C-E TYPE TOEPLITZ OPERATORS ON $L^2_a(\mathbb{D})$

M. R. JABBARZADEH AND M. MORADI

(Communicated by I. M. Spitkovsky)

Abstract. In this paper, we initiate the study of a new class of conditional type operators, which we call C-E type Toeplitz operators. Sufficient conditions for boundedness and compactness of C-E type Toeplitz operators on the Bergman space $L^2_a(\mathbb{D})$ will be presented. Also, some differences between C-E type Toeplitz operators and Toeplitz operators will be illustrated by examples.

1. Introduction and preliminaries

Let (X, Σ, μ) be a probability measure space and let \mathscr{A} be a subalgebra of Σ . All sets and functions statements are to be interpreted as being valid almost everywhere with respect to μ . The collection of \mathscr{A} -measurable complex-valued functions on X will be denoted by $L^0(\mathscr{A})$. We take $L^2(\mathscr{A}) = L^2(X, \mathscr{A}, \mu_{|_{\mathscr{A}}})$. For each non-negative function $f \in L^0(\Sigma)$ or $f \in L^2(\Sigma)$, by the Radon-Nikodym theorem, there exists a unique \mathscr{A} -measurable function $E^{\mathscr{A}}(f)$ such that

$$\int_A f d\mu = \int_A E^{\mathscr{A}}(f) d\mu,$$

where *A* is any \mathscr{A} -measurable set for which $\int_A f d\mu$ exists. Now associated with every subalgebra $\mathscr{A} \subseteq \Sigma$, the mapping $E^{\mathscr{A}} : L^2(\Sigma) \to L^2(\mathscr{A})$, uniquely defined by the assignment $f \mapsto E^{\mathscr{A}}(f)$, is called the conditional expectation operator with respect to \mathscr{A} . As an operator on $L^2(\Sigma)$, $E^{\mathscr{A}}$ is a contractive orthogonal projection onto $L^2(\mathscr{A})$. For fix $\mathscr{A} \subseteq \Sigma$, set $E^{\mathscr{A}} = E$. The domain of *E* contains $L^1(\Sigma) \cup L^0_+(\Sigma)$, where $L^0_+(\Sigma) = \{f \in L^0(\Sigma) : f \ge 0\}$. For more details on conditional expectation see [12]. Recall that an \mathscr{A} -atom of the measure μ is an element $C \in \mathscr{A}$ with $\mu(C) > 0$ such that for each $F \in \mathscr{A}$, if $F \subseteq C$ then either $\mu(F) = 0$ or $\mu(F) = \mu(C)$. A measure with no atoms is called non-atomic. It is well-known fact that every σ -finite measure space $(X, \mathscr{A}, \mu|_{\mathscr{A}})$ can be partitioned uniquely as $X = (\cup_{n \in \mathbb{N}} C_n) \cup B$, where $\{C_n\}_{n \in \mathbb{N}}$ is a countable collection of pairwise disjoint \mathscr{A} -atoms and *B*, being disjoint from each C_n , is non-atomic (see [13]). Note that every $L^2(\mathscr{A})$ -function is constant on any \mathscr{A} -atom.

We now restrict our attention to the case $(\mathbb{D}, \mathcal{M}, A)$, where $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$, \mathcal{M} is the sigma-algebra of Lebesgue-measurable sets in \mathbb{D} and A = normalized

Keywords and phrases: Bergman space, Toeplitz operator, conditional expectation.

Mathematics subject classification (2010): Primary 47B20, Secondary 47B38.

area measure in \mathbb{D} . For $1 \leq p < \infty$, the Bergman space $L_a^p(\mathbb{D}) = L_a^p(\mathcal{M})$ is a closed subspace of $L^p(\mathcal{M})$ consisting of analytic functions. Let P be the Bergman projection. For $u \in L^{\infty}(\mathcal{M})$, the operator T_u defined on $L_a^2(\mathbb{D})$ by $T_u f = P(uf)$ is called Toeplitz operator. When $u \in H^{\infty}(\mathbb{D})$, the space of bounded analytic functions on \mathbb{D} , then T_u is reduced to the multiplication operator M_u . For general information in this context one can refer to excellent monograph [14].

The study of conditional expectation operator and its applications on the space of analytic functions has a long history. In [3] Ball investigated conditional expectation operator induced by an inner function on the Hardy space and obtained some result about it. In [1] Aleksandrov proved that conditional expectation operator commutes with Riesz projection if and only if the measurable partition of circumference has been induced by an inner function. Attele [2] used properties of conditional expectation operators. This type of operator in the Bergman space was studied for the first time in the paper by Carswell and Stessin in [4]. In [8] the first author and Hassanloo extend some result in [4] to larger classes of sigma-algebras.

The operator $T = EM_u$ have been defined as combination of multiplication operator and conditional expectation operator. Lambert, the first author of this note and others have obtained many property of T such as boundedness, compactness, spectrum and so on. For more details about this type of operators one can refer to [5] and [6]. In this paper, we introduce the concept of C-E type Toeplitz operators, PT, on the Bergman space $L_a^2(\mathbb{D})$ and present some algebraic and analytic properties of these types of operators. In Examples 2.7(i), 2.13, 2.16 and 2.19 we see that C-E type Toeplitz operators. In particular, a sufficient condition for boundedness and compactness of mentioned operators will be presented.

