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Abstract. In this paper, we initiate the study of a new class of conditional type operators, which

we call C-E type Toeplitz operators. Sufficient conditions for boundedness and compactness

of C-E type Toeplitz operators on the Bergman space L2
a(D) will be presented. Also, some

differences between C-E type Toeplitz operators and Toeplitz operators will be illustrated by

examples.

1. Introduction and preliminaries

Let (X ,Σ,µ) be a probability measure space and let A be a subalgebra of Σ . All

sets and functions statements are to be interpreted as being valid almost everywhere

with respect to µ . The collection of A -measurable complex-valued functions on X

will be denoted by L0(A ) . We take L2(A ) = L2(X ,A ,µ|A
) . For each non-negative

function f ∈L0(Σ) or f ∈L2(Σ) , by the Radon-Nikodym theorem, there exists a unique

A -measurable function EA ( f ) such that

∫

A
f dµ =

∫

A
EA ( f )dµ ,

where A is any A -measurable set for which
∫

A f dµ exists. Now associated with

every subalgebra A ⊆ Σ , the mapping EA : L2(Σ) → L2(A ) , uniquely defined by

the assignment f 7→ EA ( f ) , is called the conditional expectation operator with re-

spect to A . As an operator on L2(Σ) , EA is a contractive orthogonal projection onto

L2(A ) . For fix A ⊆ Σ , set EA = E . The domain of E contains L1(Σ)∪L0
+(Σ) , where

L0
+(Σ) = { f ∈ L0(Σ) : f > 0} . For more details on conditional expectation see [12]. Re-

call that an A -atom of the measure µ is an element C ∈ A with µ(C) > 0 such that

for each F ∈ A , if F ⊆ C then either µ(F) = 0 or µ(F) = µ(C) . A measure with

no atoms is called non-atomic. It is well-known fact that every σ -finite measure space

(X ,A ,µ|A
) can be partitioned uniquely as X = (∪n∈NCn)∪B , where {Cn}n∈N

is a

countable collection of pairwise disjoint A -atoms and B , being disjoint from each Cn ,

is non-atomic (see [13]). Note that every L2(A )-function is constant on any A -atom.

We now restrict our attention to the case (D,M ,A) , where D = {z ∈ C : |z| <
1} , M is the sigma-algebra of Lebesgue-measurable sets in D and A =normalized
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area measure in D . For 1 6 p < ∞ , the Bergman space L
p
a(D) = L

p
a(M ) is a closed

subspace of Lp(M ) consisting of analytic functions. Let P be the Bergman projection.

For u ∈ L∞(M ) , the operator Tu defined on L2
a(D) by Tu f = P(u f ) is called Toeplitz

operator. When u ∈ H∞(D) , the space of bounded analytic functions on D , then Tu is

reduced to the multiplication operator Mu . For general information in this context one

can refer to excellent monograph [14].

The study of conditional expectation operator and its applications on the space of

analytic functions has a long history. In [3] Ball investigated conditional expectation

operator induced by an inner function on the Hardy space and obtained some result

about it. In [1] Aleksandrov proved that conditional expectation operator commutes

with Riesz projection if and only if the measurable partition of circumference has been

induced by an inner function. Attele [2] used properties of conditional expectation op-

erator and obtained some results about the multiplier of range of composition operators.

This type of operator in the Bergman space was studied for the first time in the paper

by Carswell and Stessin in [4]. In [8] the first author and Hassanloo extend some result

in [4] to larger classes of sigma-algebras.

The operator T = EMu have been defined as combination of multiplication opera-

tor and conditional expectation operator. Lambert, the first author of this note and others

have obtained many property of T such as boundedness, compactness, spectrum and

so on. For more details about this type of operators one can refer to [5] and [6]. In this

paper, we introduce the concept of C-E type Toeplitz operators, PT , on the Bergman

space L2
a(D) and present some algebraic and analytic properties of these types of oper-

ators. In Examples 2.7(i), 2.13, 2.16 and 2.19 we see that C-E type Toeplitz operators

with same properties for u , have different behavior relative to Toepliz operators. In par-

ticular, a sufficient condition for boundedness and compactness of mentioned operators

will be presented.

