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MOORE-PENROSE INVERSE OF CONDITIONAL TYPE OPERATORS

M. R. JABBARZADEH AND M. SOHRABI CHEGENI

(Communicated by R. Curto)

Abstract. We prove some basic results on some Moore-Penrose inverse of conditional type oper-
ators on L2 (X). For instance, we show, among other results, that a weighted conditional operator
T = M,,EM,, is centered if and only if T7, the Moore-Penrose inverse of T, is centered. In ad-
dition, we establish lower and upper bounds for the numerical range of 7 and T .

1. Introduction and preliminaries

Let (X,X, 1) be a complete o -finite measure space. For any o -finite subalgebra
o/ C ¥ the Hilbert space L*(X,/,1|./) is abbreviated to L*(<7) where y , is the
restriction of u to 7. We denote the linear space of all complex-valued X-measurable
functions on X by L%(Z) and L% (X) = {f € L°(X) : f > 0}. The support of a mea-
surable function f is defined by o(f) = {x € X : f(x) # 0}. All sets and functions
statements are to be interpreted as being valid almost everywhere with respect to u.
For each non-negative f € L°(X) or f € L*(X), by the Radon-Nikodym theorem, there
exists a unique .27 -measurable function £ (f) such that

[ fan= [ B (p)an.

where A is any &7 -measurable set for which [, fdu exists. Now associated with every
complete o -finite subalgebra .7 C ¥, the mapping E< : [?(X) — L*(</) uniquely
defined by the assignment f — E (f), is called the conditional expectation operator
with respect to 7. Put E = E“/. The mapping E is a linear orthogonal projection.
Note that Z(E), the domain of E, contains L*(X)U{f € L°(X) : f > 0}. For more
details on the properties of E see [10, 14, 16].

Given a complex separable Hilbert space H, let B(H) denotes the linear space of
all bounded linear operators on H. A4 (T) and %#(T) denote the null-space and range
of an operator T , respectively. Recall that for T € B(H) there is a unique factorization
T =U|T|, where 4 (T)= A (U)= A (|T]), U is a partial isometry; i.e. UU*U =
U and |T| = (T*T)"/? is a positive operator. This factorization is called the polar
decomposition of 7. It is a classical fact that the polar decomposition of T* is U*|T*|.
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Associated with T € B(H) there is a useful related operator T = |T|'/2U|T|'/?, called
the Aluthge transform of 7 . For important properties of Aluthge transform see [8, 12].

Let CR(H) be the set of all bounded linear operators on H with closed range. For
T € CR(H), the Moore-Penrose inverse of 7', denoted by T, is the unique operator
T' € CR(H) that satisfies following:

't =1, T'TT =77, (TT")" =7T", (T'T)* =T"T. (1.1)

We recall that 77 exists if and only if T € CR(H). The Moore-Penrose inverse is
designed as a measure for the invertibility of an operator. If 7 = U|T| is invertible,
then T-! =T7, U is unitary and so |T| is invertible. For other important properties of
T' see[l,3].

A combination of conditional expectation, multiplication and composition opera-
tors appears more often in the service of the study of other operators, such as Frobenius-
Perron operators [2], integral operators and operators generated by random measures
[9] and probabilistic conditional operators [15].

In this paper, we consider the weighted conditional operator M,,EM,, and the
weighted conditional composition operator M,,EM,Cyp on L*(X). We prove some ba-
sic results on some Moore-Penrose inverse of these type operators. For instance, we
obtain a lower and upper bound for the numerical range of T and T, respectively.

2. Weighted conditional operators

LEMMA 2.1. Let @ € L°(2), 0<v € LO(/) and let A := M, 5EM, € B(L*(X)).
Then for each p € (0,e0) and f € L*(X), AP(f) =" @E(|0|*)’'E(0f).

Proof. First note that, because v is .o/ -measurable then the positive multiplica-
tion operator M, commutes with the positive operator MgzEM,, , and so A is positive.
Suppose f € L*(X), then by induction we obtain

A (f) =vioE(|jo)iE(of), neN.