2. C-E type Toeplitz operators on $L^2_a(\mathbb{D})$

Suppose \mathscr{M} is the σ -algebra of Lebesgue-measurable sets in \mathbb{D} and \mathscr{A} is a subalgebra of \mathscr{M} and $E = E^{\mathscr{A}}$ is the related conditional expectation operator. For a nonconstant analytic self-map φ on \mathbb{D} , it may be happen that $\mathscr{A}(\varphi) := \varphi^{-1}(\mathscr{M})$. For $z \in \mathbb{D}$, put $c_z = \varphi^{-1}(\varphi(z)) \cap \mathbb{D}_0 = \{\xi \in \mathbb{D}_0 : \varphi(\xi) = \varphi(z)\}$, where $\mathbb{D}_0 = \{\xi \in \mathbb{D} : \varphi'(\xi) \neq 0\}$. We say that φ has finite multiplicity if there exists $N \in \mathbb{N}$ such that for each $z \in \mathbb{D}$, the level set c_z contains at most N points.

LEMMA 2.1. [8, Theorem 2.1] Suppose that $\mathscr{A} = \mathscr{A}(\varphi)$ for some self-map φ : $\mathbb{D} \to \mathbb{D}$ with finite multiplicity. Then for each $f \in L^p_a(\mathbb{D})$ and $z \in \mathbb{D}_0 = \bigcup_{z \in \mathbb{D}} c_z$ we have

$$E(f)(z) = \left(\sum_{\xi \in c_z} \frac{f(\xi)}{|\varphi'(\xi)|^2}\right) \left(\sum_{\xi \in c_z} \frac{1}{|\varphi'(\xi)|^2}\right)^{-1}.$$

Notice that if EP = PE, then $E(L_a^2(\mathbb{D})) \subseteq L_a^2(\mathbb{D})$.

DEFINITION 2.2. For $u \in L^{\infty}(\mathcal{M})$, the C-E type Toeplitz operator induced by the pair (u, E) is denoted by T_u^E and defined as follows:

$$T_u^E = PEM_u : L_a^2(\mathbb{D}) \to L_a^2(\mathbb{D})$$
$$f \to PE(uf).$$

where M_u is the multiplication operator. Note that, since $uf \in L^2(\mathcal{M}) \subseteq \mathcal{D}(E)$ and $E(uf) \in L^2(\mathcal{A}) \subseteq L^2(\mathcal{M})$, so the linear operator T_u^E is well defined.

Let $\mathfrak{T}_2 = \{u \in L^2(\mathscr{M}) : uL^2_a(\mathbb{D}) \subseteq L^2(\mathscr{M})\}$. Note that $L^{\infty}(\mathscr{M}) \subseteq \mathfrak{T}_2 \subseteq L^1(\mathscr{M})$ and that \mathfrak{T}_2 is a vector space. For $u \in \mathfrak{T}_2$, let \mathscr{T}_u^E be the corresponding C-E type Toeplitz operator. For $u \in L^{\infty}(\mathscr{M})$, $\mathscr{T}_u^E = T_u^E$. So \mathscr{T}_u^E is a generalization of T_u^E .

LEMMA 2.3. Let $u \in L^2(\mathcal{M})$. Then the operator $EM_u : L^2(\mathcal{M}) \to L^2(\mathcal{A})$ is bounded if and only if $E(|u|^2) \in L^{\infty}(\mathcal{A})$, and in this case $||EM_u|| = ||\sqrt{E(|u|^2)}||_{\infty}$.

Proof. Let $T: L^2(\mathscr{A}) \to L^2(\mathscr{M})$ defined by $Tf = \overline{u}f$. If $E(|u|^2) \in L^{\infty}(\mathscr{A})$, then for each $f \in L^2(\mathscr{A})$,

$$||Tf||^{2} = \int_{\mathbb{D}} |\bar{u}f|^{2} dA = \int_{\mathbb{D}} E(|u|^{2}) |f|^{2} dA \leq ||E(|u|^{2})||_{\infty} ||f||^{2}.$$

Conversely, let *T* is bounded. Then for each $B \in \mathcal{A}$,

$$\int_{B} E(|u|^{2}) dA = \int_{\mathbb{D}} |\bar{u}\chi_{B}|^{2} dA = ||T\chi_{B}||^{2} \leq ||T||^{2} A(B).$$

Hence,

$$||E(|u|^2)||_{\infty} = \sup_{\{B \in \mathscr{A}, A(B) > 0\}} \frac{1}{A(B)} \int_{B} E(|u|^2) dA \leqslant ||T||^2.$$

Now, it is easy to show that the adjoint operator $T^*: L^2(\mathcal{M}) \to L^2(\mathcal{A})$ is given by $T^*f = E(uf)$. This completes the proof. \Box

PROPOSITION 2.4. If $E(|u|^2) \in L^{\infty}(\mathscr{A})$, then \mathscr{T}_u^E is a bounded linear operator on $L^2_a(\mathbb{D})$.