2. C-E type Toeplitz operators on L2
a(D)

Suppose M is the σ -algebra of Lebesgue-measurable sets in D and A is a subal-

gebra of M and E = EA is the related conditional expectation operator. For a noncon-

stant analytic self-map ϕ on D , it may be happen that A (ϕ) := ϕ−1(M ) . For z ∈ D ,

put cz = ϕ−1(ϕ(z))∩D0 = {ξ ∈D0 : ϕ(ξ ) = ϕ(z)} , where D0 = {ξ ∈D : ϕ ′(ξ ) 6= 0} .

We say that ϕ has finite multiplicity if there exists N ∈ N such that for each z ∈ D , the

level set cz contains at most N points.

LEMMA 2.1. [8, Theorem 2.1] Suppose that A = A (ϕ) for some self-map ϕ :

D→ D with finite multiplicity. Then for each f ∈ L
p
a(D) and z ∈ D0 =∪z∈Dcz we have

E( f )(z) =

(

∑
ξ∈cz

f (ξ )

|ϕ ′(ξ )|2

)(

∑
ξ∈cz

1

|ϕ ′(ξ )|2

)−1

.

Notice that if EP = PE , then E(L2
a(D)) ⊆ L2

a(D) .
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DEFINITION 2.2. For u ∈ L∞(M ) , the C-E type Toeplitz operator induced by the

pair (u,E) is denoted by T E
u and defined as follows:

T E
u = PEMu : L2

a(D) → L2
a(D)

f → PE(u f ),

where Mu is the multiplication operator. Note that, since u f ∈ L2(M ) ⊆ D(E) and

E(u f ) ∈ L2(A ) ⊆ L2(M ) , so the linear operator T E
u is well defined.

Let T2 = {u ∈ L2(M ) : uL2
a(D) ⊆ L2(M )} . Note that L∞(M ) ⊆ T2 ⊆ L1(M )

and that T2 is a vector space. For u ∈ T2 , let T E
u be the corresponding C-E type

Toeplitz operator. For u ∈ L∞(M ) , T E
u = T E

u . So T E
u is a generalization of T E

u .

LEMMA 2.3. Let u ∈ L2(M ) . Then the operator EMu : L2(M ) → L2(A ) is

bounded if and only if E(|u|2) ∈ L∞(A ) , and in this case ‖EMu‖ = ‖
√

E(|u|2)‖∞ .

Proof. Let T : L2(A ) → L2(M ) defined by T f = u f . If E(|u|2) ∈ L∞(A ) , then

for each f ∈ L2(A ) ,

‖T f‖2 =

∫

D

|u f |2dA =

∫

D

E(|u|2)| f |2dA 6 ‖E(|u|2)‖∞‖ f‖2.

Conversely, let T is bounded. Then for each B ∈ A ,

∫

B
E(|u|2)dA =

∫

D

|uχB|
2dA = ‖T χB‖

2 6 ‖T‖2A(B).

Hence,

‖E(|u|2)‖∞ = sup
{B∈A ,A(B)>0}

1

A(B)

∫

B
E(|u|2)dA 6 ‖T‖2.

Now, it is easy to show that the adjoint operator T ∗ : L2(M ) → L2(A ) is given by

T ∗ f = E(u f ) . This completes the proof. �

PROPOSITION 2.4. If E(|u|2) ∈ L∞(A ) , then T E
u is a bounded linear operator

on L2
a(D) .

Proof. Since the Bergman projection P has norm 1 and E(|u|2) ∈ L∞(A ) , then

by Lemma 2.3 we have ‖T E
u ‖ 6 ‖EMu‖ = ‖

√
E(|u|2)‖∞ . �

If M = A , then E = I , the identity operator. In this case T E
u = Tu

EXAMPLE 2.5. (i) Let A = { /0,D} . Then E( f )(z) =
∫
D

f (w)dA(w) , and so

T
E

u ( f )(z) = P(E(u f ))(z) =

∫

D

u(w) f (w)dA(w).

It follows that if u ∈ T2 \ L∞(M ) , then E(|u|2) = ‖u‖2 , and hence T E
u is bounded.

Now, let A = 〈Ci〉 be the algebra generated by the countable collection of the non-null
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disjoint Lebesgue measurable subsets of D such that their union is D . In this case (see

[12])

E( f ) =
∞

∑
i=1

1

A(Ci)

(∫

Ci

f dA

)
χCi

.

