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Abstract. In this note we study reducing subspaces for weighted composition

operators defined on L
2(Σ). Some necessary and sufficient conditions are given

for such operators to have two types of reducing subspaces of the forms L2(ΣA)

and L
2(A). This is basically discussed by using conditional expectation prop-

erties.

1. Introduction and preliminaries

Let (X,Σ, µ) be a complete σ-finite measure space. For any complete σ-finite

subalgebra A ⊆ Σ the Hilbert space L2(X,A, µ|A) is abbreviated to L2(A)

where µ|A is the restriction of µ to A. Also given B ∈ Σ, we shall abbreviate

the subspace L2(B,ΣB , µ|ΣB
) to L2(ΣB) = {f ∈ L2(Σ) : χ

Bc f = 0} where

ΣB = {A∩B : A ∈ Σ} and Bc = X \B. We denote the linear space of all complex-

valued Σ-measurable functions on X by L0(Σ). The subspace L∞(Σ) consists of

those Σ-measurable functions on X which are essentially bounded. The support

of a measurable function f is defined by σ(f) = {x ∈ X : f(x) 6= 0}. All sets

and functions statements are to be interpreted as being valid almost everywhere

with respect to µ. For each non-negative function f ∈ L0(Σ) or f ∈ L2(Σ), by the

Radon–Nikodym theorem, there exists a unique A-measurable function EA(f) such

that
∫

A

fdµ =

∫

A

EA(f)dµ,

where A is any A-measurable set for which
∫

F
fdµ exists. Now associated with every

complete σ-finite subalgebra A ⊆ Σ, the mapping EA : L2(Σ) → L2(A), uniquely
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defined by the assignment f 7→ EA(f), is called the conditional expectation operator

with respect to A. The mapping EA is a linear orthogonal projection onto L2(A). If

B ⊆ A ⊆ Σ, then EB
A denotes the appropriate conditional expectation from L2(A)

onto L2(B). Put EA
Σ = EA. Then EB

AE
A = EB. Note that D(EA), the domain of E,

contains L2(Σ) ∪ {g ∈ L0(Σ) : g ≥ 0}. For more details on conditional expectation

see [3, 10].

Let ϕ : X → X be a Σ-measurable transformation of X. Denote by µ ◦ ϕ−1

the measure on Σ given by µ ◦ ϕ−1(A) = µ(ϕ−1(A)) for A ∈ Σ. We say that

ϕ is non-singular if µ ◦ ϕ−1 is absolutely continuous with respect to µ. Put h =

dµ ◦ ϕ−1/dµ. For a non-singular measurable transformation ϕ of X and a weight

function u : X → [0,∞), the weighted composition operator on L2(Σ) is defined

by W (f) = u.f ◦ ϕ. Note that W = Mu ◦ Cϕ, where Mu is the multiplication and

Cϕ is the composition operator. It is shown in [8] that W is bounded if and only

if J := hEϕ−1(Σ)(u2) ◦ ϕ−1 ∈ L∞(Σ). Throughout this paper we assume that ϕ is

non-singular, u ≥ 0 and J ∈ L∞(Σ).

The role of the conditional expectation operator is important in this note. We

shall use the following general properties of EA and W acting on L2(Σ). For proofs

and discussions of some of these facts see [1, 6–8,10].

L(1) If f is an A-measurable function, then EA(fg) = fEA(g);

L(2) if f ≥ 0 then EA(f) ≥ 0; if f > 0 then EA(f) > 0;

L(3) σ(f) ⊆ σ(EA(f)), for each 0 ≤ f ∈ L2(Σ);

L(4) EA(|f |2) = |EA(f)|2 if and only if f ∈ L0(A);

L(5) ϕ−1(σ(h)) = X, i.e., h ◦ ϕ > 0;

