_{\alpha\in I}1\leq \sum_{\alpha\in I}\int\limits_{X}|\langle u(x),e_{\alpha}\rangle|^{2}d\mu(x)=\int\limits_{X}\|u(x)\|^{2}d\mu(x)<\infty,$$

for some A > 0. Therefore, I must be a finite set and hence dim $\mathcal{H} < \infty$. These observations establish the following proposition.

Proposition 2.2. The following statements hold.

- (i) If $u \in L^2(X, \mathcal{H})$, then u is a semi-weakly bounded function.
- (ii) If u is a semi-weakly bounded function and dim $\mathcal{H} < \infty$, then $u \in L^2(X, \mathcal{H})$.
- (iii) If $u \in L^2(X, \mathcal{H})$ is a weakly bounded function, then dim $\mathcal{H} < \infty$.

Definition 2.3. Let $\varphi: X \to X$ be a non-singular measurable transformation and let $u: X \to \mathcal{H}$ be a weakly measurable function. Then the pair (u, φ) induces a substitution vector-valued integral operator $T_u^{\varphi}: L^2(X) \to \mathcal{H}$ defined by

$$\langle T_u^{\varphi} f, h \rangle = \int_X \langle u, h \rangle f \circ \varphi d\mu, \quad h \in \mathcal{H}, \ f \in L^2(X).$$

It is easy to see that T_u^{φ} is well defined and linear. Moreover for each $f \in L^2(X)$,

$$\sup_{h\in\mathcal{H}_1}|\langle T_u^\varphi f,h\rangle|\leq \sup_{h\in\mathcal{H}_1}\|T_u^\varphi f\|\ \|h\|=\|T_u^\varphi f\|=|\langle T_u^\varphi f,\frac{T_u^\varphi f}{\|T_u^\varphi f\|}\rangle|\leq \sup_{h\in\mathcal{H}_1}|\langle T_u^\varphi f,h\rangle|,$$

where \mathcal{H}_1 is the closed unit ball of \mathcal{H} . Hence

$$\|T_u^\varphi\|=\sup_{\|f\|\leq 1}\|T_u^\varphi f\|=\sup_{\|f\|\leq 1}\sup_{h\in\mathcal{H}_1}|\langle T_u^\varphi f,h\rangle|.$$

Theorem 2.4. Let $u: X \to \mathcal{H}$ be a weakly measurable function. Then:

- (i) If u is a semi-weakly bounded function and $h_0 \in L^{\infty}(\Sigma)$, then T_u^{φ} is bounded.
- (ii) If for each $h \in \mathcal{H}$, the functions $\langle u, h \rangle$ are conditionable and T_u^{φ} is bounded, then for all $h \in \mathcal{H}_1$, $h_0 E(\langle u, h \rangle) \circ \varphi^{-1} \in L^2(X)$ and $(T_u^{\varphi})^* = h_0 E(\langle \cdot, u \rangle) \circ \varphi^{-1}$.

Proof. (i) Let $f \in L^2(X)$. By Hölder's inequality and change of variable formula we have

$$||T_u^{\varphi}f|| = \sup_{h \in \mathcal{H}_1} |\int_{Y} \langle u, h \rangle (f \circ \varphi) d\mu|$$

H. Emamalipour et al. / J. Math. Anal. Appl. • • • (• • • •) • • • - • •

$$\leq (\sup_{h \in \mathcal{H}_1} \int_X |\langle u, h \rangle|^2 d\mu)^{\frac{1}{2}} (\int_X |f \circ \varphi|^2 d\mu)^{\frac{1}{2}}$$

$$\leq \sup_{h \in \mathcal{H}_1} (B\|h\|)^{\frac{1}{2}} \int_X h_0 |f|^2 d\mu)^{\frac{1}{2}}$$

$$\leq \sqrt{B\|h_0\|_{\infty}} \|f\|_2.$$

This shows that T_u^{φ} is bounded.