. . [
Now the reiteration of powers of operator An , yields

m

AR (f) =ViBE(|loP)" ' E(of), mneN.
Finally, by using of the functional calculus the desired formula is proved. [

For f € L*(X), it is easy to see that |M,EM,f|l» = ||[EMyf||» where v :=
u(E (|w|2))% . But we know that a multiplication operator has closed range if and only
if the inducing function is bounded away from zero on its support. As a result it can
easily be checked that for some & > 0 such that E(v) > & on o(v), T has closed
range (see also [11, Theorem 2.8(ii)]). Some basic results concerning the conditional
type operators are given by Herron [10], Estaremi et al. [4] and the first author in [11].
Here we recall some results of [4] that state our results is valid for M,,EM,, .
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LEMMA 2.2. Let T = M\,EM, be a weighted conditional operator on I? (2).
Then the following assertions hold.

(a) T € B(L*(X)) ifand only if E(|w|*)E(|u|*) € L*(<7), and in this case ||T|| =
1w P)E ()]

(b) Let T € B(I*(X)), 0 < u € L°(X) and v = u(E(|w]?))?.
06 (v), then T has closed range.

(c) Let U|T| be the polar decomposition of T . Then

]

If E(V) > 08 on

e
110 = (5ot ) 2w ()

_ XsnG 7W y
o= (i) E0D

where where S = 6(E(u)), G = o(E(w)) and f € [*(¥).
(d) The Aluthge transformation of T is

7o) XsEw) o 2

From now on, we assume that u,w € L%.(X), T = M,EM, € B(L*(X)) and K :=
SNG, where G=06(E(w)) and S = o (E(u)).

PROPOSITION 2.3. T € CR(L*(X)). Then T' =M _ x5 T*.

E(u?)E(w?)
Proof. Tt is easy to check that T satisfy all equations in (1.1). [

PROPOSITION 2.4. Let T € CR(L*(X)) and let U;|T"| be the polar decomposi-
tion of TY. Then

X 3
10 = (Feenar)

Ui(f) = (W)%E(Wf)

Proof. Let f€L*(X). Then (T")*(TT)(f) = (E(u?)(E(w?*))?) "' xkwE (wf). Now
|T| follows from Lemma 2.1. Moreover, it is easy to check that U; |[TT| =TT, Ui Ui Uy =
U; and A (Uy) = A (T*) = A (T"). This completes the proof. [J

We now turn to the computation of (T)Jr and 7T. By combining the previous
results we obtain the following proposition.

PROPOSITION 2.5. Let T,T € CR(L*(X)). Then
(i) (T)" = Mutopuos EMu-
~ E(u?)E (uw)
(”) TT =M XK WE (uw) EMW
E(u?)(EWD)?
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REMARK 2.6. If w % u, then (T)" # T Moreover, by Lemma 2.2(b), T €

CR(L?*(X)) whenever E(u)% > 0 forsome 6 >0 on S.

Now, we determine a lower and upper estimates for the numerical range of 77 . Let
B be largest o/ -measurable set contained in K with y(B) < . Then by Proposition
2.3 and definition of ®(T ") we have

o(Th) > <TT XB /E lSmG uE (w)dy

NGOl
1 E(u)E(w)
> 25 hmeres

On the other hand, by the conditional H61der inequality we have
- 1 1
EfEw)| < (E@?)2(Ew*)2E(|f).
Put A= {f € L*(Z)NL*(X):||f|lo < 1}. Then

o(T") = sup [(TTf,f)l —sup| (T f.)] <

Ifll<1 / K \/E MZ)E w2)

By a similar argument we obtain @(7') < ||T|| and [ E(u)E(w)du < u(B)o(T), for
each B € o/ with 0 < (B) < . So

1
E@EW-= s s | E@EWdu <o (1)

Consequently, we have the following proposition.

PROPOSITION 2.7. Let T,T € CR(L*(Z)). Then

[EMEW)[l < o(T) < ||\/E(M2)E(W2)||oo;
/E ut)E w2 / \/7

where B is the largest f -measurable set contained in K with [1(B) < .