L(6) (change of variable)
∫

ϕ−1(A)
gf ◦ ϕdµ =

∫

A
hEϕ−1(Σ)(g) ◦ ϕ−1fdµ, for all

g ∈ D(Eϕ−1(Σ)) and A ∈ Σ;

L(7) W ∗f = hEϕ−1(Σ)(uf) ◦ ϕ−1;

L(8) W ∗Wf = hEϕ−1(Σ)(u2) ◦ ϕ−1f ;

L(9) WW ∗f = u(h ◦ ϕ)Eϕ−1(Σ)(uf);

L(10) Eϕ−1(A)(L2(A)) = Cϕ(L2(A)) = {f ∈ L2(A) : f ∈ L0(ϕ−1(Σ))}.

Let H be a real or complex Hilbert space. The set of all bounded linear

operators from H into H is denoted by B(H). We write N (T ) and R(T ) for the

null-space and range of an operator T ∈ B(H). Recall that a closed subspace M ⊆ H

is said to be invariant for an operator T ∈ B(H) whenever T (M) ⊆ M . If M and its

orthogonal complement M⊥ are both invariant for T , then we say that M reduces T .

So M is a reducing subspace of T if and only if PT (I −P ) = 0 and (I −P )TP = 0,

where P is an orthogonal projection onto M . The problem of classifying the reducing

subspaces of T is equivalent to finding the orthogonal projections in {T}′, the

commutant algebra of T . Reducibility of composition operators on L2(Σ) have
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been studied in [1]. In the next section some necessary and sufficient conditions are

given for weighted composition operator W ∈ B(L2(Σ)), that is a combination of a

multiplication and a composition operator, to have two types of reducing subspaces

of the forms L2(ΣA) and L2(A).

2. Reducibility of W

In order to characterize the reducibility of weighted composition operators we first

need to know the behavior of the orthogonal projections onto reducing subspaces.

We shall need the following known facts.

Lemma 2.1. ([4]) For a closed subspace M of H and T ∈ B(H), let P be the

orthogonal projection onto M . Then the following are equivalent.

(a) M is a reducing subspace of T ;

(b) TP = PT ;

(c) T ∗P = PT ∗.

In this case, P commutes with TT ∗ and T ∗T .

Lemma 2.2. ([1, Corollary 3]) Let A and B be σ-finite subalgebras in Σ. Then the

following are equivalent.

(a) EAEB is an orthogonal projection;

(b) EAEB=EBEA;

(c) EAEB=EA∩B.

Let P be the orthogonal projection onto a reducing subspace of L2(Σ) for W .

By Lemma 2.1 and L(7), L(8), L(9) we obtain the following proposition.

Proposition 2.3. Let W be a weighted composition operator induced by the pair

(u, ϕ), and let P be the orthogonal projection onto a reducing subspace of L2(Σ) for

W . Then for each f ∈ L2(Σ),

(a) P (uf ◦ ϕ) = u(Pf) ◦ ϕ;

(b) P (hEϕ−1(Σ)(uf) ◦ ϕ−1) = hEϕ−1(Σ)(uPf) ◦ ϕ−1;

(c) P (Jf) = JPf ;

(d) P (uh ◦ ϕEϕ−1(Σ)(uf)) = uh ◦ ϕEϕ−1(Σ)(uPf).

For B ∈ Σ with µ(B) > 0, put Bc = X \ B. Then L2(Σ) = L2(ΣB) ⊕

L2(ΣBc), where L2(ΣB) = {f ∈ L2(Σ) : f = 0 on Bc}. If ϕ−1(B) ⊆ B, then

ϕ−1(ΣB) = ϕ−1(Σ) ∩ ϕ−1(B) ⊆ Σ ∩ B = ΣB. Since (B,ΣB , µ|ΣB
) is a relatively

complete σ-finite measure space, then by L(10), Cϕ(L
2(ΣB)) ⊆ L2(ϕ−1(ΣB)), and

so Cϕ(L
2(ΣB)) ⊆ L2(ΣB). Hence L2(ΣB) is an invariant subspace of Cϕ. Now,
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assume ϕ−1(B) ⊇ B. Then ϕ−1(ΣBc) ⊆ ϕ−1(Σ) ∩ Bc ⊆ ΣBc , and hence we

