KOREKTURY mb-007915.tex 7.11. 2016

WEIGHTED FROBENIUS-PERRON OPERATORS
AND THEIR SPECTRA

MOHAMMADREZA R. JABBARZADEH, RANA HAJIPOURI, Tabriz

Received December 15, 2015
Communicated by Jif{ Spurny

Abstract. First, some classic properties of a weighted Frobenius-Perron operator Pg

on L}(X) as a predual of weighted Koopman operator W = uly, on L™ (%) will be investi-
gated using the language of the conditional expectation operator. Also, we determine the
spectrum of PJ under certain conditions.
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1. INTRODUCTION AND PRELIMINARIES

Let (X,%,u) be a complete o-finite measure space. For any complete o-finite
subalgebra A C ¥ the space L' (X, A, 11 4) is abbreviated to L'(A), where j 4 is the
restriction of 1 to \A. We denote the linear space of all complex-valued Y-measur-
able functions on X by LY(X). The support of a measurable function f is defined
by supp(f) = {z € X: f(x) # 0}. All sets and functions statements are to be
interpreted as being valid almost everywhere with respect to pu.

Recall that an A-atom of the measure p is an element A € A with p(4) > 0
such that for each F' € A, if F C A, then either u(F) = 0 or u(F) = p(4). A
measure space (X, A, ) with no atoms is called non-atomic. It is a well known fact
that every sigma finite measure space (X, X, 1) can be decomposed into two disjoint
sets B and Z, such that p is non-atomic over B and Z is a countable union of atoms
of finite measure (see [16]). For each nonnegative f € L°(X) or f € L'(X), by the
Radon-Nikodym theorem, there exists a unique A-measurable function Ef( f) such

that
/Afdu:/AE,f‘(f)dm



where A is any A-measurable set for which [ 4 J dp exists. Now associated with every
complete o-finite subalgebra A C ¥, the mapping Ef: L'(2) — L'(A) uniquely
defined by the assignment f +— E/f‘( f) is called the conditional expectation operator
with respect to A.

From now on, we assume that ¢ is a nonsingular transformation on X, A = ¢~ }(%)
and E = El“f. Ding in [4] proved that for each f € L'(X) there exists a unique
g € LY(X) with supp(g) C supp(h) such that E(f) = g o ¢. As usual, we then write
g = E(f)o¢p~! though we make no assumptions regarding the invertibility of . The
mapping E acts on L'(X) as a projection onto L'(¢~1(X)). Note that D(E), the
domain of E, contains L'(X) U {f € L°(X,%, u): f > 0}. Throughout this paper,
we take v in D(E). The analysis of a (weighted) Frobenius-Perron operator is based
on the concept of conditional expectation operator. Let f,g € D(E). We list some
useful properties of E.

> L(1) E((fop)g) = (fop)E(9);

> L(2) If f >0, then E(f) > 0; if f > 0, then E(f)>0;

> L(3) supp(f ) C supp(E(f)) for each f >

> L(4) (Ef)o )O@ E(f);

> L(5) (E(Oéf+9)) “t=a(B(f) ot + (E(g )) op~h;

> L(6) |E(f) o 1|”—|E()”OSO1<E(|f|) ~ (neN).

For proofs and discussions on some of these elementary facts see [14].
The aim of this paper is to generalize some of the results obtained for the (classic)
Frobenius-Perron operators in [7], [6], [3] to the weighted Frobenius-Perron operators.

2. FREDHOLM WEIGHTED FROBENIUS-PERRON OPERATORS

Let a Y-measurable transformation ¢: X — X be nonsingular, i.e., pop=1(A) =
wu(p~1(A)) = 0 for all A € ¥ such that pu(A) = 0, and let u € D(E). The linear
operator P%: L'(X) — L'(X) defined by

/P;fdu:/ ufdy, feLY(X), AeX
A e1(A)

is called the weighted Frobenius-Perron operator associated with the pair (u, ). By
the Radon-Nikodym, P7 is well defined [10]. When u =1, P, := 77919 is called the
(classical) Frobenius-Perron operator. As an application of the conditional expecta-
tion and using the change of variable formula we have

Pufdu= dp = E(uf)dp= [ hE(uf)o¢™"dp,
/A@fu AI(A)Ufu [PI(A) (uf)du /A (uf)oe™" du



where h = (dp o ¢~1)/du. So, in the language of conditional expectation, Py can be
presented as PY(f) = hE(uf)o¢~'. By L(5), P¥ is linear. Note that P% = P,M,,
where P, = hE(f) o ¢~! is the classic Frobenius-Perron operator and M, is the
multiplication operator.