(ii) Since T_u^{φ} is a bounded operator, so there exists M>0 such that for each $f\in L^2(X)$, $||T_u^{\varphi}f||\leq M||f||_2$. For an arbitrary and fixed $h\in\mathcal{H}_1$, we define a linear functional Λ_h on $L^2(X)$ by $\Lambda_h(f)=\int_X h_0 E(\langle u,h\rangle)\circ \varphi^{-1}fd\mu$. Since

$$|\Lambda_h(f)| \le \sup_{h \in \mathcal{H}_1} |\int_X h_0 E(\langle u, h \rangle) \circ \varphi^{-1} f d\mu|$$

= $||T_u^{\varphi} f|| \le M ||f||_2$,

hence Λ_h is a bounded linear functional on $L^2(X)$. By the Riesz representation theorem, there exists a unique function $g \in L^2(X)$ such that for each $f \in L^2(X)$, $\Lambda_h(f) = \int_X gf d\mu$. This implies that $h_0E(\langle u,h\rangle) \circ \varphi^{-1} = g$, and so $h_0E(\langle u,h\rangle) \circ \varphi^{-1} \in L^2(X)$. Now, let $f \in L^2(X)$ and $h \in \mathcal{H}$. Then we have

$$(f, (T_u^{\varphi})^*(h)) = \langle T_u^{\varphi} f, h \rangle = \int_X \langle u, h \rangle (f \circ \varphi) d\mu$$
$$= \int_X h_0 E(\langle u, h \rangle) \circ \varphi^{-1} f d\mu$$
$$= (f, h_0 E(\overline{\langle u, h \rangle}) \circ \varphi^{-1}).$$

Hence for all $h \in \mathcal{H}$, $(T_u^{\varphi})^*(h) = h_0 E(\langle h, u \rangle) \circ \varphi^{-1}$. \square

Theorem 2.5. Let $u: X \to \mathcal{H}$ be a semi-weakly bounded function with an upper bound B and let $h_0 \in L^{\infty}(\Sigma)$. Put $S_u^{\varphi} = T_u^{\varphi}(T_u^{\varphi})^*$. Then the following statements are equivalent.

- (i) The operator $S_u^{\varphi}: \mathcal{H} \to \mathcal{H}$ is invertible.
- (ii) The operator $T_n^{\varphi}: L^2(X) \to \mathcal{H}$ is surjective.

Proof. (i) \Rightarrow (ii) Since S_u^{φ} is a self-adjoint operator on \mathcal{H} , then by [5, Theorem 9.2.1] we have $\inf_{h \in \mathcal{H}_1} \langle S_u^{\varphi} h, h \rangle = \inf_{h \in \mathcal{H}_1} \| (T_u^{\varphi})^*(h) \|^2 \in \operatorname{spec}(S_u^{\varphi})$, the spectrum of S_u^{φ} . By hypothesis $0 \notin \operatorname{spec}(S_u^{\varphi})$. Hence, $\inf_{h \in \mathcal{H}_1} \| (T_u^{\varphi})^*(h) \| > 0$. It follows that $\inf_{h \in \mathcal{H}_1} \| (T_u^{\varphi})^*(h) \| \|h\| \leq \| (T_u^{\varphi})^*(h) \|$, and so T_u^{φ} is surjective.

(ii) \Rightarrow (i) Let T_u^{φ} be surjective. Then there exists M > 0 such that for each $h \in \mathcal{H} \| (T_u^{\varphi})^*(h) \|^2 \ge M \|h\|^2$. So $\langle S_u^{\varphi}(h), h \rangle = \langle T_u^{\varphi}(T_u^{\varphi})^*(h), h \rangle = \| (T_u^{\varphi})^*(h) \|^2 \ge M \|h\|^2$. Moreover, for each $h \in \mathcal{H}$ we have

$$\begin{split} \langle S_u^{\varphi}(h), h \rangle &= \langle T_u^{\varphi}(T_u^{\varphi})^*(h), h \rangle \\ &= \int_X \langle u, h \rangle ((T_u^{\varphi})^*(h)) \circ \varphi d\mu \\ &= \int_X \langle u, h \rangle h_0 \circ \varphi E(\overline{\langle u, h \rangle}) d\mu \end{split}$$

Please cite this article in press as: H. Emamalipour et al., A substitution vector-valued integral operator, J. Math. Anal. Appl. (2015), http://dx.doi.org/10.1016/j.jmaa.2015.05.078