have Cϕ(L
2(ΣBc)) ⊆ L2(ϕ−1(ΣBc)) ⊆ L2(ΣBc). Consequently, if ϕ−1(B) = B,

then L2(ΣB) reduces Cϕ. On the other hand if L2(ΣB) and L2(ΣBc) are both

invariant under Cϕ, then by the same argument we get that ϕ−1(ΣB) ⊆ ΣB and

ϕ−1(ΣBc) ⊆ ΣBc . Thus, ϕ−1(B) = B. These observations establish the following

proposition.

Proposition 2.4. Let B ∈ Σ with µ(B) > 0 and let Cϕ ∈ B(L2(Σ)). Then the

following assertions hold.

(a) ϕ−1(B) ⊆ B if and only if L2(ΣB) is an invariant subspace of Cϕ.

(b) ϕ−1(B) ⊇ B if and only if L2(ΣB) is an invariant subspace of C∗
ϕ.

Consequently, L2(ΣB) reduces Cϕ if and only if ϕ−1(B) = B. This fact was

originally proved by Burnap and Lambert in [1, Theorem 5(a)]. In the following

theorem we try to restate a similar fact for the combination of a multiplication and

a composition operator.

Theorem 2.5. Let W ∈ B(L2(Σ)) and B ∈ Σ with µ(B) > 0. Then L2(ΣB) reduces

W if and only if B∩σ(u) = ϕ−1(B)∩σ(u). In particular, if σ(u) ⊆ ϕ−1(σ(u)), then

L2(Σσ(u)) is reducing for W .

Proof. Put P = MχB
. Then P is an orthogonal projection onto L2(ΣB). By

Lemma 2.1, L2(ΣB) reduces W if and only if PW = WP . Let L2(ΣB) reduce W .

Then for each f ∈ L2(Σ) we have χBuf ◦ϕ = χϕ−1(B)uf ◦ϕ. Let X = ∪∞
n=1Bn where

Bn ∈ Σ with µ(Bn) < ∞. It follows that uχB∩ϕ−1(Bn) = uχϕ−1(B)∩ϕ−1(Bn). Hence

uχB = uχϕ−1(B), because X = ∪∞
n=1ϕ

−1(Bn). Thus B ∩ σ(u) = ϕ−1(B) ∩ σ(u).

Conversely, let B ∩ σ(u) = ϕ−1(B) ∩ σ(u). Since u = χσ(u)u, then for each

f ∈ L2(Σ) we obtain

PW (f) = χBW (f) = χϕ−1(B)W (f) = u(χB ◦ ϕ)(f ◦ ϕ) = u(fχB) ◦ ϕ = WP (f).

So, L2(ΣB) reduces W . When σ(u) ⊆ ϕ−1(σ(u)), ϕ maps σ(u) into σ(u) and so

L2(Σ) can be decomposed as L2(Σ) = L2(Σσ(u)) ⊕ L2(Σσ(u)c). Now, the desired

conclusion follows from [3, Lemma 2.3].

Let A ⊆ Σ be a relatively complete σ-finite algebra. In what follows we give

some necessary and sufficient conditions that the subspace L2(A) reduces W .