The weighted Koopman operator on L>°(X) with respect to the pair (u,¢) is
defined by W = M,U,, where U, is the (classical) Koopman operator defined by
Us(f) = fopforall f e L>(X). Here, the nonsingularity of ¢ guarantees that W
is well defined as a mapping of equivalence classes of functions on o(u). It is known
that W is a bounded operator on L*°(X) if and only if v € L*°(X), and in this
case (P2)* = W and ||[Py| = |lulloc. In particular, (Pp)* = U, and [Pyl = 1
(see [3], [10]).

Let X be a Banach space and X*, the Banach space of all bounded linear com-
plex functionals on X, be the dual space of X. For T € B(X), the algebra of all
bounded operators on X, the null-space, range and the dual operator of T are de-
noted by N(T), R(T) and T*, respectively.

Lemma 2.1 (Banach’s closed range theorem [15]). Let T' € B(X). The following
statements are equivalent.
(a) T has closed range.
(b) T* has closed range.
(¢) R(T) = ~N(T").
(d) R(T*) = N(T)*.

Theorem 2.2. Let P¥ € B(L'(X)). Then it is invertible if and only if the
following conditions are all satisfied:
(a) p<pop™
(b) For each set F € ¥ there is a set G € ¥ such that ¢~ (G) = F.
(c) There exists a constant § > 0 such that |u| > on X.

Proof. Assume P is invertible. We first show (a). Since P, is onto, then by
Lemma 2.1 W is injective. Suppose po ¢ }(F) = u(e ' (F)) =0 for F € . Then
W(xF) =uxr o ¢ = ux,-1(r) = 0. The injectivity of W implies that u(F) = 0.

To prove (b), suppose p~ (%) S X. Then we can find F' € ¥ with p(F) > 0 such
that F is disjoint with any »~1(G). Since X is o-finite, F' can be written as F' = |J F;,
where 0 < u(F;) < oo and F; N F; = 0. Put f =Y 27%p,. Then f € L1 (%) ;vith

supp(f) = F. It follows that

/ngduz/ ufdpu=0 forall GeX.
G (e



Hence P f = 0. But this contradicts N'(P%) = {0}. Now we claim that u is bounded
away from zero on X. Since Pg is invertible, then so is W. Hence, W is bounded
below. So there is a constant ¢ > 0 such that

(2.1) cl[flloe < IW(f)lloe  for all f € oo

We claim |u| > 3¢ on X. Otherwise, there would be a set G € ¥ with u(G) > 0
such that |u| < 3¢ on G. Using (b), G = ¢~ '(A) for some A € . By using (a),
u(A) > 0 because p(A) = 0 implies that p(¢~1(A)) = 0. Put f = xa. Then by (2.1)
we obtain

C
e = clixalle < o1 lleo = uxcllee < 3,

which is a contradiction and thus (c) holds.
Conversely, assume all three conditions hold. Firstly, we show that P is injective.
From (b) E is the identity operator. Then by the change of variable formula we have

0= [PEf] = /X IhE(uf) oo~ |dp = /X B(uf)op  duop™!
=/ IE(Uf)Idu=/ uf|dp = uf =0 = f=0, by (c).
X X

So Py is injective. Finally, we claim that PZ is surjective, which is equivalent to the
injectivity of (P%)* = W on L*°(X) (Lemma 2.1 (c)). Let f € N(W). Then by (c),
foe=0. Using (a), ¢ is onto ([6], Lemma 2.3), and so f = 0. Now, by the bounded
inverse theorem P7 is invertible. 0

Proposition 2.3. Put dv = |u|dp and let P} € B(L'(X)). Then the following
assertions hold.