H. Emamalipour et al. / J. Math. Anal. Appl. • • • $(\bullet \bullet \bullet \bullet)$ • • • - • •

$$\begin{split} &= \int\limits_X E\left(\langle u,h\rangle h_0\circ \varphi E(\overline{\langle u,h\rangle})\right) d\mu \\ &= \int\limits_X h_0\circ \varphi E(\langle u,h\rangle) \overline{E(\langle u,h\rangle)} d\mu \\ &\leq \int\limits_X h_0\circ \varphi E(|\langle u,h\rangle|^2) d\mu \\ &= \int\limits_X h_0\circ \varphi |\langle u,h\rangle|^2 d\mu \leq \|h_0\|_\infty B\|h\|^2. \end{split}$$

Therefore $M \leq S_u^{\varphi} \leq ||h_0||_{\infty} B$, and so S_u^{φ} is invertible. \square

Definition 2.6. Let $u: X \to \mathcal{H}$ be a weakly measurable function. We say that the pair (u, \mathcal{H}) has absolute property, if for each $f \in L^2(X)$, there exists $h_f \in \mathcal{H}_1$ such that $\sup_{h \in \mathcal{H}_1} \int_X |\langle u, h \rangle| |f \circ \varphi| d\mu = \int_X |\langle u, h_f \rangle| |f \circ \varphi| d\mu$, and $\langle u, h_f \rangle = e^{i(-\arg f \circ \varphi + \theta_f)} |\langle u, h_f \rangle|$, for some constant $\theta_f \in \mathbb{C}$.

Corollary 2.7. Assume that the pair (u, \mathcal{H}) has the absolute property. Then

$$\sup_{h\in\mathcal{H}_1}|\int\limits_{Y}\langle u,h\rangle f\circ\varphi d\mu|=\sup_{h\in\mathcal{H}_1}\int\limits_{Y}|\langle u,h\rangle||f\circ\varphi|d\mu.$$

Proof. Let f be an arbitrary and fixed element of $L^2(X)$. Then

$$\sup_{h \in \mathcal{H}_1} \int_X |\langle u, h \rangle| |f \circ \varphi| d\mu = \int_X |\langle u, h_f \rangle| |f \circ \varphi| d\mu$$

$$= |\int_X e^{i(\arg f \circ \varphi - \theta_f)} \langle u, h_f \rangle| f \circ \varphi| d\mu|$$

$$= |\int_X e^{-i\theta_f} \langle u, h_f \rangle| f \circ \varphi| d\mu|$$

$$\leq \sup_{h \in \mathcal{H}_1} |\int_X \langle u, h \rangle| f \circ \varphi| d\mu|.$$

The inverse of the inequality is clear. \Box

From now on we assume that the pair (u, \mathcal{H}) has the absolute property. In the following theorem we give some necessary and sufficient conditions for the boundedness of T_u^{φ} .

Theorem 2.8. T_u^{φ} is bounded if and only if $\sup_{h \in \mathcal{H}_1} \|h_0 E(|\langle u, h \rangle|) \circ \varphi^{-1}\|_2 < \infty$.

Proof. Let $M:=\sup_{h\in\mathcal{H}_1}\|h_0E(|\langle u,h\rangle|)\circ\varphi^{-1}\|_2<\infty$ and $f\in L^2(X)$. Then By Hölder's inequality and change of variable formula we have

$$||T_u^{\varphi}f|| = \sup_{h \in \mathcal{H}_1} \int_X h_0 E(|\langle u, h \rangle|) \circ \varphi^{-1} |f| d\mu$$

Please cite this article in press as: H. Emamalipour et al., A substitution vector-valued integral operator, J. Math. Anal. Appl. (2015), http://dx.doi.org/10.1016/j.jmaa.2015.05.078

_

$$\leq \sup_{h \in \mathcal{H}_1} \left(\int_X (h_0 E(|\langle u, h \rangle|) \circ \varphi^{-1})^2 d\mu \right)^{\frac{1}{2}} \left(\int_X |f|^2 d\mu \right)^{\frac{1}{2}}$$
$$= \sup_{h \in \mathcal{H}_1} \|h_0 E(|\langle u, h \rangle|) \circ \varphi^{-1}\|_2 \|f\|_2.$$

