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1. Introduction and preliminaries

Let (X, Σ, μ) be a σ-finite measure space and ϕ : X → X be a non-singular measurable transformation; 
i.e. μ ◦ ϕ−1 � μ. Here the non-singularity of ϕ guarantees that the composition operator Cϕ : f �→ f ◦ ϕ
is well defined as a mapping on L0(Σ) where L0(Σ) denotes the linear space of all equivalence classes of 
Σ-measurable functions on X. Let h0 = dμ ◦ ϕ−1/dμ be the Radon–Nikodym derivative. Recall that Cϕ is 
bounded on L2(Σ) if and only if h0 ∈ L∞(Σ) (see [7]). We have the following change of variable formula:

∫
ϕ−1(A)

f ◦ ϕdμ =
∫
A

h0fdμ, A ∈ Σ, f ∈ L1(Σ).

The support of a measurable function f is defined by σ(f) = {x ∈ X : f(x) �= 0}. All comparisons between 
two functions or two sets are to be interpreted as holding up to a μ-null set. For a sub-σ-finite algebra 
A ⊆ Σ, the conditional expectation operator associated with A is the mapping f → EAf , defined for all 
non-negative f as well as for all f ∈ Lp(Σ), 1 ≤ p ≤ ∞, where EAf , by Radon–Nikodym theorem, is the 
unique A-measurable function satisfying
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∫
A

fdμ =
∫
A

EAfdμ, ∀A ∈ A.

We recall that EA : L2(Σ) → L2(A) is an orthogonal projection. Throughout this paper, we assume that 
A = ϕ−1(Σ) and Eϕ−1(Σ) = E. It is well known that for each non-negative Σ-measurable function f or 
for each f ∈ L2(Σ), there exists a Σ-measurable function g such that E(f) = g ◦ ϕ. We can assume that 
σ(g) ⊆ σ(h0) and there exists only one g with this property. We then write g = E(f) ◦ϕ−1 though we make 
no assumptions regarding the invertibility of ϕ (see [1]). Let u ∈ L0(Σ). Thus u is said to be conditionable 
with respect to E if u ∈ D(E) ⊆ L0(Σ), where D(E) denotes the domain of E. For more details on the 
properties of EA see [4,6].

An atom of the measure μ is an element A ∈ Σ with μ(A) > 0, such that for each B ∈ Σ, if B ⊂ A then 
either μ(B) = 0 or μ(B) = μ(A). A measure with no atoms is called non-atomic. We can easily check the 
following well-known facts (see[8]):

(a) Every σ-finite measure space (X, Σ, μ) can be partitioned uniquely as

X = (∪n∈NAn) ∪B, (1.1)

where {An}n∈N ⊆ Σ is a countable collection of pairwise disjoint atoms and B, being disjoint from 
each An, is non-atomic.

(b) Let E be a non-atomic set with μ(E) > 0. Then there exists a sequence of positive disjoint Σ-measurable 
subsets of E, {En}n∈N such that μ(En) > 0 for each n ∈ N and limn→∞ μ(En) = 0.

For a given complex Hilbert space H with inner product 〈·,·〉, let L2(X, H) be the class of all measurable 
mappings f : X → H such that ‖f‖2

2 :=
∫
X
‖f(x)‖2dμ < ∞. Let f, g ∈ L2(X, H). By using the polar 

identity, the mapping x �→ 〈f(x), g(x)〉 from X into C is measurable. It follows that L2(X, H) is a Hilbert 
space with inner product

(f, g) =
∫
X

〈f(x), g(x)〉dμ, f, g ∈ L2(X,H).

We shall write L2(X) for L2(X, H) when H = C. Let u : X → H be a mapping. We say that u is weakly 
measurable if for each h ∈ H the mapping x �→ 〈u(x), h〉 from X into C is measurable. We will denote this 
map by 〈u, h〉.

The aim of this article is to carry some of the results obtained for the weighted composition operators in 
[2,3,7] to a substitution vector-valued integral operator. In this paper, first we consider some basic properties 
of substitution vector-valued integral operators and then we give some necessary and sufficient conditions 
for boundedness, compactness and semi-Fredholmness of these type operators.