Theorem 2.6. Let W ∈ B(L2(Σ)). If L2(A) reduces W , then (ϕ−1(A))σ(u) ⊆ Aσ(u)

and u, J ∈ L0(A), where J = hEϕ−1(Σ)(u2) ◦ ϕ−1.
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Proof. The reducibility of W implies that uχϕ−1(A) = W (χA) ∈ L2(A), for all

A ∈ A with finite measure. Therefore σ(uχϕ−1(A)) = σ(u) ∩ ϕ−1(A) ∈ A, and so

ϕ−1(A)∩ σ(u) ∈ Aσ(u) for each A ∈ A. Thus, (ϕ−1(A))σ(u) ⊆ Aσ(u). We now show

that J is A-measurable. Since R(EA) = L2(A) reduces W , then by Lemma 2.1,

EAW ∗W = W ∗WEA. By L(8), W ∗W = MJ . It follows that EA(Jf) = JEA(f),

for each f ∈ L2(A). Let {Bn} be a sequence in Σ increasing to X. Then EA(χBn
) ↑

EA(1) = 1 and hence EA(JχBn
) ↑ J . Since EA(JχBn

) is A-measurable for each

n ∈ N, we conclude that J ∈ L0(A). Finally, let {Cn} ⊆ A, µ(Cn) < ∞ and

X = ∪Cn. Thus, X = ∪ϕ−1(Cn). Hence we get that uχϕ−1(Cn)∩σ(u) = uχϕ−1(Cn) =

W (χcn) ∈ L2(A), for each n ∈ N. This implies that u ∈ L0(A).

Corollary 2.7. Let Cϕ be a bounded composition operator on L2(Σ). If L2(A) reduces

Cϕ, then

(a) ϕ−1(A) ⊆ A and h ∈ L∞(A);

(b) EAEϕ−1(A) = Eϕ−1(A);

(c) EAEϕ−1(Σ) = EA∩ϕ−1(Σ);

(d) EA∩ϕ−1(Σ) = Eϕ−1(A);

(e) CϕE
A = EACϕE

A = EACϕ.

Proof. (a) In Theorem 2.6, it suffices to put u = 1.

(b) The inclusion ϕ−1(A) ⊆ A in (a) implies in turn that L2(ϕ−1(A)) reduces

EA. Now, by Lemma 2.1 and Lemma 2.2, EAEϕ−1(A) = Eϕ−1(A)EA = Eϕ−1(A).

(c) Put u = 1 and P = EA in Proposition 2.3(d). Then by L(5) and Lemma 2.2

we obtain EAEϕ−1(Σ) = Eϕ−1(Σ)EA = EA∩ϕ−1(Σ).

(d) By the inclusion ϕ−1(A) ⊆ A in (a), Eϕ−1(A) = Eϕ−1(A)∩ϕ−1(Σ) ≤

EA∩ϕ−1(Σ). To establish the reverse inequality, it is sufficient to show that

L2(A∩ϕ−1(Σ)) ⊆ L2(ϕ−1(A)). Let f ∈ L2(A∩ϕ−1(Σ)). Then EA(f) = f = g ◦ϕ,

for some g ∈ L2(Σ). Note that g is uniquely determined in σ(h) ([2]). Since h is

A-measurable and L2(Σ) ∩ L∞(Σ) is dense in L2(Σ), then by [9, Proposition 3] we

have

E
ϕ−1(A)
ϕ−1(Σ) (g ◦ ϕ) = EA(g) ◦ ϕ.

It follows that

Eϕ−1(A)(f) = E
ϕ−1(A)
ϕ−1(Σ)E

ϕ−1(Σ)(g ◦ ϕ) = EA(g) ◦ ϕ,

because g ◦ ϕ and EA(g) ◦ ϕ are ϕ−1(Σ)-measurable. Now, by Proposition 2.3(a),

Eϕ−1(A)(f) = EA(g ◦ ϕ) = EA(f) = f.

Thus, f ∈ L2(ϕ−1(A)).



Author’s personal copy

Acta Scientiarum Mathematicarum 83:1–2 (2017) c© Bolyai Institute, University of Szeged

296 M. R. Jabbarzadeh and M. Jafari Bakhshkandi

(e) Observe that L2(Σ) may be decomposed as the orthogonal direct sum

L2(Σ) = L2(A)⊕N (EA), where L2(A) = R(EA) and N (EA) = {f −EA(f) : f ∈

L2(Σ)}. Put P = EA and T = Cϕ. Now by Lemma 2.1, we have TP = PTP = PT

and this completes the proof.