EXAMPLE 2.8. Let X = [—1, 1], dj = dx, ¥ be the Lebesgue sets, and let & C
Y be the o-algebra generated by the symmetric sets about the origin. Then for each
feDE), E(f)(x) = LI put u(x) = 2x+5, w(x) = cosx and T = M, EM,.
Then K =B =X, E(u) =5, E(w) = cosx, E(u?) = 4x*> + 25 and E(w?) = cos?(x).

Note that
u\/E(w?) = (2x+5)(cosx) > 3.9;

E 12 125cos 1
E(w) (uwg _ SZCosx . cos 3 5245
VE@W?) VAax2+25 V26
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So by Lemma 2.2, T,T € CR(L*(Z)). Also, it is easy to check that

( E / 5cosxdx
d = 0.2060;
/[%75 E( H7 ) @ 25) (o (v)
/71 1]

/ — 0.2074;
LU VE u2 (w?) J-1 x2+4 (x2+9)

1T = |\\/(4x2+25)(COSZ(X))Hm =5

1
177l = | === [l = 0.2235;
E(u?)E(w?)

1T = |E(uw)]|eo = 5.
Thus, ||T|| = ||T|| = @(T) and by Proposition 2.7 we have

1
0.2060 < o(T") <0.2074 < ||T7|| < So(T).
PROPOSITION 2.9. Let T € CR(L*(X)). If T" is p-hyponormal, then E (u*)(E (w))?
> (E(u))’E(w?) on K.

Proof. Let f € L*(X). Then by Lemma 2.1, we have

(T = gy Y B
(T(r7)) = L

(E(uZ))zp(E(Wz))p“(E(“z))"flE(uf)-

Thus T is p-hyponormal if and only if

M XK (M XK WEMW_M XK MEMM) >O
(E@?))P (E(w?))P E(w?)

E(u2)
Put P:=M xx WEM,, —M xx uEM, . Since M 1K is positive and commute
E(w2) E(u?) (E(u2))P(E(w2))P
with P, it follows that T is p-hyponormal if and only if P > 0. But this implies that

(Pf.f) =/K{W§((WWZJ;) E(( J;)}fdu > 0.

Choose 0 < fy € L*(<7). By replacing f to fy, we obtain

(EW?  (E@W)
./K{E<w2> E() }fg"W 0

and so E(u?)(E(w))? = (E(u))*E(

w?)onK. O

In [6], Estaremi determined when weighted conditional operators were A -class, -
A-class and quasi-*-A-classes. Now, we discuss measure theoretic characterizations
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for T7 in some A-classes of operators on L?(X). An operator T € B(H) is an A-class
operator if |T?| > |T|?, quasi-A-class if T*|T?|T > T*|T|*T and quasi-*-A -class if
T*|T?|T > T*|T*|*T.

PROPOSITION 2.10. Let T = M,,EM, € CR(L*(X)). Then the followings are
equivalent.

(i) TT is A-class.
(ii) TT is quasi-A-class.
(iii) T" is quasi-*-A-class.

(iv) (E(uw))? = (E(u®))(E(w?)) on K.

Proof. (i) <= (iv) Let f € L>(X). Then we obtain

(GO R

X

E(WfEMwS)  giwfE(wf) |,
(E@)3(EW)E  EW)EW))?

(
_ E(uw) B 1 .
_'/K{(E(uz))%(E(WZ))% E(u2)(E(W2))2}|E( f)IPdu.

This implies that if (E(uw))? > (E(u?))(E(w?)) on K, then |(TT)?| - |TT|> > 0.

Conversely, if 77 is an A-class operator, then ((|(T7)?| —|TT]?)f, f) =0 for all
feL*X). Let B o/, with BC K and 0 < pu(B) < . By replacing f to yp, we get
that

Since B € &/ is arbitrary, then (E(uw))? > (E(u?))(E(w?)) on K. The proofs of the
other implications are similar. [

In [13] Morrel and Muhly introduced the concept of a centered operator. An opera-
tor T =U|T| on a Hilbert space H is said to be centered if the doubly infinite sequence
{T"T*",T*"T™ : n,m > 0} consists of mutually commuting operators. For T € B(H)
and n € N, let U,|T"| be the polar decomposition of 7". Tt is shown in [13, Theorem I]
that 7' is centered if and only if U, = U". In the following theorem we give a necessary
and sufficient condition for the Moore-Penrose of M,,EM,, to be centered.