YJMAA:19548

Consequently, for each $f \in L^2(X)$, $||T_u^{\varphi}f|| \leq M||f||_2$. Conversely, assume that T_u^{φ} is bounded. Take an arbitrary and fixed $h \in \mathcal{H}_1$ and define a linear functional Λ_h on $L^2(X)$ by

$$\Lambda_h(f) = \int\limits_{Y} h_0 E(|\langle u, h \rangle|) \circ \varphi^{-1} f d\mu, \quad f \in L^2(X).$$

By a similar argument as in the proof of Theorem 2.4(ii), it can be proved that $h_0E(|\langle u,h\rangle|)\circ\varphi^{-1}\in L^2(X)$, for each $h\in\mathcal{H}_1$. \square

Theorem 2.9. Let (X, Σ, μ) be partitioned as (1.1) and let T_u^{φ} be a compact operator on $L^2(X)$. Then:

- (i) $M := \sup_{h \in \mathcal{H}_1} (h_0 E(|\langle u, h \rangle|) \circ \varphi^{-1})^2 = 0$ on B;
- (ii) $N := \sup_{h \in \mathcal{H}_1} \sum_{i \in \mathbb{N}} (h_0 E(|\langle u, h \rangle|) \circ \varphi^{-1})^2 (A_i) \mu(A_i) < \infty.$

Proof. Let T_u^{φ} be a compact operator. First, we prove (i) by contradiction. Assume $\mu(\{x \in B : M(x) > 0\}) > 0$. Then there exist $\delta > 0$ and $h_1 \in \mathcal{H}_1$ such that the set $C := \{x \in B : h_0(x)E(|\langle u, h_1 \rangle|) \circ \varphi^{-1})^2(x) \geq \delta\}$ has positive measure. We may also assume $\mu(C) < \infty$. Since $C \subseteq B$, we can find $E_n \in \Sigma$ of positive measure satisfying $E_{n+1} \subseteq E_n \subseteq C$ with $\mu(E_{n+1}) = \frac{\mu(E_n)}{2}$, for all $n \in \mathbb{N}$. Put $f_n = \frac{h_0 E(|\langle u, h_1 \rangle|) \circ \varphi^{-1}}{\|h_0 E(|\langle u, h_1 \rangle|) \circ \varphi^{-1}\|_2} \chi_{E_n}$. Note that $\{f_n\}_n \subseteq L^2(X)$ is a bounded sequence. Then for each $n, m \in \mathbb{N}$ with n > m, we have

$$||T_{u}^{\varphi}f_{m} - T_{u}^{\varphi}f_{n}|| = \sup_{h \in \mathcal{H}_{1}} \int_{X} |\langle u, h \rangle| ||f_{m} - f_{n}| \circ \varphi d\mu$$

$$\geq \int_{X} |\langle u, h_{1} \rangle| ||f_{m} - f_{n}| \circ \varphi d\mu$$

$$= \int_{X} h_{0}E(|\langle u, h_{1} \rangle|) \circ \varphi^{-1} ||f_{m} - f_{n}| d\mu$$

$$= \int_{X} \frac{(h_{0}E(|\langle u, h_{1} \rangle|) \circ \varphi^{-1})^{2}}{||h_{0}E(|\langle u, h_{1} \rangle|) \circ \varphi^{-1}||_{2}} (\chi_{E_{m}} - \chi_{E_{n}}) d\mu$$

$$\geq \int_{E_{m} \setminus E_{n}} \frac{(h_{0}E(|\langle u, h_{1} \rangle|) \circ \varphi^{-1})^{2}}{||h_{0}E(|\langle u, h_{1} \rangle|) \circ \varphi^{-1}||_{2}} d\mu$$

$$\geq \frac{\delta}{||h_{0}E(|\langle u, h_{1} \rangle|) \circ \varphi^{-1}||_{2}} (\mu(E_{m}) - \mu(E_{n})).$$

Since $\mu(E_n) < \frac{\mu(E_n)}{2}$, then $||T_u^{\varphi}f_m - T_u^{\varphi}f_n|| \ge k$ for some k > 0. This implies that the sequence $\{T_u^{\varphi}f_n\}_n$ does not contain a convergent subsequence, but this shows that T_u^{φ} is not compact. Next, we prove (ii). Since T_u^{φ} is compact, so T_u^{φ} is bounded and by (i), M = 0 on B. Now, by Theorem 2.8, $N^2 < \infty$ and this complete the proof. \square