(a) supp(|uf|) € supp(Py(|f])) for all f € L'(X).

(b) If p~1(X) = 3, then Py LY(X,3,v) — LY(X,X, ) is an isometry.

(c) If lul = 1 and pp < po =t then W is an isometry on L°(X). Furthermore,
if W is an isometry, then ||ulls = 1.

Proof. (a)Let f € L'(X). Since supp(ho ¢) = X, by L(3) we have

o~ (supp(PL(| f])) = supp(Pg(|f]) o ) = supp(h o pE(Juf]))
= supp(E([ufl)) 2 supp(|uf]).

(b) By hypothesis E = I. An easy computation shows that

HPS(f)IIM:/XIE(Uf)Idu:/XIfIdVZ||f||V.



(c) It was shown in [6], Lemma 2.3 that if 4 < po ¢!, then ¢ is onto. Hence,

W (Hlloo = I(wf) e plloc =l 0 @lloc = l|flloo-
On the other hand, if W is an isometry, then [lull = ||P2|| = 1. O

Definition 2.4. A sub-o-finite algebra A is said to be rich subalgebra of ¥ if for
each A € ¥ with positive measure there exists K € A with positive measure such
that K C A.

Note that if ¥ contains a nontrivial rich subalgebra, then ¥ is a non-atomic mea-
sure space.

Theorem 2.5. Suppose ¢(¥) C ¥ and P¥ € B(L'(X)). Then the following
assertions hold.

(a) If p~'(X) is a non-atomic rich subalgebra of &3, then dim N'(PY) is either zero
or infinite.

(b) If (X,¥, p) is a non-atomic measure space, then codim(ran(PY)) is either zero
or infinite.

Proof. (a)IfPYisinjective, then dim N'(P}) = 0. Otherwise, there is a nonzero
element f € L'(X) such that P¥(f) = 0. By hypothesis, there is K € ¢~ *(X) with
positive measure such that K C supp(f). So we may choose a sequence {K,}52 of
pairwise disjoint ¢ ~!(2)-measurable sets in K with 0 < u(K,) < oo. Set f, = fxx,
for n € N. Evidently, f,, is in L'(X), and is nonzero. Moreover,

1P fullr = / BB (ufn) oo~ du = / BE(ufyi,) oo du
X X

:/ hlxx, osflE(Uf)osflldu:/ hE(uf)oe ! du
X (Kn)

< [ mB) o an = IPEf I =
X

so fn € N(Pg). Thus, the sequence {f,} forms a linearly independent subset
of N(PY%), and hence dim N (Py) = oc.

(b) We suppose that codim(ran(P%)) = dim(N (Pg)*) = dim(N(W)) # 0. Then
there is a nonzero function f € L*°(X) such that W(f) = 0. By the same argument
as in (a), we may choose a sequence {C),}°; C supp(f) of pairwise disjoint X-mea-
surable subsets in supp(f) with 0 < pu(C,) < co. Put f, = fxc, for n € N. They
are nonzero and linearly independent. Moreover,

W (fn)llLex) = IW (D)l o1y S NW()[Lex) = 0.

So fn € N(W), and hence codim(ran(P%)) = oc. O



Theorem 2.6. Suppose (X,X, ) is a non-atomic rich measure space and let
P¢ e B(L'(X)). Put dv = |u|du. Then the following statements are equivalent.
(a) Py is invertible.
(b) P is Fredholm operator.
(¢c) (i) There exists a constant 6 > 0 such that v(F') > du(F) for every set F € &
with u(F) < oo, and
(i) ¢ ' (5) = .

Proof. Theimplication (a) = (b) is obvious. We first show that (b) implies (c).
Assume P is Fredholm operator. Then Pg has closed range and is injective by
Theorem 2.5 (a), and so P is bounded below with a lower bound ¢ > 0. For I € X
and u(F) < oo put f = xp. Then by L(4) we have

eu(F) = cllxrl < [Pixe] = /X |B(uxr)| du
< / B(juxp!) du = / fulxr dps = / ful djs = v(F).
X X F

Now let o~ 1(X) G X. Choose F' € ¥\ ¢ }(¥) with positive measure. Since
(X,%, ) is o-finite, we can construct a nonnegative f € L!(X) such that
supp(f) = F. It follows that

/ngdu:/ ufdu=0
G e~ HG)

for all G € X. Hence, P;(f) = 0 and so P is not injective. This contradiction
implies that ¢~ }(¥) =¥ and so £ = I.