Proof. Since the Bergman projection *P* has norm 1 and $E(|u|^2) \in L^{\infty}(\mathscr{A})$, then by Lemma 2.3 we have $\|\mathscr{T}_u^E\| \leq \|EM_u\| = \|\sqrt{E(|u|^2)}\|_{\infty}$. \Box

If $\mathcal{M} = \mathcal{A}$, then E = I, the identity operator. In this case $\mathcal{T}_u^E = \mathcal{T}_u$

EXAMPLE 2.5. (i) Let $\mathscr{A} = \{\emptyset, \mathbb{D}\}$. Then $E(f)(z) = \int_{\mathbb{D}} f(w) dA(w)$, and so

$$\mathscr{T}_{u}^{E}(f)(z) = P(E(uf))(z) = \int_{\mathbb{D}} u(w)f(w)dA(w).$$

It follows that if $u \in \mathfrak{T}_2 \setminus L^{\infty}(\mathcal{M})$, then $E(|u|^2) = ||u||^2$, and hence \mathscr{T}_u^E is bounded. Now, let $\mathscr{A} = \langle C_i \rangle$ be the algebra generated by the countable collection of the non-null disjoint Lebesgue measurable subsets of \mathbb{D} such that their union is \mathbb{D} . In this case (see [12])

$$E(f) = \sum_{i=1}^{\infty} \frac{1}{A(C_i)} \left(\int_{C_i} f dA \right) \chi_{C_i}.$$

Then

$$\begin{aligned} \mathscr{T}_{u}^{E}(f)(z) &= \int_{\mathbb{D}} \frac{1}{(1-z\overline{w})^{2}} E(uf)(w) dA(w) \\ &= \int_{\mathbb{D}} \frac{1}{(1-z\overline{w})^{2}} \left(\sum_{i=1}^{\infty} \frac{1}{A(C_{i})} \left(\int_{C_{i}} (uf)(z) dA(z) \right) \chi_{C_{i}}(w) \right) dA(w). \end{aligned}$$

Since

$$\int_{\mathbb{D}} \frac{1}{|(1-z\overline{w})|^2} \left(\sum_{i=1}^{\infty} \frac{1}{A(C_i)} \left(\int_{C_i} |u(z)f(z)| dA(z) \right) \chi_{C_i}(w) \right) dA(w)$$

$$\leq \|K_z\|_2 \|E(|uf|)\|_2,$$

it holds that

$$\mathcal{T}_{u}^{E}(f)(z) = \sum_{i=1}^{\infty} \frac{\chi_{C_{i}}(w)}{A(C_{i})} \int_{C_{i}} \left(\int_{\mathbb{D}} \frac{u(z)f(z)}{(1-z\overline{w})^{2}} dA(z) \right) dA(w)$$
$$= E\overline{P(uf)}(z).$$

(ii) For $1 < n \in \mathbb{N}$, let $\varphi(z) = z^n$. For $z \in \mathbb{D}$ let $\varphi^{-1}(\varphi(z)) = \{(z^n)^{1/n}\} = \{z_1, \dots, z_n\}$, where $z_k = |z|e^{i\theta_k}$ with $\theta_k = (\arg z^n + 2k\pi)/n$. So for $1 \le k \le n$, $|z_k| = |z|$ and thus $|\varphi'(z_k)|^2 = |nz_k^{n-1}|^2 = n^2|z|^{2(n-1)} \ne 0$, for $z \in \mathbb{D}_0 = \mathbb{D} \setminus \{0\}$. Let $\mathscr{A} = \mathscr{A}(\varphi)$ be the subalgebra of \mathscr{M} generated by $\{(z^n)^{-1}(U) : U \subset \mathbb{D} \text{ is open}\}$. Then by Lemma 2.1 we have

$$E(f)(z) = \left(\sum_{k=1}^{n} \frac{f(z_k)}{n^2 |z|^{2(n-1)}}\right) \left(\frac{1}{n|z|^{2(n-1)}}\right)^{-1}$$

= $\frac{1}{n} \sum_{k=1}^{n} f(z_k) = \frac{1}{n} \sum_{\{\zeta: \zeta^n = z^n\}} f(\zeta), \quad f \in L^2(\mathcal{M}), \ z \in \mathbb{D}_0.$