H. Emamalipour et al. / J. Math. Anal. Appl. • • • (• • • •) • • • - • •

Theorem 2.10. Let $\{i \in \mathbb{N} : \sup_{h \in \mathcal{H}_1} h_0 E(|\langle u, h \rangle|) \circ \varphi^{-1}(A_i) > 0\}$ be a finite subset of \mathbb{N} and let $\sup_{h \in \mathcal{H}_1} h_0 E(|\langle u, h \rangle|) \circ \varphi^{-1} = 0$ on B. Then T_u^{φ} is compact.

Proof. We show that T_u^{φ} is a finite rank operator. To show that $T_u^{\varphi}(L^2(X))$ is finite-dimensional, we only need to prove that the set $U:=\{h\in T_u^{\varphi}(L^2(X)): \|h\|\leq 1\}$ is compact in \mathcal{H} . If the set $\{i\in\mathbb{N}:\sup_{h\in\mathcal{H}_1}h_0E(|\langle u,h\rangle|)\circ\varphi^{-1}(A_i)>0\}$ is empty, then T_u^{φ} is the zero operator. Otherwise we may assume that there exists $k\in\mathbb{N}$ such that $\sup_{h\in\mathcal{H}_1}h_0E(|\langle u,h\rangle|)\circ\varphi^{-1}>0$ for $1\leq i\leq k$ and $\sup_{h\in\mathcal{H}_1}h_0E(|\langle u,h\rangle|)\circ\varphi^{-1}=0$ for any i>k. Let $\{T_u^{\varphi}f_n\}_n$ be an arbitrary sequence in U. Then we have

$$||T_u^{\varphi} f_n|| = \sup_{h \in \mathcal{H}_1} \int_X h_0 E(|\langle u, h \rangle|) \circ \varphi^{-1} |f_n| d\mu$$

$$= \sup_{h \in \mathcal{H}_1} \left(\int_{\bigcup_{i \in \mathbb{N}} A_i} h_0 E(|\langle u, h \rangle|) \circ \varphi^{-1} |f_n| d\mu + \int_B h_0 E(|\langle u, h \rangle|) \circ \varphi^{-1} |f_n| d\mu \right)$$

$$= \sum_{i=1}^k \sup_{h \in \mathcal{H}_1} h_0 E(|\langle u, h \rangle|) \circ \varphi^{-1} (A_i) \mu(A_i) |f_n(A_i)|.$$

Put $\alpha_i = \sup_{h \in \mathcal{H}_1} h_0 E(|\langle u, h \rangle|) \circ \varphi^{-1}(A_i) \mu(A_i)$. Then:

$$||T_u^{\varphi} f_n|| = \sum_{i=1}^k \alpha_i |f_n(A_i)|.$$
 (2.2)

Since $||T_u^{\varphi}f_n|| \leq 1$ for all $n \in \mathbb{N}$, then $|f_n(A_i)| \leq \frac{1}{\alpha_i}$ for each $1 \leq i \leq k$ and each $n \in \mathbb{N}$. Hence, by Bolzano–Weierstrass theorem, there exists a subsequence of natural numbers $\{n_j\}_{j\in\mathbb{N}}$ such that for each fixed $1 \leq i \leq k$, the sequence $\{f_{n_j}(A_i)\}_{j\in\mathbb{N}}$ converges. Assume that $\lim_{j\to\infty} f_{n_j}(A_i) = \xi_i$ and let $f := \sum_{i=1}^k \xi_i \chi_{A_i}$. Now, from (2.2) we have $||T_u^{\varphi}f|| = \sum_{i=1}^k \alpha_i |\xi_i| \leq 1$. Hence, $T_u^{\varphi}f \in U$ and so we get that

$$||T_u^{\varphi} f_{n_j} - T_u^{\varphi} f|| = \sum_{i=1}^k \alpha_i |f_{n_j}(A_i) - f(A_i)| = \sum_{i=1}^k \alpha_i |f_{n_j}(A_i) - \xi_i| \to 0,$$

as $j \to \infty$. It follows that U is compact in \mathcal{H} . This completes the proof of the theorem. \square

Corollary 2.11. Let (X, Σ, μ) be a non-atomic σ -finite measure space. Then no bounded substitution vector-valued integral operator T_u^{φ} on $L^2(X)$ is compact unless it is a zero operator.