2. The main results

Definition 2.1. Let u : X → H be a weakly measurable function. We say that u is a weakly bounded function 
if for some B ≥ A > 0,

√
A‖h‖ ≤ ‖〈u, h〉‖2 ≤

√
B‖h‖, ∀h ∈ H. (2.1)

In the same way, u is said to be semi-weakly bounded function if u only satisfies the right hand side of the 
above inequalities.
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Note that if u ∈ L2(X, H), then for all h ∈ H, 
∫
X
|〈u, h〉|2dμ ≤ B‖h‖2, where B = ‖u‖2

2. So u is a 
semi-weakly bounded function. In addition, if u is a semi-weakly bounded function with an upper bound 
B > 0 and dimH = n, with the natural basis {ei}i∈N, then

∫
X

‖u(x)‖2dμ =
n∑

i=1

∫
X

|〈u(x), ei〉|2dμ(x) ≤ nB < ∞,

and so u ∈ L2(X, H). Now, let u ∈ L2(X, H) be a weakly bounded function and let {eα}α∈I be an 
orthonormal basis for H. Put h = eα. By Parseval’s identity and (2.1) we obtain

A
∑
α∈I

1 ≤
∑
α∈I

∫
X

|〈u(x), eα〉|2dμ(x) =
∫
X

‖u(x)‖2dμ(x) < ∞,

for some A > 0. Therefore, I must be a finite set and hence dimH < ∞. These observations establish the 
following proposition.

Proposition 2.2. The following statements hold.

(i) If u ∈ L2(X, H), then u is a semi-weakly bounded function.
(ii) If u is a semi-weakly bounded function and dimH < ∞, then u ∈ L2(X, H).
(iii) If u ∈ L2(X, H) is a weakly bounded function, then dimH < ∞.

Definition 2.3. Let ϕ : X → X be a non-singular measurable transformation and let u : X → H be a 
weakly measurable function. Then the pair (u, ϕ) induces a substitution vector-valued integral operator 
Tϕ
u : L2(X) → H defined by

〈Tϕ
u f, h〉 =

∫
X

〈u, h〉f ◦ ϕdμ, h ∈ H, f ∈ L2(X).

It is easy to see that Tϕ
u is well defined and linear. Moreover for each f ∈ L2(X),

sup
h∈H1

|〈Tϕ
u f, h〉| ≤ sup

h∈H1

‖Tϕ
u f‖ ‖h‖ = ‖Tϕ

u f‖ = |〈Tϕ
u f,

Tϕ
u f

‖Tϕ
u f‖〉| ≤ sup

h∈H1

|〈Tϕ
u f, h〉|,

where H1 is the closed unit ball of H. Hence

‖Tϕ
u ‖ = sup

‖f‖≤1
‖Tϕ

u f‖ = sup
‖f‖≤1

sup
h∈H1

|〈Tϕ
u f, h〉|.

Theorem 2.4. Let u : X → H be a weakly measurable function. Then:

(i) If u is a semi-weakly bounded function and h0 ∈ L∞(Σ), then Tϕ
u is bounded.

(ii) If for each h ∈ H, the functions 〈u, h〉 are conditionable and Tϕ
u is bounded, then for all h ∈ H1, 

h0E(〈u, h〉) ◦ ϕ−1 ∈ L2(X) and (Tϕ
u )∗ = h0E(〈·, u〉) ◦ ϕ−1.

Proof. (i) Let f ∈ L2(X). By Hölder’s inequality and change of variable formula we have

‖Tϕ
u f‖ = sup

h∈H1

|
∫
〈u, h〉(f ◦ ϕ)dμ|
X
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≤ ( sup
h∈H1

∫
X

|〈u, h〉|2dμ) 1
2 (
∫
X

|f ◦ ϕ|2dμ) 1
2

≤ sup
h∈H1

(B‖h‖) 1
2

∫
X

h0|f |2dμ) 1
2

≤
√

B‖h0‖∞ ‖f‖2.

This shows that Tϕ
u is bounded.