Note that the point z = 0 is an isolated singularity for Ef. Since Ef is bounded in a deleted neighborhood of point 0 in \mathbb{D} , so we can obtain holomorphic extension of Ef and define it on \mathbb{D} . Furthermore E is an averaging operator. Hence $nE(|u|^2)(z) \ge |u(z)|^2$ for every $z \in \mathbb{D}_0$ and

$$\begin{aligned} (\mathscr{T}_u^E f)(z) &= P(E(uf))(z) = \int_{\mathbb{D}} K(z, w) E(uf)(w) dA(w) \\ &= \frac{1}{n} \sum_{k=1}^n \int_{\mathbb{D}} \frac{u(w_k) f(w_k)}{(1 - z\overline{w})^2} dA(w), \end{aligned}$$

where $w_k = |w|e^{i(\arg w^n + 2k\pi)/n}$ and $f \in L^2_a(\mathbb{D})$. Consequently, since E is a contraction and $nE(|u|^2) \ge |u|^2$, $u \in L^{\infty}(\mathcal{M})$ if and only if $E(|u|^2) \in L^{\infty}(\mathcal{M})$. In this case, by Proposition 2.4, $\mathcal{T}_u^E = T_u^E$ is bounded. In case n = 2, $Ef(z) = \frac{f(z) + f(-z)}{2}$. So $\mathcal{T}_u^E f = \frac{1}{2}\{T_u(f) + T_w(f \circ g)\}$, where $w = u \circ g$ and g(z) = -z. Moreover, since $E(L^2_a(\mathbb{D})) \subseteq L^2_a(\mathbb{D})$ then $\mathcal{T}_u^E(f) = \frac{1}{2}\{M_u(f) + M_w(f \circ g)\}$ for every $u \in H^{\infty}(\mathbb{D})$. For $f \in L^2_a(\mathbb{D})$, put $A_{\varphi}(f)(z) = \frac{1}{n}\sum_{\{\zeta; \zeta^n = z\}} f(\zeta)$. Then $E(f) = A_{\varphi}(f) \circ \varphi$. The function $A_{\varphi}(f)$ is uniquely determined in \mathbb{D}_0 . Therefore, even though φ is not invertible, the expression $A_{\varphi}(f) = (E(f)) \circ \varphi^{-1}$ is well defined (see [10]).

(iii) Let $\varphi(z) = az^2 + bz + c$ where $a \neq 0$, |a| + |b| + |c| < 1, and let $\mathscr{A} = \mathscr{A}(\varphi)$. For each $z \in \mathbb{D}$, $\varphi^{-1}(\varphi(z)) = \{z, -(az+b)/a\}$. But -(az+b)/a may be in \mathbb{D} or not. Put $\mathbb{D}_1 = \{z \in \mathbb{D}_0 : |az+b| < |a|\}$, where $\mathbb{D}_0 = \mathbb{D} \setminus \{-b/2a\}$. Since for each $z \in \mathbb{D}_1$, $|\varphi'(z)| = |2az+b| = |\varphi'(-(az+b)/a)|$ then according to Lemma 2.1 we have

$$Ef(z) = \begin{cases} \frac{1}{2} \{ f(z) + f(-\frac{az+b}{a}) \} & z \in \mathbb{D}_1 \\ f(z) & z \in \mathbb{D}_0 \setminus \mathbb{D}_1 \end{cases}$$

where $f \in L^2(\mathcal{M})$. It follows that for each $u \in \mathfrak{T}_2$ and $f \in L^2_a(\mathbb{D})$ we have

$$\mathscr{T}_{u}^{E}(f)(z) = \begin{cases} \int_{\mathbb{D}} \left\{ \frac{(uf)(w)}{2(1-z\overline{w})^{2}} + \frac{(uf)(-\frac{aw+b}{a})}{2(1-z\overline{w})^{2}} \right\} dA(w) & z \in \mathbb{D}_{1} \\ \mathscr{T}_{u}(f)(z) & z \in \mathbb{D}_{0} \setminus \mathbb{D}_{1} \end{cases}$$

PROPOSITION 2.6. Suppose a and b are complex numbers and u and v are in \mathfrak{T}_2 such that the C-E type Toeplitz operators induced by them are bounded. Then

(a) $\mathscr{T}_{au+bv}^{E} = a \mathscr{T}_{u}^{E} + bT_{v}^{E}$ and $(\mathscr{T}_{u}^{E})^{*} = PM_{\overline{u}}E$; (b) If u be a \mathscr{A} -measurable and $u \ge 0$, then $\mathscr{T}_{u}^{E} \ge 0$.

Proof. (a) The first equality follows from $M_{au+bv} = aM_u + bM_v$. Let $f, g \in L^2_a(\mathbb{D})$. Then

$$\langle (\mathscr{T}_{u}^{E})^{*}f,g \rangle = \langle f,\mathscr{T}_{u}^{E}g \rangle = \langle f,PE(ug) \rangle \\ = \langle f,E(ug) \rangle = \langle Ef,M_{u}g \rangle \\ = \langle M_{\overline{u}}Ef,Pg \rangle = \langle PM_{\overline{u}}Ef,g \rangle.$$

So $(\mathscr{T}_u^E)^* = PM_{\overline{u}}E$.