Proof. Let T_u^{φ} be a compact operator on $L^2(X)$. Then by Theorem 2.9, for each $h \in \mathcal{H}_1$, $h_0E(|\langle u,h\rangle|) \circ \varphi^{-1} = 0$ on X. For each $f \in L^2(X)$, we have

$$||T_u^{\varphi}f|| = \sup_{h \in \mathcal{H}_1} \int_Y h_0 E(|\langle u, h \rangle|) \circ \varphi^{-1} |f| d\mu.$$

Therefore $T_u^{\varphi} f = 0$, for each $f \in L^2(X)$, and thus T_u^{φ} is the zero operator. \square

Theorem 2.12. Let T_u^{φ} be a bounded operator from $L^2(X)$ into \mathcal{H} . Then the following statements are equivalent.

- (i) T_u^{φ} is injective.
- (ii) For each $h \in \mathcal{H}_1$, $h_0 E(|\langle u, h \rangle|) \circ \varphi^{-1} > 0$ on X.

Please cite this article in press as: H. Emamalipour et al., A substitution vector-valued integral operator, J. Math. Anal. Appl. (2015), http://dx.doi.org/10.1016/j.jmaa.2015.05.078

H. Emamalipour et al. / J. Math. Anal. Appl. • • • (• • • •) • • • - • •

- (iii) For $A \in \Sigma$, if $\mu(\varphi^{-1}(A) \cap \sigma(\langle u, h \rangle)) = 0$ for each $h \in \mathcal{H}_1$, then $\mu(A) = 0$.
- (iv) There exists $h_1 \in \mathcal{H}_1$, such that $h_0 E(|\langle u, h_1 \rangle|) \circ \varphi^{-1} > 0$ on X.

Proof. Direction (ii) \Rightarrow (iv) is trivial. For (iv) \Rightarrow (i), let f be a non-zero element in ker T_{ν}^{φ} . Then we have

$$0 = ||T_u^{\varphi} f|| = \sup_{h \in \mathcal{H}_1} \int_X |\langle u, h \rangle| |f \circ \varphi| d\mu$$

$$\geq \int_X |\langle u, h_1 \rangle| |f \circ \varphi| d\mu$$

$$= \int_X h_0 E(|\langle u, h_1 \rangle|) \circ \varphi^{-1} |f| d\mu$$

$$= \int_{\sigma(f)} h_0 E(|\langle u, h_1 \rangle|) \circ \varphi^{-1} |f| d\mu.$$

This means that f = 0 on X. For (i) \Rightarrow (iii), let $\mu(\varphi^{-1}(A) \cap \sigma(\langle u, h \rangle)) = 0$ for each $h \in \mathcal{H}_1$ and $A \in \Sigma$ with $\mu(A) < \infty$. Since $\chi_A \in L^2(X)$, we have

$$||T_u^{\varphi}\chi_A|| = \sup_{h \in \mathcal{H}_1} |\int_{\varphi^{-1}(A)} \langle u, h \rangle d\mu| = \sup_{h \in \mathcal{H}_1} |\int_{\varphi^{-1}(A) \cap \sigma(\langle u, h \rangle)} \langle u, h \rangle d\mu| = 0.$$

Thus $T_u^{\varphi}\chi_A = 0$. Now, the injectivity of T_u^{φ} implies that $\chi_A = 0$ and so $\mu(A) = 0$. For (iii) \Rightarrow (ii), put $J = \sigma(h_0 E(|\langle u, h \rangle|) \circ \varphi^{-1})$ for an arbitrary and fixed $h \in \mathcal{H}_1$. Then

$$\int_{\varphi^{-1}(X\setminus J)\cap\sigma(\langle u,h\rangle)} |\langle u,h\rangle| d\mu \leq \int_{\varphi^{-1}(X\setminus J)} |\langle u,h\rangle| d\mu$$

$$= \int_{X\setminus J} h_0 E(|\langle u,h\rangle|) \circ \varphi^{-1} d\mu$$

$$= 0.$$

Therefore we deduce that for each $h \in \mathcal{H}_1$, $\mu\left(\varphi^{-1}(X \setminus J) \cap \sigma(\langle u, h \rangle)\right) = 0$, and so by (iii), $\mu(X \setminus J) = 0$. This implies that for each $h \in \mathcal{H}_1$, $h_0 E(|\langle u, h_1 \rangle|) \circ \varphi^{-1} > 0$ on X. \square

Lemma 2.13. Let (X, Σ, μ) be a non-atomic σ -finite measure space. Then the nullity of T_u^{φ} is either zero or infinite.