(ii) Since Tϕ
u is a bounded operator, so there exists M > 0 such that for each f ∈ L2(X), ‖Tϕ

u f‖ ≤ M‖f‖2. 
For an arbitrary and fixed h ∈ H1, we define a linear functional Λh on L2(X) by Λh(f) =

∫
X
h0E(〈u, h〉) ◦

ϕ−1fdμ. Since

|Λh(f)| ≤ sup
h∈H1

|
∫
X

h0E(〈u, h〉) ◦ ϕ−1fdμ|

= ‖Tϕ
u f‖ ≤ M‖f‖2,

hence Λh is a bounded linear functional on L2(X). By the Riesz representation theorem, there exists a unique 
function g ∈ L2(X) such that for each f ∈ L2(X), Λh(f) =

∫
X
gfdμ. This implies that h0E(〈u, h〉) ◦ϕ−1 = g, 

and so h0E(〈u, h〉) ◦ ϕ−1 ∈ L2(X). Now, let f ∈ L2(X) and h ∈ H. Then we have

(f, (Tϕ
u )∗(h)) = 〈Tϕ

u f, h〉 =
∫
X

〈u, h〉(f ◦ ϕ)dμ

=
∫
X

h0E(〈u, h〉) ◦ ϕ−1fdμ

= (f, h0E(〈u, h〉) ◦ ϕ−1).

Hence for all h ∈ H, (Tϕ
u )∗(h) = h0E(〈h, u〉) ◦ ϕ−1. �

Theorem 2.5. Let u : X → H be a semi-weakly bounded function with an upper bound B and let h0 ∈ L∞(Σ). 
Put Sϕ

u = Tϕ
u (Tϕ

u )∗. Then the following statements are equivalent.

(i) The operator Sϕ
u : H → H is invertible.

(ii) The operator Tϕ
u : L2(X) → H is surjective.

Proof. (i) ⇒ (ii) Since Sϕ
u is a self-adjoint operator on H, then by [5, Theorem 9.2.1] we have 

infh∈H1〈Sϕ
uh, h〉 = infh∈H1 ‖(Tϕ

u )∗(h)‖2 ∈ spec(Sϕ
u ), the spectrum of Sϕ

u . By hypothesis 0 /∈ spec(Sϕ
u ). 

Hence, infh∈H1 ‖(Tϕ
u )∗(h)‖ > 0. It follows that infh∈H1 ‖(Tϕ

u )∗(h)‖‖h‖ ≤ ‖(Tϕ
u )∗(h)‖, and so Tϕ

u is surjec-
tive.

(ii) ⇒ (i) Let Tϕ
u be surjective. Then there exists M > 0 such that for each h ∈ H ‖(Tϕ

u )∗(h)‖2 ≥ M‖h‖2. 
So 〈Sϕ

u (h), h〉 = 〈Tϕ
u (Tϕ

u )∗(h), h〉 = ‖(Tϕ
u )∗(h)‖2 ≥ M‖h‖2. Moreover, for each h ∈ H we have

〈Sϕ
u (h), h〉 = 〈Tϕ

u (Tϕ
u )∗(h), h〉

=
∫
X

〈u, h〉((Tϕ
u )∗(h)) ◦ ϕdμ

=
∫
〈u, h〉h0 ◦ ϕE(〈u, h〉)dμ
X
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=
∫
X

E
(
〈u, h〉h0 ◦ ϕE(〈u, h〉)

)
dμ

=
∫
X

h0 ◦ ϕE(〈u, h〉)E(〈u, h〉)dμ

≤
∫
X

h0 ◦ ϕE(|〈u, h〉|2)dμ

=
∫
X

h0 ◦ ϕ|〈u, h〉|2dμ ≤ ‖h0‖∞B‖h‖2.

Therefore M ≤ Sϕ
u ≤ ‖h0‖∞B, and so Sϕ

u is invertible. �
Definition 2.6. Let u : X → H be a weakly measurable function. We say that the pair (u, H) has absolute 
property, if for each f ∈ L2(X), there exists hf ∈ H1 such that suph∈H1

∫
X
|〈u, h〉||f ◦ϕ|dμ =

∫
X
|〈u, hf 〉||f ◦

ϕ|dμ, and 〈u, hf 〉 = ei(− arg f◦ϕ+θf )|〈u, hf 〉|, for some constant θf ∈ C.