(b) Since E is an orthogonal projection and E(uf) = uEf for all $f \in L^2_a(\mathbb{D})$, then

$$\langle \mathscr{T}_{u}^{E}f,f \rangle = \langle PEM_{u}f,f \rangle = \langle EM_{u}f,Pf \rangle \\ = \langle EM_{u}f,f \rangle = \langle EM_{u}f,Ef \rangle \\ = \langle M_{u}Ef,Ef \rangle = \int_{\mathbb{D}} u|Ef|^{2}dA \ge 0. \quad \Box$$

For classical Toeplitz operator $\mathscr{T}_u = PM_u$ on $L^2_a(\mathbb{D})$, $\mathscr{T}_u \equiv 0$ if and only if $u \equiv 0$. But the analogous fact does not hold for C-E type Toeplitz operators, in general. EXAMPLE 2.7. (i) Suppose again that $\mathscr{A} = \{\emptyset, \mathbb{D}\}$ and u is a nonzero analytic function on \mathbb{D} such that u(0) = 0. According to Example 2.5(i) and mean value property of harmonic functions, $\mathscr{T}_u^E \equiv 0$ on $L_a^2(\mathbb{D})$, but $u \neq 0$. (ii) It seems that $\mathscr{T}_u^E \equiv 0$ whenever Eu = 0. But it is not hold in general. For this,

(ii) It seems that $\mathscr{T}_{u}^{E} \equiv 0$ whenever Eu = 0. But it is not hold in general. For this, let $\varphi(z) = z^{2}$, u(z) = z and $\mathscr{A} = \mathscr{A}(\varphi)$. According to Example 2.5(ii), it follows that Eu = 0 and

$$\mathscr{T}_u^E f = \frac{1}{2} (P(zf(z)) + P(-zf(-z))).$$

Now, if we put f(z) = z, then $\mathscr{T}_{u}^{E} f = P(z^{2}) \neq 0$.

PROPOSITION 2.8. Suppose u is an \mathscr{A} -measurable function on \mathbb{D} . Then $\mathscr{T}_{u}^{E} \equiv 0$ implies that $u \equiv 0$ if and only if the linear combinations of $\{\overline{E(z^{i})}E(z^{j})\}_{i,j=0}^{\infty}$ is dense in $L^{2}(\mathscr{A})$.

Proof. Let *M* denotes the linear combination of $\{\overline{E(z^i)}E(z^j)\}_{i,j=0}^{\infty}$. Suppose that $\mathscr{T}_u^E \equiv 0$ and *M* is dense in $L^2(\mathscr{A})$. Then $\langle \mathscr{T}_u^E f, g \rangle = 0$ for every $f, g \in L^2_a(\mathbb{D})$. Since *P* and *E* are projection, *u* is an \mathscr{A} -measurable and $P(z^j) = z^j$, we obtain

$$\begin{aligned} \langle u, \overline{E(z^i)}E(z^j) \rangle &= \langle uE(z^i), E(z^j) \rangle = \langle E(uz^i), z^j \rangle \\ &= \langle PE(uz^i), z^j \rangle = \langle \mathcal{T}_u^E z^i, z^j \rangle = 0, \end{aligned}$$

for all $i, j \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$. Since *M* is dense in $L^2(\mathscr{A})$, it concluded that $u \equiv 0$. Conversely suppose that *M* is not dense in $L^2(\mathscr{A})$, therefore $M^{\perp} \neq \{0\}$. Let $0 \neq u \in M^{\perp}$. Simple computations show that $\mathscr{T}_u^E \equiv 0$. \Box

COROLLARY 2.9. Suppose u is an \mathscr{A} -measurable function on \mathbb{D} and M denotes the linear combinations of $\{E(z^i)E(z^j)\}_{i,j=0}^{\infty}$. Then the following assertions hold.

(i) \mathscr{T}_{u}^{E} is self-adjoint if and only if $u - \overline{u}$ is perpendicular to \overline{M} .

(ii) If $\overline{M} = L^2(\mathscr{A})$, then \mathscr{T}_u^E is self-adjoint if and only if $u = \overline{u}$.

We recall that for a bounded linear operator T on $L^2_a(\mathbb{D})$, the Berezin transform of T is denoted by \tilde{T} and defined as $\tilde{T}(z) = \langle Tk_z, k_z \rangle$, for each $z \in \mathbb{D}$. It is proved in [11] that $T \equiv 0$ if and only if $\tilde{T} \equiv 0$. If $u \in L^2(\mathcal{M})$ then the Berezin transform of uthat denoted by \tilde{u} defined as the Berezin transform of \mathcal{T}_u . Denoted by B the transform that $B(u) = \tilde{u}$. Then B is one-to-one on $L^1(\mathcal{M})$ (see [7]).

DEFINITION 2.10. Let $u \in \mathfrak{T}_2$. The C-E Berezin transform of u is denoted by $\widetilde{u^E}$ and defined on \mathbb{D} as $\widetilde{u^E}(z) = \langle \mathscr{T}_u^E k_z, k_z \rangle$ and will be denoted by B^E the transform that $B^E(u) = \widetilde{u^E}$.

COROLLARY 2.11. Let M denotes the linear combinations of $\{E(z^i)\overline{E(z^j)}\}$. Then B^E is one-to-one on \overline{M} .

REMARK 2.12. It is clear that if E = I, previous corollary coincides with classical statement about *B*.