Then

T
E

u ( f )(z) =

∫

D

1

(1− zw)2
E(u f )(w)dA(w)

=

∫

D

1

(1− zw)2

(
∞

∑
i=1

1

A(Ci)

(∫

Ci

(u f )(z)dA(z)

)
χCi

(w)

)
dA(w).

Since
∫

D

1

|(1− zw)|2

(
∞

∑
i=1

1

A(Ci)

(∫

Ci

|u(z) f (z)|dA(z)

)
χCi

(w)

)
dA(w)

6 ‖Kz‖2‖E(|u f |)‖2,

it holds that

T
E

u ( f )(z) =
∞

∑
i=1

χCi
(w)

A(Ci)

∫

Ci

(∫

D

u(z) f (z)

(1− zw)2
dA(z)

)
dA(w)

= EP(u f )(z).

(ii) For 1 < n ∈ N , let ϕ(z) = zn . For z ∈ D let ϕ−1(ϕ(z)) = {(zn)1/n} =
{z1, · · · ,zn} , where zk = |z|eiθk with θk = (argzn +2kπ)/n . So for 1 6 k 6 n , |zk|= |z|
and thus |ϕ ′(zk)|

2 = |nzn−1
k |2 = n2|z|2(n−1) 6= 0, for z ∈ D0 = D\{0} . Let A = A (ϕ)

be the subalgebra of M generated by {(zn)−1(U) : U ⊂ D is open} . Then by Lemma

2.1 we have

E( f )(z) =

(
n

∑
k=1

f (zk)

n2|z|2(n−1)

)(
1

n|z|2(n−1)

)−1

=
1

n

n

∑
k=1

f (zk) =
1

n
∑

{ζ :ζ n=zn}

f (ζ ), f ∈ L2(M ), z ∈ D0.

Note that the point z = 0 is an isolated singularity for E f . Since E f is bounded in

a deleted neighborhood of point 0 in D , so we can obtain holomorphic extension of

E f and define it on D . Furthermore E is an averaging operator. Hence nE(|u|2)(z) >

|u(z)|2 for every z ∈ D0 and

(T E
u f )(z) = P(E(u f ))(z) =

∫

D

K(z,w)E(u f )(w)dA(w)

=
1

n

n

∑
k=1

∫

D

u(wk) f (wk)

(1− zw)2
dA(w),
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where wk = |w|ei(argwn+2kπ)/n and f ∈ L2
a(D) . Consequently, since E is a contraction

and nE(|u|2) > |u|2 , u ∈ L∞(M ) if and only if E(|u|2) ∈ L∞(M ) . In this case, by

Proposition 2.4, T E
u = T E

u is bounded. In case n = 2, E f (z) = f (z)+ f (−z)
2

. So T E
u f =

1
2
{Tu( f )+ Tw( f ◦ g)} , where w = u ◦ g and g(z) = −z . Moreover, since E(L2

a(D)) ⊆

L2
a(D) then T E

u ( f ) = 1
2
{Mu( f )+ Mw( f ◦ g)} for every u ∈ H∞(D) . For f ∈ L2

a(D) ,

put Aϕ( f )(z) = 1
n ∑{ζ :ζ n=z} f (ζ ) . Then E( f ) = Aϕ( f ) ◦ϕ . The function Aϕ( f ) is

uniquely determined in D0 . Therefore, even though ϕ is not invertible, the expression

Aϕ( f ) = (E( f ))◦ϕ−1 is well defined (see [10]).

(iii) Let ϕ(z) = az2 +bz+c where a 6= 0, |a|+ |b|+ |c|< 1, and let A = A (ϕ) .

For each z ∈ D , ϕ−1(ϕ(z)) = {z,−(az+b)/a} . But −(az+b)/a may be in D or not.