Corollary 2.7. Assume that the pair (u, H) has the absolute property. Then

sup
h∈H1

|
∫
X

〈u, h〉f ◦ ϕdμ| = sup
h∈H1

∫
X

|〈u, h〉||f ◦ ϕ|dμ.

Proof. Let f be an arbitrary and fixed element of L2(X). Then

sup
h∈H1

∫
X

|〈u, h〉||f ◦ ϕ|dμ =
∫
X

|〈u, hf 〉||f ◦ ϕ|dμ

= |
∫
X

ei(arg f◦ϕ−θf )〈u, hf 〉|f ◦ ϕ|dμ|

= |
∫
X

e−iθf 〈u, hf 〉f ◦ ϕdμ|

≤ sup
h∈H1

|
∫
X

〈u, h〉f ◦ ϕdμ|.

The inverse of the inequality is clear. �
From now on we assume that the pair (u, H) has the absolute property. In the following theorem we give 

some necessary and sufficient conditions for the boundedness of Tϕ
u .

Theorem 2.8. Tϕ
u is bounded if and only if suph∈H1

‖h0E(|〈u, h〉|) ◦ ϕ−1‖2 < ∞.

Proof. Let M := suph∈H1
‖h0E(|〈u, h〉|) ◦ ϕ−1‖2 < ∞ and f ∈ L2(X). Then By Hölder’s inequality and 

change of variable formula we have

‖Tϕ
u f‖ = sup

h∈H1

∫
h0E(|〈u, h〉|) ◦ ϕ−1|f |dμ
X
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≤ sup
h∈H1

⎛
⎝∫

X

(h0E(|〈u, h〉|) ◦ ϕ−1)2dμ

⎞
⎠

1
2
⎛
⎝∫

X

|f |2dμ

⎞
⎠

1
2

= sup
h∈H1

‖h0E(|〈u, h〉|) ◦ ϕ−1‖2‖f‖2.

Consequently, for each f ∈ L2(X), ‖Tϕ
u f‖ ≤ M‖f‖2. Conversely, assume that Tϕ

u is bounded. Take an 
arbitrary and fixed h ∈ H1 and define a linear functional Λh on L2(X) by

Λh(f) =
∫
X

h0E(|〈u, h〉|) ◦ ϕ−1fdμ, f ∈ L2(X).

By a similar argument as in the proof of Theorem 2.4(ii), it can be proved that h0E(|〈u, h〉|) ◦ϕ−1 ∈ L2(X), 
for each h ∈ H1. �
Theorem 2.9. Let (X, Σ, μ) be partitioned as (1.1) and let Tϕ

u be a compact operator on L2(X). Then:

(i) M := sup
h∈H1

(h0E(|〈u, h〉|) ◦ ϕ−1)2 = 0 on B;

(ii) N := sup
h∈H1

∑
i∈N

(h0E(|〈u, h〉|) ◦ ϕ−1)2(Ai)μ(Ai) < ∞.

Proof. Let Tϕ
u be a compact operator. First, we prove (i) by contradiction. Assume μ({x ∈ B :

M(x) > 0}) > 0. Then there exist δ > 0 and h1 ∈ H1 such that the set C := {x ∈ B :
h0(x)E(|〈u, h1〉|) ◦ ϕ−1)2(x) ≥ δ} has positive measure. We may also assume μ(C) < ∞. Since C ⊆ B, 
we can find En ∈ Σ of positive measure satisfying En+1 ⊆ En ⊆ C with μ(En+1) = μ(En)