It remains to show that (c) implies (a). Let f = X, where F' and G are disjoint
measurable sets with finite measures. Since v(F UG) > 6u(F UG) and E = I, we
obtain

P2 (DI = I1P&(Xroa)ll :/XIE(UXFUG)Idu:/XIUXFucIdM

— [ lauzs [ au=slsl.
FUuG FUuG

Since simple functions are dense in L!(X), then the above inequality holds for all
f € L'(2). Therefore P¥ is bounded below and thus PY is injective and has closed
range. Finally, we claim that PJ is surjective, which is equivalent to the injectivity
of (Pf;)* = W. By hypothesis u is bounded away from zero on X and ¢ is onto.
Thus, (uf)oe = 0 implies that fop = 0 and so f = 0. This completes the proof. O



3. GENERALIZED WEIGHTED FROBENIUS-PERRON OPERATORS

In [9], Ding and Hornor introduced the generalized Frobenius-Perron operators
as a restriction of the adjoint of the Koopman operators into a nice closed sub-
space of complex charges. In this section, we extend this generalization for weighted
Frobenius-Perron operator and we expect it to be a restriction of the adjoint of W
into the mentioned subspace.

Suppose X is a g-algebra of subsets of a set X. Then a complex charge on ¥ is a
map v: ¥ — C such that v()) = 0, and if A, B € ¥ with ANB = (), then v(AUB) =
v(A) + v(B). A charge v on X is said to be bounded if sup{|v(F)|: F' € ¥} < oo.
Let M(X,Y) denote the complex vector space of all complex measures on . With
the total variation norm ||u|| = |u|(X), M(X,X) is a Banach space. The collection
of all bounded complex charges on ¥ is denoted by ba(X, X). Define

ba(X, %, u) ={v e ba(X,%): v < u},
ca(X, ¥, 1) = ba(X, X, p) N M(X,X).

It was shown that the complex vector space ba(X, >, u) with the total variation
norm is also a Banach space and ca(X, X, i) is a closed subspace of ba(X, X, ). Let
Py e B(L'(X)). For v € ba(X, X, i) we define the measure A, by

(3.1) A (4) = / udy, AeX.
~1(4)

Then A, € M(X,Y) and is absolutely continuous with respect to u, because the
assumption pu < pop~! implies that for each A € ¥ with u(A4) =0, u(p=1(A4)) =0,
and SO V(gp’l(A)) = 0. Thus A\, (A) = 0, and hence A\, € ca(X,¥, ). Note that

=[,E.(woptdrop . Sod\, = E,(u)op tdrop . Take f € L®(%)
and S ba(X ,2,1). As an application of properties of conditional expectation
operators and using the change of variable formula, we have

W () = (W), ) = /

X

/fE Yoo ldvop? /fd/\u— (£, M)

(Uf)wdl/:/E( )f o pdv

Hence, W*(v) = A, is the adjoint of W. We refer to W* as the generalized weighted
Frobenius-Perron operator corresponding to the pair (u, ). Now let g € L'(X) and
define Fy(A) = [, gdp. Then F, € b(X,%, ). So the mapping g — Fy is an
isometry from L'(X) into a closed subspace of ba(X, 3, i1). Therefore L!(3) can be
isometrically embedded into b(X, ¥, p) =2 L=(X, 3, pu)* = LY(X, X, u)** (see [1]).