Put D1 = {z ∈ D0 : |az+ b| < |a|} , where D0 = D\ {−b/2a} . Since for each z ∈ D1 ,

|ϕ ′(z)| = |2az+ b|= |ϕ ′(−(az+ b)/a)| then according to Lemma 2.1 we have

E f (z) =

{
1
2
{ f (z)+ f (− az+b

a
)} z ∈ D1

f (z) z ∈ D0 \D1,

where f ∈ L2(M ) . It follows that for each u ∈ T2 and f ∈ L2
a(D) we have

T
E

u ( f )(z) =





∫
D

{
(u f )(w)

2(1−zw)2 +
(u f )(− aw+b

a )

2(1−zw)2

}
dA(w) z ∈ D1

Tu( f )(z) z ∈ D0 \D1,

PROPOSITION 2.6. Suppose a and b are complex numbers and u and v are in

T2 such that the C-E type Toeplitz operators induced by them are bounded. Then

(a) T E
au+bv = aT E

u + bTE
v and (T E

u )∗ = PMuE ;

(b) If u be a A -measurable and u > 0 , then T E
u > 0 .

Proof. (a) The first equality follows from Mau+bv = aMu +bMv . Let f ,g ∈ L2
a(D) .

Then

〈(T E
u )∗ f ,g〉 = 〈 f ,T E

u g〉 = 〈 f ,PE(ug)〉

= 〈 f ,E(ug)〉 = 〈E f ,Mug〉

= 〈MuE f ,Pg〉 = 〈PMuE f ,g〉.

So (T E
u )∗ = PMuE .

(b) Since E is an orthogonal projection and E(u f ) = uE f for all f ∈ L2
a(D) , then

〈T E
u f , f 〉 = 〈PEMu f , f 〉 = 〈EMu f ,P f 〉

= 〈EMu f , f 〉 = 〈EMu f ,E f 〉

= 〈MuE f ,E f 〉 =

∫

D

u|E f |2dA > 0. �

For classical Toeplitz operator Tu = PMu on L2
a(D) , Tu ≡ 0 if and only if u ≡ 0.

But the analogous fact does not hold for C-E type Toeplitz operators, in general.
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EXAMPLE 2.7. (i) Suppose again that A = { /0,D} and u is a nonzero analytic

function on D such that u(0) = 0. According to Example 2.5(i) and mean value prop-

erty of harmonic functions, T E
u ≡ 0 on L2

a(D) , but u 6≡ 0.

(ii) It seems that T E
u ≡ 0 whenever Eu = 0. But it is not hold in general. For this,

let ϕ(z) = z2 , u(z) = z and A = A (ϕ) . According to Example 2.5(ii), it follows that

Eu = 0 and

T
E

u f =
1

2
(P(z f (z))+ P(−z f (−z))).

Now, if we put f (z) = z , then T E
u f = P(z2) 6= 0.

PROPOSITION 2.8. Suppose u is an A -measurable function on D . Then T E
u ≡

0 implies that u≡ 0 if and only if the linear combinations of {E(zi)E(z j)}∞
i, j=0 is dense

in L2(A ) .

Proof. Let M denotes the linear combination of {E(zi)E(z j)}∞
i, j=0 . Suppose that

T E
u ≡ 0 and M is dense in L2(A ) . Then 〈T E

u f ,g〉= 0 for every f ,g ∈ L2
a(D) . Since

P and E are projection, u is an A -measurable and P(z j) = z j , we obtain

〈u,E(zi)E(z j)〉 = 〈uE(zi),E(z j)〉 = 〈E(uzi),z j〉

= 〈PE(uzi),z j〉 = 〈T E
u zi,z j〉 = 0,

for all i, j ∈ N0 = N∪ {0} . Since M is dense in L2(A ) , it concluded that u ≡ 0.

Conversely suppose that M is not dense in L2(A ) , therefore M⊥ 6= {0} . Let 0 6≡ u ∈
M⊥ . Simple computations show that T E

u ≡ 0. �

COROLLARY 2.9. Suppose u is an A -measurable function on D and M denotes

the linear combinations of {E(zi)E(z j)}∞
i, j=0 . Then the following assertions hold.

(i) T E
u is self-adjoint if and only if u− u is perpendicular to M .

(ii) If M = L2(A ) , then T E
u is self-adjoint if and only if u = u .

We recall that for a bounded linear operator T on L2
a(D) , the Berezin transform

of T is denoted by T̃ and defined as T̃ (z) = 〈T kz,kz〉 , for each z ∈ D . It is proved in

[11] that T ≡ 0 if and only if T̃ ≡ 0. If u ∈ L2(M ) then the Berezin transform of u

that denoted by ũ defined as the Berezin transform of Tu . Denoted by B the transform

that B(u) = ũ . Then B is one-to-one on L1(M ) (see [7]).