It is well-known fact that when $u \in L^1(\mathcal{M})$ is harmonic then $\tilde{u} = u$ (see [14]). As will be shown in the next example, the analogous fact does not hold for C-E Berezin transform of u in general.

EXAMPLE 2.13. Let
$$\mathscr{A} = \{\emptyset, \mathbb{D}\}$$
. Then
 $\mathscr{T}_{u}^{E}(f)(z) = \int_{\mathbb{D}} u(w)f(w)dA(w).$

Therefore

$$\widetilde{u^{E}}(z) = \int_{\mathbb{D}} \mathscr{T}_{u}^{E}(k_{z})(w)\overline{k_{z}}(w)dA(w)$$

= $\int_{\mathbb{D}} u(t)k_{z}(t)dA(t)\int_{\mathbb{D}}\overline{k_{z}}(w)dA(w) = (1-|z|^{2})^{2}\overline{P(\overline{u})}(z).$

Putting $u(z) = z^2 + z$, we have $P(\overline{u}) = 0$. Hence $\widetilde{u^E}(z) = 0$, and so $\widetilde{u^E} \neq u$ in this case.

In the following we present a sufficient condition for compactness of some C-E type Toeplitz operators on $L^2_a(\mathbb{D})$ and by examples illustrate the difference between compactness of Toeplitz operators and C-E type Toepliz operators on $L^2_a(\mathbb{D})$.

THEOREM 2.14. Suppose that \mathscr{A} is a subalgebra of \mathscr{M} , $(\mathbb{D}, \mathscr{A}, A_{|_{\mathscr{A}}})$ can be partitioned as $\mathbb{D} = (\bigcup_{n \in \mathbb{N}} C_n) \bigcup B$ and $T = \mathscr{T}_u^E$ is bounded on $L_a^2(\mathbb{D})$. If u(B) = 0 (u(z) = 0 for all $z \in B$) and for any $\varepsilon > 0$, $A(C_n \cap G^{\varepsilon}(u)) > 0$ for finitely many n, where $G^{\varepsilon}(u) = \{z \in \mathbb{D} : E(|u|)(z) \ge \varepsilon\}$, then \mathscr{T}_u^E is compact.

Proof. Suppose that u(B) = 0 and for an arbitrary $\varepsilon > 0$, the number of \mathscr{A} atoms $\{C_n^{\varepsilon}\}$ such that $A(C_n^{\varepsilon} \cap G^{\varepsilon}(u)) > 0$ is $k < \infty$. Put $B_{\varepsilon} = \bigcup_{n=1}^k C_n^{\varepsilon}$. It is clear that $E(|u|)(z) < \varepsilon$ on $\mathbb{D} \setminus B_{\varepsilon}$ and therefore $|u| < \varepsilon$ on $\mathbb{D} \setminus (B_{\varepsilon} \cup B)$. Let $T_1 = \mathscr{T}_{v}^{E}$ where $v = \chi_{B_{\varepsilon}} u$. Since u = v = 0 on B, u = v on B_{ε} and T is bounded, hence T_1 is bounded. Using $|E(f)|^2 \leq E(|f|^2)$ and $B_{\varepsilon} \cup B \in \mathscr{A}$, for each $f \in L^2_a(\mathbb{D})$ we have

$$\begin{split} \|Tf - T_1 f\|^2 &\leqslant \|Euf - Evf\|^2 = \int_{\mathbb{D}} |E(u - v)f|^2 dA \\ &= \int_{\mathbb{D} \setminus (B_{\varepsilon} \cup B)} |Euf|^2 dA \leqslant \int_{\mathbb{D} \setminus (B_{\varepsilon} \cup B)} E(|uf|^2) dA \\ &= \int_{\mathbb{D} \setminus (B_{\varepsilon} \cup B)} |uf|^2 dA \leqslant \varepsilon^2 \int_{\mathbb{D}} |f|^2 dA = \varepsilon^2 \|f\|^2 dA \end{split}$$

But we have

$$T_1 f = PE(\chi_{B_{\varepsilon}} u f) = PE(\sum_{n=1}^k \chi_{C_n^{\varepsilon}} u f) = \sum_{n=1}^k PE(\chi_{C_n^{\varepsilon}} u f).$$

Since $\sum_{n=1}^{k} E(\chi_{C_n^{\varepsilon}} uf) = \sum_{n=1}^{k} E(uf)(C_n^{\varepsilon})\chi_{C_n^{\varepsilon}}$, so $S = EM_{\nu}$ is a finite rank operator and the set of all finite rank operators is a self-adjoint two-sided ideal of $B(L^2(\mathcal{M}))$, the set of all bounded operators on $L^2(\mathcal{M})$, thus $T_1 = PS$ has finite rank and hence T is compact. \Box

EXAMPLE 2.15. As in Example 2.5(i), let $\mathscr{A} = \langle C_i \rangle$ be the algebra generated by the countable collection of the non-null disjoint Lebesgue measurable subsets of \mathbb{D} such that their union is \mathbb{D} . It is clear that each C_i is an \mathscr{A} -atom and $(\mathbb{D}, \mathscr{A}, A_{|\mathscr{A}|})$ can be partitioned as $\mathbb{D} = (\bigcup_{n \in \mathbb{N}} C_n) \cup B$, where $B = \emptyset$. If \mathscr{T}_u^E be bounded on $L_a^2(\mathbb{D})$ and u satisfies the conditions of Theorem 2.14, then \mathscr{T}_u^E is compact.