Define a mapping ¥: L'(X,%, u) — ca(X, X, u) by U(f) = py, where up(A) =
Jx fdu. Then gy is a complex measure on ¥ and py < p. So U(L'(X, 3, ) C
ca(X, X, ). On the other hand, let v € ca(X, 3, u). Then v is a complex measure
and v < p. Put f, = dv/dp. Then ¥(f,) = u, = v because for each A € ¥

p @ = [ foan= [ Tau= [ av=wia),

Moreover, if ¥(f) =0, then yy =0 and so f = 0. Thus, ¥ is an invertible operator
with inverse U1 (v) = dv/du. Therefore L!(X) = ca(X, %, u). Let f € LY(Z). Then
we have

_dAy,

() = W ) = 07 ,) = S = P

because by (3.1),

)\M(A):/ uduf:/ deﬂ:/P:;(f)dM-
P~ L(A) e~ (A) A

So the compression of W* on ca(X,3,u) is P;. Now we define a mapping Q:
LNX, o7 Y(2),n) — LYX,%,pn) by Quf = h(f o ¢~ !), though we make no as-
sumptions regarding the invertibility of ¢ (see [2]). Then

IIwaH:/Xhlflw‘ldu:/xlfldu:HfH~

So Qg is an isometry and Pgf = QuEM,. Consequently, we have the following
diagram:
LY(X, 3, p) —2 LNX, %, 4) —= ca(X, %, 1)
o
LNX, 0L (E), 1) —2 LY(X, 5, 1) <2 cal(X, 5, )
Furthermore, the operator P is closely related to EM, by the quantity

32)  IPefll = IQEM.(H)l = |Q Eh) = | E(uf)ll, fe LX)

Therefore N'(Py;) = N(EM,). Moreover, Py is compact if and only if the condi-
tional type operator EM,,: L'(X) — L(p~1(X)) is compact. Thus, by Remark 2.3,
Theorem 2.5 and Theorem 2.8 (ii) in [11] we have the following corollary.

Corollary 3.1. Let P% € B(L'(X)). Then the following assertions hold.
(a) Pg is compact if and only if it is weakly compact if and only if u(B) = 0 and
for any € > 0 the set {x € X: E(|u|)(z) > €} consists of finitely many atoms.
(b) Let E(u) is bounded away from zero on its support. Then Py has closed range
if and only if supp(E(u)) = X except for at most finitely many atoms.



Theorem 3.2. Let p(X) C ¥, u > 0 and P¥ € B(L'(X)). Then Py has closed
range if and only if there exists a positive constant r such that (U (1)) = @(supp(u)),
where U(r) :={z € X: u(z) > r}.

Proof. Supposethat P has closed range. By the Banach closed range theorem,
this implies that the range of W = (P)" is also closed. Thus, by [13], Theorem 2.8
there exists a positive constant r such that ¢(U(r)) = ¢(supp(u)), where U(r) :=
{r e X: u(xz)=r}.

Conversely, suppose that there exists a positive constant r such that o(U(r)) =
(supp(v)). Then by [13], Theorem 2.8 W and hence W* have closed range.
Let {f.} € L'(2) and PY(fn) = 'W*U(f,) — g for some g € L'(¥). So
W*(¥(fn)) — ¥(g). Since W*(ca(X,X,u)) C ca(X,%,u), ¥(g) = W*(v) for
some v € ca(X, ¥, u). It follows that g = V~'W*(v) = U~ 'W*¥(dr/dpu). Thus,
U = P has closed range. This completes the proof. O

4. SPECTRUM OF WEIGHTED FROBENIUS-PERRON OPERATORS

The spectrum o(Py) of Py is defined to be the set of all the complex numbers A
such that the linear operator AI — PZ does not have a bounded inverse defined
on L(X), where I is the identity operator. The complement of o(Pg) in the complex
plane C is called the resolvent set of Py and is denoted by o(P%). The spectrum
o(Pg) is a disjoint union of the point spectrum o,(P;), the continuous spectrum
0c(Pg), and the residual spectrum o, (Pz). The boundary of o(Py) is denoted
by do(Pg). A number A € C is said to be in the approximate point spectrum
04(PY) if there exists a sequence {f,} in L'(X) such that ||f,|| = 1 for all n and
[(A —Pg)full — 0 as n — oo. Obviously, 0,(Pg) C o(P%). A measurable set A
is called wandering for ¢ if {p=*(A)}x>0 are disjoint (see [7]).