DEFINITION 2.10. Let u ∈ T2 . The C-E Berezin transform of u is denoted by

ũE and defined on D as ũE(z) = 〈T E
u kz,kz〉 and will be denoted by BE the transform

that BE(u) = ũE .

COROLLARY 2.11. Let M denotes the linear combinations of {E(zi)E(z j)} . Then

BE is one-to-one on M .

REMARK 2.12. It is clear that if E = I , previous corollary coincides with classi-

cal statement about B .
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It is well-known fact that when u ∈ L1(M ) is harmonic then ũ = u (see [14]). As

will be shown in the next example, the analogous fact does not hold for C-E Berezin

transform of u in general.

EXAMPLE 2.13. Let A = { /0,D} . Then

T
E

u ( f )(z) =

∫

D

u(w) f (w)dA(w).

Therefore

ũE(z) =

∫

D

T
E

u (kz)(w)kz(w)dA(w)

=
∫

D

u(t)kz(t)dA(t)
∫

D

kz(w)dA(w) = (1−|z|2)2P(u)(z).

Putting u(z) = z2 + z , we have P(u) = 0. Hence ũE(z) = 0, and so ũE 6= u in this case.

In the following we present a sufficient condition for compactness of some C-E

type Toeplitz operators on L2
a(D) and by examples illustrate the difference between

compactness of Toeplitz operators and C-E type Toepliz operators on L2
a(D) .

THEOREM 2.14. Suppose that A is a subalgebra of M , (D,A ,A|A
) can be

partitioned as D = (∪n∈NCn)
⋃

B and T = T E
u is bounded on L2

a(D) . If u(B) = 0

(u(z) = 0 for all z ∈ B) and for any ε > 0 , A(Cn ∩Gε (u)) > 0 for finitely many n,

where Gε(u) = {z ∈ D : E(|u|)(z) > ε} , then T E
u is compact.

Proof. Suppose that u(B) = 0 and for an arbitrary ε > 0, the number of A -

atoms {Cε
n} such that A(Cε

n ∩Gε (u)) > 0 is k < ∞ . Put Bε = ∪k
n=1Cε

n . It is clear that

E(|u|)(z) < ε on D \Bε and therefore |u| < ε on D \ (Bε ∪B) . Let T1 = T E
v where

v = χBε u . Since u = v = 0 on B , u = v on Bε and T is bounded, hence T1 is bounded.

Using |E( f )|2 6 E(| f |2) and Bε ∪B ∈ A , for each f ∈ L2
a(D) we have

‖T f −T1 f‖2
6 ‖Eu f −Ev f‖2 =

∫

D

|E(u− v) f |2dA

=

∫

D\(Bε∪B)
|Eu f |2dA 6

∫

D\(Bε∪B)
E(|u f |2)dA

=

∫

D\(Bε∪B)
|u f |2dA 6 ε2

∫

D

| f |2dA = ε2‖ f‖2.

But we have

T1 f = PE(χBε u f ) = PE(
k

∑
n=1

χCε
n
u f ) =

k

∑
n=1

PE(χCε
n
u f ).

Since ∑k
n=1 E(χCε

n
u f ) = ∑k

n=1 E(u f )(Cε
n )χCε

n
, so S = EMv is a finite rank operator and

the set of all finite rank operators is a self-adjoint two-sided ideal of B(L2(M )) , the

set of all bounded operators on L2(M ) , thus T1 = PS has finite rank and hence T is

compact. �



882 M. R. JABBARZADEH AND M. MORADI

EXAMPLE 2.15. As in Example 2.5(i), let A = 〈Ci〉 be the algebra generated

by the countable collection of the non-null disjoint Lebesgue measurable subsets of D

such that their union is D . It is clear that each Ci is an A -atom and (D,A ,A|A
) can

be partitioned as D = (∪n∈NCn)∪B , where B = /0 . If T E
u be bounded on L2

a(D) and

u satisfies the conditions of Theorem 2.14, then T E
u is compact.