2 , for all n ∈ N. 
Put fn = h0E(|〈u,h1〉|)◦ϕ−1

‖h0E(|〈u,h1〉|)◦ϕ−1‖2
χEn

. Note that {fn}n ⊆ L2(X) is a bounded sequence. Then for each n, m ∈ N

with n > m, we have

‖Tϕ
u fm − Tϕ

u fn‖ = sup
h∈H1

∫
X

|〈u, h〉||fm − fn| ◦ ϕdμ

≥
∫
X

|〈u, h1〉||fm − fn| ◦ ϕdμ

=
∫
X

h0E(|〈u, h1〉|) ◦ ϕ−1|fm − fn|dμ

=
∫
X

(h0E(|〈u, h1〉|) ◦ ϕ−1)2

‖h0E(|〈u, h1〉|) ◦ ϕ−1‖2
(χEm

− χEn
)dμ

≥
∫

Em\En

(h0E(|〈u, h1〉|) ◦ ϕ−1)2

‖h0E(|〈u, h1〉|) ◦ ϕ−1‖2
dμ

>
δ

‖h0E(|〈u, h1〉|) ◦ ϕ−1‖2
(μ(Em) − μ(En)).

Since μ(En) < μ(Em)
2 , then ‖Tϕ

u fm − Tϕ
u fn‖ ≥ k for some k > 0. This implies that the sequence {Tϕ

u fn}n
does not contain a convergent subsequence, but this shows that Tϕ

u is not compact. Next, we prove (ii). 
Since Tϕ

u is compact, so Tϕ
u is bounded and by (i), M = 0 on B. Now, by Theorem 2.8, N2 < ∞ and this 

complete the proof. �
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Theorem 2.10. Let {i ∈ N : suph∈H1
h0E(|〈u, h〉|) ◦ ϕ−1(Ai) > 0} be a finite subset of N and let 

suph∈H1
h0E(|〈u, h〉|) ◦ ϕ−1 = 0 on B. Then Tϕ

u is compact.

Proof. We show that Tϕ
u is a finite rank operator. To show that Tϕ

u (L2(X)) is finite-dimensional, we only 
need to prove that the set U := {h ∈ Tϕ

u (L2(X)) : ‖h‖ ≤ 1} is compact in H. If the set {i ∈ N :
suph∈H1

h0E(|〈u, h〉|) ◦ϕ−1(Ai) > 0} is empty, then Tϕ
u is the zero operator. Otherwise we may assume that 

there exists k ∈ N such that suph∈H1
h0E(|〈u, h〉|) ◦ϕ−1 > 0 for 1 ≤ i ≤ k and suph∈H1

h0E(|〈u, h〉|) ◦ϕ−1 = 0
for any i > k. Let {Tϕ

u fn}n be an arbitrary sequence in U . Then we have

‖Tϕ
u fn‖ = sup

h∈H1

∫
X

h0E(|〈u, h〉|) ◦ ϕ−1|fn|dμ

= sup
h∈H1

⎛
⎜⎝

∫
∪i∈NAi

h0E(|〈u, h〉|) ◦ ϕ−1|fn|dμ +
∫
B

h0E(|〈u, h〉|) ◦ ϕ−1|fn|dμ

⎞
⎟⎠

=
k∑

i=1
sup
h∈H1

h0E(|〈u, h〉|) ◦ ϕ−1(Ai)μ(Ai)|fn(Ai)|.

Put αi = suph∈H1
h0E(|〈u, h〉|) ◦ ϕ−1(Ai)μ(Ai). Then:

‖Tϕ
u fn‖ =

k∑
i=1

αi|fn(Ai)|. (2.2)

Since ‖Tϕ
u fn‖ ≤ 1 for all n ∈ N, then |fn(Ai)| ≤ 1

αi
for each 1 ≤ i ≤ k and each n ∈ N. Hence, by 

Bolzano–Weierstrass theorem, there exists a subsequence of natural numbers {nj}j∈N such that for each fixed 
1 ≤ i ≤ k, the sequence {fnj

(Ai)}j∈N converges. Assume that limj→∞ fnj
(Ai) = ξi and let f :=

∑k
i=1 ξiχAi

. 
Now, from (2.2) we have ‖Tϕ

u f‖ =
∑k

i=1 αi|ξi| ≤ 1. Hence, Tϕ
u f ∈ U and so we get that

‖Tϕ
u fnj

− Tϕ
u f‖ =

k∑
i=1

αi|fnj
(Ai) − f(Ai)| =

k∑
i=1

αi|fnj
(Ai) − ξi| → 0,

as j → ∞. It follows that U is compact in H. This completes the proof of the theorem. �
Corollary 2.11. Let (X, Σ, μ) be a non-atomic σ-finite measure space. Then no bounded substitution vector-
valued integral operator Tϕ

u on L2(X) is compact unless it is a zero operator.