The spectrum problem of classic Frobenius-Perron operators is difficult. In fact,
it is still an open problem, and so is the spectrum of weighted Frobenius-Perron op-
erators. Some general properties and a partial spectral analysis of Frobenius-Perron
operators and Koopman operators have been given in [7] and [8]. The spectrum
of P2 is determined in [12] for P compact. In this section we obtain some results
on the spectrum of P} under certain conditions, see [5].

Theorem 4.1. Let (X,%, 1) be a o-finite atomic measure space and v € L*(X)
with oo = essinf|u| > 0. If ¢ is invertible and has a wandering set and p is invariant
under ¢, then {\ € C: [\ < a} Co,(Py).

K

Proof. Let A,, €Y be an atomic and wandering set for ¢. Put o= %(4,,) = A,
) for

Then {A,, }r>0 are disjoint. By the assumption we have u(A,,)=pu(e " (A4,,)

9



all k> 0. Set G={\€C: |\ <a}. Define f: G— L'(X) by f(A\)= f\, where

)\k
n = ng,
fla, = ulwop™) .. (uop=F)la,,
0 otherwise.
Then for each A € G, f\ € L'(X) because
/ |faldp = (fA An, XA, [du < Z/ |(frla,, )xa,, [du
X —odX
= d

Z/ ‘ u(uo @~ (uo<p k) A,,O)XA"k "

(oo}

L) de z

MI
) M e e

Moreover, for each A € G we have

00
ng)‘_ Z f/\|A”k Any,
k=0

Mg

! -1
_ ) "
£ <”(Ank)u‘¢—1(Ank)fA|“’ A, (e ( k)))XAnk

0

rlqg

(ula

Ia

A PN A0, XA,

E
I
o

)\k+1

ol

<u|@—(k+1>(An0) u( AnO)XA"’“

uo@1)... (uop-(ktl)

E
I
o

k+1
(u(u °© 901/;. . (uo k) ’AHO)XAW,,C-

ol

=~
Il
o

Then

o0

(A =P fr = (A —PY) Z

X <u<m—1> e )
°° plan
_Z;(wuowl> o la,, )Xo =0

Thus, {A € C: |A] < a} Co,(PY).

10



Theorem 4.2. If P € B(L'(X)), then o,,(PY) C 0D, U{0}, where D, = {) € C:
Al < lufloo}-

Proof. Let 0# A € C be such that A € 0,(Py), then there exists a function
0# f € L'(X) such that (A — P%)f = 0. Thus we have

0=[IAf =Pflln = IMIFl = IPE A = I = [lllooll £l
= (1Al = llulloo) [ £111-

Thus, |A| = ||u]|s and so A € 9D, . O

Theorem 4.3. If W € B(L*(X)) and u < po =1, then o,(W) C 9D, U {0}.

1

Proof. Since y < pop™", ¢ is onto. Hence,

W (H)lloe = l(wf) 0 @lloe = lltf lloo < llulloo]lfloo-

Now let 0 # A € C be such that A € 0,(W), then there exists a function 0 # f €
L>(¥%) such that (A — W)f = 0. Then

0=[Af =W lloo = Al flloe = W flloo = [All[flloo = l[llool[ flloo
= (1Al = llulloo) [ flloo

and hence |A| = ||u||0o- O

Theorem 4.4. Let P € B(L'(X)). Then the following assertions hold.
(a) If P¥ € B(L'(X)) is not invertible, then o(P%) = D,.
(b) If P2 € B(L'(X)) is invertible, then o(P%) C dD,,.

Proof. Let fe L'(X) and X € C with |A| < ||ulloc. Then

IAf =Pl = M = P2 fll = Il = llwllooll £l = (AT = Tlulloo) [ 1]1-

Thus, A\l — Py is bounded from below and so A ¢ 0,(Py). Since do(Py) C 0a(Py),
A & 0o(Py) for all |A| < ||ul|eo. In particular, 0 ¢ do(P). Now, let for u € L>(X),
P is not invertible. Then 0 € o(Py). If there exists [A| < [|u[|o such that A ¢ o(Pg),
then it is easy to see that there exists a A\; € do(Py) such that [Ai| < [[ulle. But
this is a contradiction to the fact that A ¢ do(Py) for all || < ||u[[oc. It follows that
o(Pg) = Dy because o(Py) is a closed subset of D, .