Proof. If T_u^{φ} is injective, then $\dim \ker T_u^{\varphi} = 0$. Since otherwise, there must exist a non-zero function $f \in L^2(X)$ such that $T_u^{\varphi} f = 0$. Since $\sigma(|f|)$ has positive measure, by hypothesis we can find $\{S_n\}_{n=1}^{\infty}$ of pairwise disjoint Σ -measurable subsets in $\sigma(|f|)$ with $0 < \mu(S_n) < \infty$ and $\sigma(|f|) = \cup_n S_n$. Set $f_n = f\chi_{S_n}$. Thus we have

$$||T_u^{\varphi} f_n|| = \sup_{h \in \mathcal{H}_1} \int_X |\langle u, h \rangle| ||f \circ \varphi| (\chi_{S_n} \circ \varphi) d\mu$$
$$= \sup_{h \in \mathcal{H}_1} \int_{\varphi^{-1}(S_n)} |\langle u, h \rangle| ||f \circ \varphi| d\mu$$

Please cite this article in press as: H. Emamalipour et al., A substitution vector-valued integral operator, J. Math. Anal. Appl. (2015), http://dx.doi.org/10.1016/j.jmaa.2015.05.078

H. Emamalipour et al. / J. Math. Anal. Appl. • • • $(\bullet \bullet \bullet \bullet)$ • • • - • •

$$\leq \sup_{h \in \mathcal{H}_1} \int\limits_X |\langle u, h \rangle| |f \circ \varphi| d\mu = ||T_u^{\varphi} f|| = 0.$$

Thus for each $n, f_n \in \ker T_u^{\varphi}$ and hence dim $\ker T_u^{\varphi} = \infty$. \square

Corollary 2.14. Let $T_n^{\varphi}: L^2(X) \to \mathcal{H}$ be a bounded operator. Then the following hold.

(i) Let (X, Σ, μ) be partitioned as (1.1) and let the set

$$\{i \in \mathbb{N} : \sup_{h \in \mathcal{H}_1} h_0 E(|\langle u, h \rangle|) \circ \varphi^{-1}(A_i) > 0\}$$

be finite and $\sup_{h\in\mathcal{H}_1} h_0 E(|\langle u,h\rangle|) \circ \varphi^{-1} = 0$ on B. If $h_0 E(|\langle u,h\rangle|) \circ \varphi^{-1} > 0$ on X for some $h\in\mathcal{H}_1$, then T_u^{φ} is a semi-Fredholm operator (i.e., $\mathcal{R}(T_u^{\varphi})$, is closed and $\dim \mathcal{N}(T_u^{\varphi}) < \infty$).

(ii) Let (X, Σ, μ) be a non-atomic σ -finite measure space and let T_u^{φ} be a semi-Fredholm operator. Then there exists a constant $\lambda > 0$ such that

$$\sup_{h \in \mathcal{H}_1} \int_{\varphi^{-1}(C)} |\langle u, h \rangle| d\mu \ge \lambda \mu(C)^{\frac{1}{2}},$$

for each $C \in \Sigma$ with $\mu(C) < \infty$.

Proof. (i) This follows immediately from Theorem 2.10 and Theorem 2.12.