Proof. Let Tϕ
u be a compact operator on L2(X). Then by Theorem 2.9, for each h ∈ H1, h0E(|〈u, h〉|) ◦

ϕ−1 = 0 on X. For each f ∈ L2(X), we have

‖Tϕ
u f‖ = sup

h∈H1

∫
X

h0E(|〈u, h〉|) ◦ ϕ−1|f |dμ.

Therefore Tϕ
u f = 0, for each f ∈ L2(X), and thus Tϕ

u is the zero operator. �
Theorem 2.12. Let Tϕ

u be a bounded operator from L2(X) into H. Then the following statements are equiv-
alent.

(i) Tϕ
u is injective.

(ii) For each h ∈ H1, h0E(|〈u, h〉|) ◦ ϕ−1 > 0 on X.
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(iii) For A ∈ Σ, if μ 
(
ϕ−1(A) ∩ σ(〈u, h〉)

)
= 0 for each h ∈ H1, then μ(A) = 0.

(iv) There exists h1 ∈ H1, such that h0E(|〈u, h1〉|) ◦ ϕ−1 > 0 on X.

Proof. Direction (ii) ⇒ (iv) is trivial. For (iv) ⇒ (i), let f be a non-zero element in kerTϕ
u . Then we have

0 = ‖Tϕ
u f‖ = sup

h∈H1

∫
X

|〈u, h〉||f ◦ ϕ|dμ

≥
∫
X

|〈u, h1〉||f ◦ ϕ|dμ

=
∫
X

h0E(|〈u, h1〉|) ◦ ϕ−1|f |dμ

=
∫

σ(f)

h0E(|〈u, h1〉|) ◦ ϕ−1|f |dμ.

This means that f = 0 on X. For (i) ⇒ (iii), let μ 
(
ϕ−1(A) ∩ σ(〈u, h〉)

)
= 0 for each h ∈ H1 and A ∈ Σ

with μ(A) < ∞. Since χA ∈ L2(X), we have

‖Tϕ
u χA‖ = sup

h∈H1

|
∫

ϕ−1(A)

〈u, h〉dμ| = sup
h∈H1

|
∫

ϕ−1(A)∩σ(〈u,h〉)

〈u, h〉dμ| = 0.

Thus Tϕ
u χA = 0. Now, the injectivity of Tϕ

u implies that χA = 0 and so μ(A) = 0.
For (iii) ⇒ (ii), put J = σ(h0E(|〈u, h〉|) ◦ ϕ−1) for an arbitrary and fixed h ∈ H1. Then

∫
ϕ−1(X\J)∩σ(〈u,h〉)

|〈u, h〉|dμ ≤
∫

ϕ−1(X\J)

|〈u, h〉|dμ

=
∫

X\J

h0E(|〈u, h〉|) ◦ ϕ−1dμ

= 0.

Therefore we deduce that for each h ∈ H1, μ 
(
ϕ−1(X \ J) ∩ σ(〈u, h〉)

)
= 0, and so by (iii), μ(X \ J) = 0. 

This implies that for each h ∈ H1, h0E(|〈u, h1〉|) ◦ ϕ−1 > 0 on X. �
Lemma 2.13. Let (X, Σ, μ) be a non-atomic σ-finite measure space. Then the nullity of Tϕ

u is either zero or 
infinite.

Proof. If Tϕ
u is injective, then dim kerTϕ

u = 0. Since otherwise, there must exist a non-zero function 
f ∈ L2(X) such that Tϕ

u f = 0. Since σ(|f |) has positive measure, by hypothesis we can find {Sn}∞n=1
of pairwise disjoint Σ-measurable subsets in σ(|f |) with 0 < μ(Sn) < ∞ and σ(|f |) = ∪nSn. Set fn = fχSn

. 
Thus we have

‖Tϕ
u fn‖ = sup

h∈H1

∫
X

|〈u, h〉||f ◦ ϕ|(χSn
◦ ϕ)dμ

= sup
h∈H1

∫
−1

|〈u, h〉||f ◦ ϕ|dμ

ϕ (Sn)
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≤ sup
h∈H1

∫
X

|〈u, h〉||f ◦ ϕ|dμ = ‖Tϕ
u f‖ = 0.