Consider now the case when Pg is invertible. Then 0 € o(Py). If there exists
IAl < [Julloo such that A € o(Py), then there exists a Ao € do(Py) with [Aa| < [|ul|e,
which also contradicts the fact that A ¢ do(Pg) for all |A\| < [ul|e. Therefore
IAl < ||lulloc implies that A & o(Pg), and so o(Py) C ID,. O

11



Acknowledgment. The authors thank the referee of this paper for her/his
kindness and interest concerning this article.

References

[1] K. P.S. Bhaskara Rao, M. Bhaskara Rao: Theory of Charges: A Study of Finitely Ad-
itive Measures. Pure and Applie athematics , Academic Press, London, .
ditive M P d Applied Math ics 109, Academic P London, 1983
[2] J. T. Campbell, J.E.Jamison: On some classes of weighted composition operators.
Glasg. Math. J. 32 (1990), 87-94; corrigendum on pages 261-263.
[3] J.Ding: A closed range theorem for the Frobenius-Perron operator and its application
to the spectral analysis. J. Math. Anal. Appl. 184 (1994), 156-167.
[4] J. Ding: The Frobenius-Perron operator as a product of two operators. Appl. Math.
Lett. 9 (1996), 63—65.
. Ding: The point spectrum of Frobenius-Perron and Koopman operators. Proc. Am.
5] J. Ding: Th i f Frobenius-P d K P A
Math. Soc. 126 (1998), 1355-1361.
[6] J.Ding, Q.Du, T.Y. Li: The spectral analysis of Frobenius-Perron operators. J. Math.
Anal. Appl. 184 (1994), 285-301.
[7] J. Ding, W. E. Hornor: A new approach to Frobenius-Perron operators. J. Math. Anal.
Appl. 187 (1994), 1047-1058.
[8] J.Ding, A. Zhou: On the spectrum of Frobenius-Perron operators. J. Math. Anal. Appl.
250 (2000), 610-620.
. Ding, A. Zhou: Statistical Properties of Deterministic Systems. T'singhua University
9] J.Ding, A.Zhou: Statistical P ies of D inistic S Tsinghua Uni i
Texts, Springer, Berlin; Tsinghua University Press, Beijing, 2009.
[10] M. R. Jabbarzadeh: Weighted Frobenius-Perron and Koopman operators. Bull. Iran.
Math. Soc. 85 (2009), 85-96.
[11] M. R. Jabbarzadeh: A conditional expectation type operator on L” spaces. Oper. Matri-
ces 4 (2010), 445-453.
. R. Jabbarzadeh, . Emamalipour: Compact weighte robenius-Perron operators
12] M. R. Jabb deh, H.E li C ighted Frobenius-P
and their spectra. Bull. Iran. Math. Soc. 88 (2012), 817-826.
. R. Jabbarzadeh, M. Jafari Bakhshkandi: Stability constants for weighted composition
13] M. R. Jabb deh, M. Jafari Bakhshkandsi: Stabili fi ighted iti
operators. To appear in Bull. Belg. Math. Soc.-Simon Stevin.
[14] M. M. Rao: Conditional Measures and Applications. Pure and Applied Mathematics
(Boca Raton) 271, Chapman & Hall/CRC, Boca Raton, 2005.
[15] K. Yosida: Functional Analysis. Classics in Mathematics. Vol. 123, Springer, Berlin,
1995.
[16] A. C. Zaanen: Integration. Interscience Publishers John Wiley & Sons, New York, 1967.

Authors’ addresses: Mohammadreza R. Jabbarzadeh, Rana Hajipouri, Department of
Pure Mathematics, Faculty of Mathematical Sciences, and Research Institute for Fundamen-
tal Sciences, University of Tabriz, 29 Bahman Blvd, P. O. Box 51664, Tabriz, 5166616471,
Iran, e-mail: mjabbar@tabrizu.ac.ir, r.hajipouri@tabrizu.ac.ir.

12