EXAMPLE 2.16. Suppose $u \in L^1(\mathscr{M})$ is harmonic. Then \mathscr{T}_u is compact if and only if $u \equiv 0$ (see [14]). Let $\mathscr{A} = \{\emptyset, \mathbb{D}\}$ and $u \in H^{\infty}(\mathbb{D})$, in Example 2.5(i) we saw that $\mathscr{T}_{\overline{u}}^E(f)(z) = \int_{\mathbb{D}} \overline{u(w)}f(w)dA(w)$. It is clear that $\mathscr{T}_{\overline{u}}^E$ is bounded, \overline{u} and \mathscr{A} satisfy conditions of Theorem 2.13, hence $\mathscr{T}_{\overline{u}}^E$ is compact, while \overline{u} is non-zero harmonic $L^1(\mathscr{M})$ function. We can directly show that $\mathscr{T}_{\overline{u}}^E$ is compact. Suppose that $f_n \to 0$ weakly in $L_a^2(\mathbb{D})$, then $\int_{\mathbb{D}} \overline{g} f_n dA \to 0$ for each $g \in L_a^2(\mathbb{D})$. Thus $\|\mathscr{T}_{\overline{u}}^E f_n\|^2 = |\int_{\mathbb{D}} \overline{u} f_n dA|^2 \to 0$. Hence $\mathscr{T}_{\overline{u}}^E$ is compact.

At this stage, we consider diagonal operators and present some statements about diagonal Toeplitz and C-E type Toeplitz operators. Recall that an operator $T : \mathscr{H} \to \mathscr{H}$ is called a diagonal operator if $Te_j = \alpha_j e_j$, where $\{e_j\}$ is a basis for \mathscr{H} . According to definition, it is clear that $T : L^2_a(\mathbb{D}) \to L^2_a(\mathbb{D})$ is diagonal if and only if $\langle Tz^i, z^j \rangle = 0$ for all $i \neq j$.

For $u \in L^2(\mathcal{M})$, Louhichi et al. [9] proved that \mathcal{T}_u is a diagonal operator on $L^2_a(\mathbb{D})$ if and only if u is radial. Although it is not known if the C-E type Toepliz operator induced by radial symbol is diagonal, as we will see in next example when u is radial, operators in Example 2.5, are diagonal.

EXAMPLE 2.17. Let u(z) = u(|z|), $\varphi(z) = z^2$ and let $\mathscr{A} = \mathscr{A}(\varphi)$. Then by Example 2.5(ii), we have

$$\mathscr{T}_{u}^{E}(f)(z) = \frac{1}{2} \{ P((uf) \circ \varphi_1) + P((uf) \circ \varphi_2) \}(z),$$

where $\varphi_i(z) = (-1)^{i+1}z$. Now, take $f(z) = z^k$. So

$$\mathscr{T}_{u}^{E}(z^{k})(z) = \frac{1}{2} \int_{\mathbb{D}} \frac{u(w)w^{k}}{(1-z\overline{w})^{2}} dA(w) + \frac{(-1)^{k}}{2} \int_{\mathbb{D}} \frac{u(-w)w^{k}}{(1-z\overline{w})^{2}} dA(w).$$

Since *u* is radial so for k = 2n + 1, $\mathscr{T}_{u}^{E}(z^{k}) = 0$ and for k = 2n,

$$\begin{aligned} \mathscr{T}_{u}^{E}(z^{k})(z) &= \int_{\mathbb{D}} \frac{u(|w|)w^{k}}{(1-z\overline{w})^{2}} dA(w) \\ &= \sum_{j=0}^{\infty} (j+1)z^{j} \int_{\mathbb{D}} w^{k} \overline{w}^{j} u(|w|) dA(w) \\ &= \sum_{j=0}^{\infty} (j+1)z^{j} \int_{0}^{1} \int_{0}^{2\pi} r^{j+k+1} u(r) \frac{drd\theta}{\pi} \\ &= [2(k+1) \int_{0}^{1} r^{2k+1} u(r) dr] z^{k} := \alpha_{k} z^{k}. \end{aligned}$$

Thus, $\mathscr{T}_{u}^{E}(z^{k}) = c_{k}z^{k}$, where

$$c_k = \begin{cases} 0 & k = 2n+1 \\ \alpha_k & k = 2n. \end{cases}$$

A calculation shows that for operators in Example 2.5(i), we have $\mathscr{T}_{u}^{E}(z^{k}) = c_{k}z^{k}$ when *u* is a radial function.

THEOREM 2.18. Suppose $u \in \mathfrak{T}_2$. If for $n \ge 0$, Eu and $|z|^{2n}\overline{u}$ are perpendicular to $zL_a^2(\mathbb{D})$ and for $n \ge 0$, $|z|^{2n}u$ is perpendicular to $L_a^2(\mathbb{D})$ then \mathscr{T}_u^E is a diagonal operator on $L_a^2(\mathbb{D})$.