PROPOSITION 2.11. Let T € CR(L?*(X)). Then the followings are equivalent.
(i) T is centered.

(ii) TT is centered.

(iii) (E(uw))? = E(u*)E(W?) on o (E(uw)).



MOORE-PENROSE INVERSE 295

Proof. Put Q =o(E(uw)) andlet n €N, f € L*(X). Then by induction we obtain
Xk (E (uw))"!

) = uE(wf);
TV =Gy et
n—1
() = HOEG) uEGep)
() () (E )
() - LE )" B

(E@?)}(E(w?))?

If (E(uw))? = E(u®)E(w?), then a calculation shows that U, = U", and so T" is cen-
tered. Conversely, suppose that U, = U". Then

B! B! )
{ E@) N EW) Ewn)) ! (E@)3(EW))? }"Q E(wf) =
2

In particular, it is holds for any strictly positive f € L?>(</). Therefore, (E(uw))? =
E(u?)E(w?) on Q. The equivalence (i) <= (iii) follows from [7]. [

3. Weighted conditional composition operators

Let ¢ be a measurable transformation from X into X such that o @~! is ab-

solutely continuous with respect to tt, that is p is non-singular. Let & be the Radon-
Nikodym derivative dp o ¢! /du and we always assume that / is almost everywhere
finite valued or, equivalently ¢ ~!(X) is a sub-sigma finite algebra. In this section
we investigated some classic properties of weighted conditional composition opera-
tors Ty := MyEM,Cy on L*(X), where u,w € L9 (X). Let ¢ '(£) C o/. Since
for each f € LY (X), E(fo@) = fo @, so Ty = Myem,Cp is a weighted composi-
tion operator. Put Ey, = EY'® Itis easy to check that [Ty fll2 = [[M /7|2, where
J=hEy,(W?(E(u))?)o @~ !. Thus, T, € B(L*(Z)) if and only if J € L*(X) and in this
case || Tp|| = [|V/7 ]| (see [5]). Moreover, T, € CR(L*(Z)) if and only if J is bounded
away from zero on 6(J). Set again K =SNG, where G =c(E(w)) and S = o (E(u)).

Let Uyp|Ty| be the polar decomposition of Ty . Since Ty (f) = hEg(WE(u)f) o

I, we obtain |T|(f) = VJf and Up(f) = Xo(wE ) (J © @)~ 2Ty(f). Tt follows

0
that

—~ | 1 J 1
Tof = |Tp|2Up|Ty|2 f = xcr(wE(u)){Jo(p}ZWE(u)fO(P'
Now, let Ty, € CR(L*(X)). Put

Xo()
Ep(W*(E(u))*)oe~!

Then P satisfy all equationsin (1.1). Thus P = T(Z . In fact we can write T(; =M T(; .
e

P(f) = Eg(WE(u)f)o @™ ".

Hence
Xo(wWE (1))

~ ho@{E(W (E(w)2)}?

WE (u)Eo(WE (u)f).
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In Lemma 2.1, set v = Xo(uEw) T and ® = wE(u). Then we obtain

W
WE( U) X (wE (u))
(ho @) {Eg(2(E)?)}3
)
)

T51(f) = Ep(WE(u)f);

WE () X o (wE (u)

PHGE 3
(ho @)H{Eg(w? (E())2)}

Ep(WE(u)f).

Define
U () = { 2o V) f)o g
o T B W B oS Y
Then Ty = Uy |Tg |, Uy UpiUyt = Uy and A (Ug) = N (Ty). Note that Uy = U,

and |T(Z | = |T;|". So we have the following proposition.