(ii) Since T_u^{φ} is a semi-Fredholm operator, then $\mathcal{R}(T_u^{\varphi})$ is closed and by Lemma 2.13, T_u^{φ} is injective. It follows that there exists a constant $\lambda > 0$ such that for each $f \in L^2(\Sigma)$, $||T_u^{\varphi}f|| \ge \lambda ||f||_2$. For $C \in \Sigma$ with $\mu(C) < \infty$, take $f = \chi_C$. Then

$$\sup_{h \in \mathcal{H}_1} \int_{\varphi^{-1}(C)} |\langle u, h \rangle| d\mu = ||T_u^{\varphi} \chi_C|| \ge \lambda ||\chi_C||_2 = \lambda \mu(C)^{\frac{1}{2}}. \qquad \Box$$

Example 2.15. Let X = [0,1], Σ be the Lebesgue subsets of X and let μ be the Lebesgue measure on X. For $a \in [\frac{1}{2},1]$, define $\varphi: X \to X$ by $\varphi(x) = ax$. Also, let $u: X \to \ell^2(\mathbb{N})$ be defined by $u(x) = (\frac{1}{x+1},\ldots)$. It is easy to check that φ is a non-singular measurable transformation and $h_0 = \frac{1}{a}$. In addition, for each $h = (h_1, h_2, \ldots) \in \ell^2(\mathbb{N})$, we have

$$\int_{X} |\langle h, u(x) \rangle|^{2} d\mu = \int_{0}^{1} \left(\frac{h_{1}}{x+1} \right)^{2} dx \le \|h\|^{2} \int_{0}^{1} \left(\frac{1}{x+1} \right)^{2} dx = \frac{1}{2} \|h\|^{2}.$$

Hence u is a semi-weakly bounded function and so by Theorem 2.4 (i), $T_u^{\varphi}: L^2(X) \to \ell^2(\mathbb{N})$ is a bounded operator.

Example 2.16. Let (X, Σ, μ) be the Lebesgue space, where X = [0, 1] and $d\mu(x) = dx$. Let $\varphi : X \to X$ be a non-singular measurable transformation with $h_0 \in L^{\infty}(\Sigma)$ and also let $u : X \to L^2(X)$ be a semi-weakly bounded function. For $A \subseteq X$, put $h = \chi_A$. Then for every $f \in L^2(X)$ we obtain

$$\langle T_u^{\varphi} f, \chi_A \rangle = \int_0^1 \langle u, \chi_A \rangle f \circ \varphi d\mu = \int_0^1 \int_A u(x) dy f \circ \varphi dx.$$

Please cite this article in press as: H. Emamalipour et al., A substitution vector-valued integral operator, J. Math. Anal. Appl. (2015), http://dx.doi.org/10.1016/j.jmaa.2015.05.078

_

H. Emamalipour et al. / J. Math. Anal. Appl. • • •
$$(• • • •) • • • - • • •$$

Since $u(x)(f \circ \varphi) \in L^1(X \times X)$, then by Fubini's theorem we get that

$$\int\limits_A T_u^{\varphi} f dx = \int\limits_0^1 \int\limits_A u(x) f \circ \varphi dy dx = \int\limits_A \int\limits_0^1 u(x) f \circ \varphi dx dy.$$

Consequently, we obtain the expressive formula for the substitution vector-valued integral operator, $T_u^{\varphi} f = \int_0^1 u(x) f \circ \varphi dx$, for each $f \in L^2(X)$.

References

10

- [1] James T. Campbell, J. Jamison, On some classes of weighted composition operators, Glasg. Math. J. 32 (1990) 87–94.
- [2] Y. Estaremi, M.R. Jabbarzadeh, Weighted Lambert type operators on L^p spaces, Oper. Matrices 7 (2013) 101–116.
- [3] M.H. Faroughi, Operator-valued integral of vector-function and bases, Methods Funct. Anal. Topology 13 (2007) 318–328.
- [4] J. Herron, Weighted conditional expectation operators, Oper. Matrices 5 (2011) 107–118.
- E. Kreyszig, Introductory Functional Analysis with Applications, Wiley, New York, 1978.
- [6] M.M. Rao, Conditional Measure and Applications, Marcel Dekker, New York, 1993.
- [7] R.K. Singh, J.S. Manhas, Composition Operators on Function Spaces, North-Holl. Math. Stud., vol. 179, Amsterdam, 1993.
- [8] A.C. Zaanen, Integration, 2nd ed., North-Holland, Amsterdam, 1967.

Please cite this article in press as: H. Emamalipour et al., A substitution vector-valued integral operator, J. Math. Anal. Appl. (2015), http://dx.doi.org/10.1016/j.jmaa.2015.05.078