Proof. Suppose that \mathscr{T}_{u}^{E} is not a diagonal operator on $L_{a}^{2}(\mathbb{D})$. Thus there is $j \neq n$ such that $\langle Euz^{n}, z^{j} \rangle \neq 0$. If n = 0 or j = 0, it concluded that Eu or \overline{u} has not the mentioned property respectively. If $n \neq 0$ and $j \neq 0$, then $\langle u, \overline{z}^{n}Ez^{j} \rangle \neq 0$. Since $\overline{z}^{n}Ez^{j} \in L^{2}(\mathscr{M})$ and $p(z, \overline{z})$'s are dense in $L^{2}(\mathscr{M})$, there is $z^{l}\overline{z}^{k}$ such that $\langle u, z^{l}\overline{z}^{k} \rangle \neq 0$. Putting l = k, l > k and l < k we have $\langle u, z^{2l} \rangle \neq 0$, $\langle u|z|^{2k}, z^{l-k} \rangle \neq 0$ and $\langle u|z|^{2l}, z^{k-l} \rangle \neq 0$ respectively, thus desired result is concluded. \Box

When $u \in L^2(\mathcal{M})$ is not radial then \mathcal{T}_u is not diagonal on $L^2_a(\mathbb{D})$. In spit of classical Toeplitz operator cases, there are functions $u \in L^2(\mathcal{M})$ such that u is not radial but the induced C-E type Toeplitz operator \mathcal{T}_u^E is diagonal.

EXAMPLE 2.19. Let $u(z) = p_n(z)$, such that $p_n(0) \neq 0$. Suppose *E* and \mathscr{A} are as in Example 2.5(i). Since $\mathscr{T}_u^E(z^k)(z) = \int_{\mathbb{D}} u(w) w^k dA(w)$, using mean value property for harmonic functions, we have

$$\mathscr{T}_{u}^{E}(z^{k}) = \begin{cases} p_{n}(0) & k = 0\\ 0 & k \ge 1, \end{cases}$$

thus $\mathscr{T}_{u}^{E}(z^{k}) = c_{k}z^{k}$, where $c_{0} = p_{n}(0)$ and $c_{k} = 0$ for $k \ge 1$, so \mathscr{T}_{u}^{E} is diagonal while \mathscr{T}_{u} is not diagonal.

Acknowledgement.

The authors would like to express their cordial thanks to the referee(s) for their time consuming.

REFERENCES

- A. B. ALEKSANDROV, Measurable partitions of the circle induced by inner functions, J. Soviet Math. 42 (1988), 1610–1613.
- [2] K. R. M. ATTELE, Multipliers of the range of composition operators, Tokyo J. Math. 15 (1992), 185–198.
- [3] J. A. BALL, Hardy space expectation operators and reducing subspaces, Proc. Amer. Math. Soc. 47 (1975), 351–357.

- [4] B. J. CARSWELL AND M. L. STESSIN, Conditional expectation and the Bergman projection, J. Math. Anal. Appl. 341 (2008), 270–275.
- [5] P. G. DODDS, C. B. HUIJSMANS AND B. DE PAGTER, Characterizations of conditional expectationtype operators, Pacific J. Math. 141 (1990), 55–77.
- [6] J. J. GROBLER AND B. DE PAGTER, Operators representable as multiplication-conditional expectation operators, J. Operator Theory 48 (2002), 15–40.
- [7] H. HEDENMALM, B. KORENBLUM AND K. ZHU, *Theory of Bergman spaces*, Springer-Verlag, New York, 2000.
- [8] M. R. JABBARZADEH AND M. HASANLOO, Conditional expectation operators on the Bergman spaces, J. Math. Anal. Appl. 385 (2012), 322–325.
- [9] I. LOUHICHI, E. STROUSE AND L. ZAKARIASY, Products of Toeplitz operators on the Bergman space, Integr. Equ. Oper. Theory 54 (2006), 525–539.
- [10] J. N. MCDONALD, Adjoints of a class of composition operators, Proc. Amer. Math. Soc. 131 (2003), 601–606.
- [11] K. STROETHOFF, *The Berezin transform and operators on space of analytic functions*, Polish academy of science, Warszawa, 1997.
- [12] M. M. RAO, Conditional measures and applications, Marcel Dekker, New York, 1993.
- [13] A. C. ZAANEN, Integration, 2nd ed., North-Holland, Amsterdam, 1967.
- [14] K. ZHU, Operator theory in function spaces, Marcel Dekker, New York 1990.

(Received January 12, 2017)

M. R. Jabbarzadeh Faculty of Mathematical Sciences University of Tabriz P. O. Box: 5166615648, Tabriz, Iran e-mail: mjabbar@tabrizu.ac.ir

M. Moradi Faculty of Mathematical Sciences University of Tabriz P. O. Box: 5166615648, Tabriz, Iran e-mail: m.moradi@tabrizu.ac.ir