EXAMPLE 2.16. Suppose u ∈ L1(M ) is harmonic. Then Tu is compact if and

only if u≡ 0 (see [14]). Let A = { /0,D} and u∈H∞(D) , in Example 2.5(i) we saw that

T E
u

( f )(z) =
∫
D

u(w) f (w)dA(w) . It is clear that T E
u

is bounded, u and A satisfy con-

ditions of Theorem 2.13, hence T E
u

is compact, while u is non-zero harmonic L1(M )-

function. We can directly show that T E
u

is compact. Suppose that fn → 0 weakly in

L2
a(D) , then

∫
D

g fndA → 0 for each g ∈ L2
a(D) . Thus ‖T E

u
fn‖

2 = |
∫
D

u fndA|2 → 0.

Hence T E
u

is compact.

At this stage, we consider diagonal operators and present some statements about

diagonal Toeplitz and C-E type Toeplitz operators. Recall that an operator T : H →H

is called a diagonal operator if Te j = α je j , where {e j} is a basis for H . According

to definition, it is clear that T : L2
a(D) → L2

a(D) is diagonal if and only if 〈T zi,z j〉 = 0

for all i 6= j .

For u ∈ L2(M ) , Louhichi et al. [9] proved that Tu is a diagonal operator on

L2
a(D) if and only if u is radial. Although it is not known if the C-E type Toepliz

operator induced by radial symbol is diagonal, as we will see in next example when u

is radial, operators in Example 2.5, are diagonal.

EXAMPLE 2.17. Let u(z) = u(|z|) , ϕ(z) = z2 and let A = A (ϕ) . Then by Ex-

ample 2.5(ii), we have

T
E

u ( f )(z) =
1

2
{P((u f )◦ϕ1)+ P((u f )◦ϕ2)}(z),

where ϕi(z) = (−1)i+1z . Now, take f (z) = zk . So

T
E

u (zk)(z) =
1

2

∫

D

u(w)wk

(1− zw)2
dA(w)+

(−1)k

2

∫

D

u(−w)wk

(1− zw)2
dA(w).

Since u is radial so for k = 2n + 1, T E
u (zk) = 0 and for k = 2n ,

T
E

u (zk)(z) =

∫

D

u(|w|)wk

(1− zw)2
dA(w)

=
∞

∑
j=0

( j + 1)z j

∫

D

wkw
j
u(|w|)dA(w)

=
∞

∑
j=0

( j + 1)z j

∫ 1

0

∫ 2π

0
r j+k+1u(r)

drdθ

π

= [2(k + 1)
∫ 1

0
r2k+1u(r)dr]zk := αkzk.
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Thus, T E
u (zk) = ckzk , where

ck =

{
0 k = 2n + 1

αk k = 2n.

A calculation shows that for operators in Example 2.5(i), we have T E
u (zk) = ckzk

when u is a radial function.

THEOREM 2.18. Suppose u ∈T2 . If for n > 0 , Eu and |z|2nu are perpendicular

to zL2
a(D) and for n > 0 , |z|2nu is perpendicular to L2

a(D) then T E
u is a diagonal

operator on L2
a(D) .

Proof. Suppose that T E
u is not a diagonal operator on L2

a(D) . Thus there is

j 6= n such that 〈Euzn,z j〉 6= 0. If n = 0 or j = 0, it concluded that Eu or u has

not the mentioned property respectively. If n 6= 0 and j 6= 0, then 〈u, z
n
Ez j〉 6= 0.

Since z
n
Ez j ∈ L2(M ) and p(z, z)’s are dense in L2(M ) , there is zl z

k such that

〈u,zl z
k〉 6= 0. Putting l = k , l > k and l < k we have 〈u,z2l〉 6= 0, 〈u|z|2k,zl−k〉 6= 0

and 〈u|z|2l,zk−l〉 6= 0 respectively, thus desired result is concluded. �

When u ∈ L2(M ) is not radial then Tu is not diagonal on L2
a(D) . In spit of

classical Toeplitz operator cases, there are functions u ∈ L2(M ) such that u is not

radial but the induced C-E type Toeplitz operator T E
u is diagonal.

EXAMPLE 2.19. Let u(z) = pn(z) , such that pn(0) 6= 0. Suppose E and A are

as in Example 2.5(i). Since T E
u (zk)(z) =

∫
D

u(w)wkdA(w) , using mean value property

for harmonic functions, we have

T
E

u (zk) =

{
pn(0) k = 0

0 k > 1,

thus T E
u (zk) = ckzk , where c0 = pn(0) and ck = 0 for k > 1, so T E

u is diagonal while

Tu is not diagonal.
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