Theorem 2.8. If u, J ∈ L0(A) and Eϕ−1(Σ)EAMu = Eϕ−1(A)Mu on L0(Σ), then

L2(A) reduces W .

Proof. Since W (L2(Σ)) ⊆ L2(Σ) and A-measurable simple functions are dense in

L2(A), it is sufficient to show that W (χA) and W ∗(χA) are A-measurable for each

A ∈ A with finite measure. By hypostases, after taking adjoint,MuE
AEϕ−1(Σ)(f) =

MuE
ϕ−1(A)(f) for each f ∈ L0(Σ). Take f = χϕ−1(A). Since Eϕ−1(Σ)(χA◦ϕ) = χA◦

ϕ = χϕ−1(A) = f and u is A-measurable, then MuE
AEϕ−1(Σ)(f) = MuE

A(f) =

EA(uf) and MuE
ϕ−1(A)(f) = uf . It follows that EA(uf) = uf , and so W (χA) =

uχϕ−1(A) = uf ∈ L0(A).

Now, let Eϕ−1(A)(uχA) = g ◦ ϕ for some g ∈ L0(A). Since uχA = EA(uχA),

we obtain

W ∗(χA) = hEϕ−1(Σ)(uχA) ◦ ϕ
−1 = hEϕ−1(Σ)Mu(χA) ◦ ϕ

−1

= hEϕ−1(A)(uχA) ◦ ϕ
−1 = h(g ◦ ϕ) ◦ ϕ−1 = hg ∈ L0(A).

This completes the proof.

Corollary 2.9. The following assertions hold.

(a) Let ϕ−2(Σ) ⊆ Σ be a complete σ-finite subalgebra and u, h ∈ L0(ϕ−1(Σ)).

If MuE
ϕ−1(Σ) = Eϕ−2(Σ)Mu, then L2(A) reduces W .

(b) If u ∈ L0(A) and L2(A) reduces Cϕ, then L2(A) reduces W .

(c) If σ(u) = X and L2(A) reduces W , then L2(A) reduces Cϕ.

(d) L2(A) reduces Cϕ if and only if h ∈ L0(A) and Eϕ−1(Σ)EA = Eϕ−1(A).

(e) L2(A) reduces Mu if and only if u ∈ L0(A).

Proof. (a) Put A = ϕ−1(Σ). Because u is ϕ−1(Σ)-measurable, Eϕ−1(Σ)Mu =

MuE
ϕ−1(Σ). Now, the desired conclusion follows by Theorem 2.8.

(b) Let f ∈ L2(Σ). By Proposition 2.3(a), EA(f) ◦ ϕ = EA(f ◦ ϕ). Hence

WEA(f) = uEA(f) ◦ ϕ = uEA(f ◦ ϕ) = EA(u.f ◦ ϕ) = EAW (f).

(c) L2(A) reduces W , then WEA = EAW and u ∈ L0(A). Thus, uEA(f) ◦

ϕ = EA(u.f ◦ ϕ) = uEA(f ◦ ϕ) for each f ∈ L2(Σ). Because u > 0, we have

EA(f) ◦ ϕ = EA(f ◦ ϕ), and so CϕE
A = EACϕ.
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(d) In Theorem 2.8, put u = 1. Then h ∈ L0(A) and Eϕ−1(Σ)EA = Eϕ−1(A).

The converse follows from Theorem 2.5 and Corollary 2.7(d). This result is originally

due to Burnap and Lambert [1, Theorem 5(b)].

(e) This follows from Theorem 2.6 and Theorem 2.8.