PROPOSITION 3.1. Let Ty, € CR(L*(X)) and let U¢T|T$| be the polar decompo-
sition of T(;. Then
WE (1) X (wE (u))
(ho @) {Ey(w2(E(w))}
1
hXs() 2 -1
)= { Y B )09
¢ Eg(w2(E()?)op~t [ 7°
Let Ty € CR(L2(X)) and put B(f) = Xo(nhJ 3 Eg(Xo()] *WE(u)f)o@". Then
it is easy to check that B satisfy all equations in (1.1). Thus B = (T(;)T. Now, let Ty, €
CR(L*(Y)). Set W = Ugi |T$|% . A calculation show that W (f) = XU(J)hJ’%Eq,(wE(u)f)
-1
o

IT51(f) =

Eo(WE(u)f);

, and so we obtain

T = (TS EW(F) = T2 (o hd 3 Eg (WE(u)f) 0 9 ))
Xo(wE(u)no()WE () p 3 _1
- 1 Ep(WE(u)hI 3 Eg(wE(u)f) o9 )).
(ho @) H{EQWEw))}i !

These observations establish the following proposition.

PROPOSITION 3.2. Let k = wE(u) and T € CR(L*(X)). Then the following as-
sertions hold.

(i) Ty (f) = WE(p(kf)o(p L

(ii) Let Uy; |T(p| be the polar decomposition of TT. Then
%a(k)

(ho 9)2 {Eq(k)}

hXs 2
o= { g} BN

T4l (f) =

Ey(kf);

= o
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(iii) If Ty € CR(LA(2)), then (Tp)' () = Xowhd I Eg(owJ tkf)o 9.
(iv) Ty (f) =

el sk _3 _
—Helne__ g (xoukhd TEp(kf)o@ 1),
(ho@) 4 {Ep(k*)} 4

EXAMPLE 3.3. Let X = [0, 1] equipped with the Lebesgue measure dit = dx on

the Lebesgue measurable subsets of X and let y, ¢ : X — X be a non-singular measur-
able transformations defined by y(x) = x> and

) 2x 0<x ,
X)) =
¢ 2—2x %gx

—_— D=

<
<
Then y~!(X) = X, and hence EY"'® = I. Moreover, for each feL*X) and x€ X

we have
=[5 G+ (5=

Eg(f) () = LU=,

> ;
Eolnow N =5 (r(3)+7(1-3)).
Put u(x) = x and w(x) = 2. Then k(x) = (WE(u))(x) = 2x and
Eog(k)yoo ' =1,
Eo(k) oo ' =x*—2x+2;
J:x2—2x+2;

Jo@=4x*>—2x+2.

Hence we get that
= (=) fo () e}

vt = (g or(2) (D)

_[@d 2272720 0
U(Pf(x) - {(4x2_2x+2)212xf(2—2x)

| Tplf(x) = VIf(x) = Va2 = 20+ 2f (x);
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2x
(4x2 — 2x+2)3

RPN S S | B G
2(x2 —2x+2)3 (“%z—x—l—Z)Z ((1—§)2+x)1

EXAMPLE 3.4. (i) Let X =[0,1] x [0, 1], du = dxdy, X be the Lebesgue subsets
of X, o ={[0,1] xA: A is a Lebesgue set in [0,1]}. Then for each f € L*(X),
Ef)(x,y) = ! f(¢,y)dt, which is independent of the first coordinate. Now, if we take
(Ef)(x.y) = Jo f(t,y P
u(x,y) = x*¢’, w(x,y) = x*sin(y). Then E(u?)(x,y) = %, E(w?)(x,y) = gmz% It
follows that

Tyl f(x) = {xf () + (1 =x)f(1 =x)};

e?sin?(y)

(B(uw))* (x,y) = — = = E(@)) (x, ) E(w?) (x,y)-

Thus, by Theorem 2.10, 7" belongs to A-classes of operator and quasi-A -class, quasi-
%-A-class and by Theorem 2.11 the operator T is centered.

(i) Let X = [—1,1], du = 3dx. With the same assumptions of Example 2.8 let
o = ({(—a,a) : 0 <a < 1}). Then for each f € L*(X), E“(f) is the even part of
f. Let u(x) =e*, w(x) = 1. Then E(u)(x) = cosh(x), S(E(u)) =X and E(u*)(x) =
cosh(2x). Since cosh?(x) # cosh(2x) then by Theorem 2.11, T and T are not cen-
tered. Now, if u(x) = x> and w(x) = cos(x) then E(u?)(x) = x*, E(w?)(x) = cos?(x)
and E(uw)(x) = x*>cos(x), and thus T is centered.
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