Thus for each n, fn ∈ kerTϕ
u and hence dim kerTϕ

u = ∞. �
Corollary 2.14. Let Tϕ

u : L2(X) → H be a bounded operator. Then the following hold.

(i) Let (X, Σ, μ) be partitioned as (1.1) and let the set

{i ∈ N : sup
h∈H1

h0E(|〈u, h〉|) ◦ ϕ−1(Ai) > 0}

be finite and suph∈H1
h0E(|〈u, h〉|) ◦ ϕ−1 = 0 on B. If h0E(|〈u, h〉|) ◦ ϕ−1 > 0 on X for some h ∈ H1, 

then Tϕ
u is a semi-Fredholm operator (i.e., R(Tϕ

u ), is closed and dimN (Tϕ
u ) < ∞).

(ii) Let (X, Σ, μ) be a non-atomic σ-finite measure space and let Tϕ
u be a semi-Fredholm operator. Then 

there exists a constant λ > 0 such that

sup
h∈H1

∫
ϕ−1(C)

|〈u, h〉|dμ ≥ λμ(C) 1
2 ,

for each C ∈ Σ with μ(C) < ∞.

Proof. (i) This follows immediately from Theorem 2.10 and Theorem 2.12.
(ii) Since Tϕ

u is a semi-Fredholm operator, then R(Tϕ
u ) is closed and by Lemma 2.13, Tϕ

u is injective. It 
follows that there exists a constant λ > 0 such that for each f ∈ L2(Σ), ‖Tϕ

u f‖ ≥ λ‖f‖2. For C ∈ Σ with 
μ(C) < ∞, take f = χC . Then

sup
h∈H1

∫
ϕ−1(C)

|〈u, h〉|dμ = ‖Tϕ
u χC‖ ≥ λ‖χC‖2 = λμ(C) 1

2 . �

Example 2.15. Let X = [0, 1], Σ be the Lebesgue subsets of X and let μ be the Lebesgue measure on X. 
For a ∈ [ 12 , 1], define ϕ : X → X by ϕ(x) = ax. Also, let u : X → 
2(N) be defined by u(x) = ( 1

x+1 , . . .). 
It is easy to check that ϕ is a non-singular measurable transformation and h0 = 1

a . In addition, for each 
h = (h1, h2, . . .) ∈ 
2(N), we have

∫
X

|〈h, u(x)〉|2dμ =
1∫

0

(
h1

x + 1

)2

dx ≤ ‖h‖2
1∫

0

(
1

x + 1

)2

dx = 1
2‖h‖

2.

Hence u is a semi-weakly bounded function and so by Theorem 2.4 (i), Tϕ
u : L2(X) → 
2(N) is a bounded 

operator.

Example 2.16. Let (X, Σ, μ) be the Lebesgue space, where X = [0, 1] and dμ(x) = dx. Let ϕ : X → X be 
a non-singular measurable transformation with h0 ∈ L∞(Σ) and also let u : X → L2(X) be a semi-weakly 
bounded function. For A ⊆ X, put h = χA. Then for every f ∈ L2(X) we obtain

〈Tϕ
u f, χA〉 =

1∫
〈u, χA〉f ◦ ϕdμ =

1∫ ∫
u(x)dyf ◦ ϕdx.
0 0 A
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Since u(x)(f ◦ ϕ) ∈ L1(X ×X), then by Fubini’s theorem we get that

∫
A

Tϕ
u fdx =

1∫
0

∫
A

u(x)f ◦ ϕdydx =
∫
A

1∫
0

u(x)f ◦ ϕdxdy.

Consequently, we obtain the expressive formula for the substitution vector-valued integral operator, Tϕ
u f =∫ 1

0 u(x)f ◦ ϕdx, for each f ∈ L2(X).
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