Example 2.10. Let X = [− 1
2 ,

1
2 ], dµ = dx, Σ be the Lebesgue sets, and let A ⊆ Σ

be the σ-algebra generated by the symmetric sets about the origin. Let 0 < a ≤ 1
2

and f ∈ L2(Σ). Then

∫ a

−a

EA(f)(x)dx =

∫ a

−a

f(x)dx =

∫ a

−a

{f(x) + f(−x)

2
+

f(x)− f(−x)

2

}

dx

=

∫ a

−a

f(x) + f(−x)

2
dx.

Thus, EA(f)(x) = f(x)+f(−x)
2 . Therefore, by Corollary 2.9(e), L2(A) reduces Mu if

and only if u is an even function.

Burnap and Lambert in [1] proved that if M( 6= L2(ΣB) for each B ∈ Σ)

reduces Cϕ, then there is a nontrivial σ-algebra A ⊆ Σ such that L2(A) reduces

Cϕ. In the following theorem we extend this to the case of weighted composition

operators.

Theorem 2.11. Let (X,Σ, µ) be a probability space and let Mu, Cϕ ∈ B(L2(Σ)). If

M is a reducing subspace for Mu and Cϕ, then there is a σ-finite subalgebra A ⊆ Σ

such that L2(A) reduces W .

Proof. To prove the theorem, we adopt the method by Burnap and Lambert [1].

Let P be the orthogonal projection onto M. Put

V = {Mν : ν ∈ L∞(Σσ(u)) and MνP = PMν}.

Note that I,Mu ∈ V and so V 6= ∅. Also V is a weakly closed C∗-algebra of all

bounded multiplication operators on L2(Σσ(u)) (see [1]). Put

A0 = {A ∈ Σσ(u) : MχA
P = PMχA

}.

Then by [5], V = {Mν : ν ∈ L∞(A0)}. Hence for ν ∈ L∞(A0) we have MνP = PMν

and so MuνP = PMuν . Since CϕP = PCϕ, then by [1, Theorem 6], CϕMC∗
ϕ(uν)P =

CϕPMC∗
ϕ(uν). Then for f ∈ L2(Σ), we obtain

WMW∗(ν)P (f) = MuCϕMC∗
ϕ(uν)P (f) = MuCϕPMC∗

ϕ(uν)(f) = WPMW∗(ν)(f).
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Then CϕMW∗(ν)P (f) = CϕPMW∗(ν)(f) on σ(u), because N (Mu) = {f ∈ L2(Σ) :

fχσ(u) = 0}. It follows that

MW∗(ν)P (f) = PMW∗(ν)(f) on σ(u) ∩ σ(h). (2.1)

On the other hand, since hE(uν)◦ϕ−1P (f) = P (hE(uν)◦ϕ−1f) and ν is supported

on σ(u), so (2.1) holds on X. Consequently, MW∗(ν) ∈ V and thus, W ∗(ν) ∈

L∞(A0). Now, define the smallest sub-σ-algebra of Σ containing
⋃∞

n=0 ϕ
−n(A0)

by A =
∨∞

n=0 ϕ
−n(A0). Note that L2(A) is generated by functions of the form

χ∩n
k=0

ϕ−k(Bk), where Bk ∈ A0 and n ∈ N. Now, we claim that L2(A) is invariant

for W and W ∗. Let f = χ∩n
k=0

ϕ−k(Bk). Then W (f) = uχ∩n
k=0

ϕ−k−1(Bk) ∈ L2(A)

because u ∈ L∞(A0) ⊆ L∞(A) and f ◦ ϕ ∈ L2(A). Moreover,

W ∗(f) = hE(uχ∩n
k=0

ϕ−k(Bk)) ◦ ϕ
−1

= (hE(uχB0
) ◦ ϕ−1)χ∩n

k=1
ϕ−k−1(Bk) = (W ∗(χB0

))χ∩n
k=1

ϕ−k−1(Bk).

Since W ∗(χB0
) ∈ L∞(A0) ⊆ L∞(A), so W ∗(f) ∈ L2(A). Consequently, L2(A)

reduces W .
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