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1. Introduction and preliminaries

Let H be a separable, infinite dimensional, complex Hilbert space with inner prod-

uct 〈 , 〉 and let B(H) denote the algebra of all bounded linear operators on H . The

problem of the topological structure of C(H), the subsets of closed and densely defined

linear operators on H has been considered starting with the paper by Cordes and

Labrousse [2]; see also [7]. They prove that the metric distance between two densely

defined unbounded operators A and B may be taken as ‖(I+AA∗)−1−(I+BB∗)−1‖.
As the authors show, this metric defines the same topology for bounded operators

as the ordinary metric ‖A − B‖. For A ∈ C(H), let α denote the contraction de-

fined as α(T ) = A(1 + A∗A)−1/2. Kaufman [5] studies a metric δ on C(H) defined

as δ(A, B) = ‖α(A) − α(B)‖ and then the author discusses connections between
δ-convergence and strong-operator-topology convergence. Also, he shows that this

metric is stronger than the gap metric d (see [4], page 197) and not equivalent to

it. In [6], Kittaneh presents quantitative improvements of the result of Kaufman [5]

concerning equivalence of three metrics on the space of bounded linear operators on

a Hilbert space. In [1], Benharrat and Messirdi defined some new strictly stronger

metrics than the gap metric d and characterized the closure with respect to these

metrics of the subset B(H) of bounded elements of C(H).
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Let M be the subset of bounded normal operators in B(H), A ∈ M and let

0 < a < ‖A‖−1. In this paper, by motivation of the above mentioned results, we

shall replace 1 + A∗A with I + a2A∗A + a4(A∗)2A2 + . . ., and then we obtain some

analogous results on topological properties ofM.
In Section 2, we show that Ka(A) :=

∞∑
n=0

a2nA∗nAn is positive, invertible and then

we obtain the relation between the operators Ka(A), K−1
a (A) and (Ka(A))−1/2 in

the case when A is normal. Moreover, we introduce some special types of metrics

on normal operators in B(H) and then we compare the topologies induced by these

metrics.

In Section 3, inspired by definition of bisecting for A ∈ C(H) in [8], we define Ãa

for A ∈ M. Then using Ãa and the metrics defined in Section 2, we introduce the

F1, . . . , F4 maps onM with different metrics intoM with the aid of usual operator

norm. Then we will proceed on investigating the continuity of these maps. At the

end, as an example we determine Ka(Cϕ), Ra(Cϕ), Sa(Cϕ), (C̃ϕ)a for Cϕ ∈ M,
where Cϕ(f) = f ◦ ϕ is the composition operator on L2(Σ).

2. Stronger and equivalent metrics on M

For A ∈ B(H), let A∗, N (A), R(A), r(A) and ‖A‖ denote the adjoint, the null
space, the range, the spectral radius and the usual operator norm of A, respectively.

Note that r(A) = lim
n→∞

‖An‖1/n 6 ‖A‖ and that the equality holds if A is normal.

A is called positive if 〈Ax, x〉 > 0 holds for every x ∈ H in which case we write A > 0.

For an operator A ∈ B(H) let 0 < a < (r(A))−1 be an arbitrary but fixed number.

Define Ka(A) =
∞∑

n=0
a2nA∗nAn. The definition of Ka(A) is due to Gilfeather [3],

Lambert and Petrovic [9].

Lemma 2.1. Let A ∈ B(H). Then 0 6 Ka(A) ∈ B(H) and Ka(A) is invertible

with ‖K−1
a (A)‖ 6 1.

P r o o f. Since lim
n→∞

‖a2nA∗nAn‖1/n < (r(A))−2 lim
n→∞

‖An‖2/n = 1, so the infi-

nite series Ka(A) converges absolutely. Also, for all x ∈ H we have

〈Ka(A)(x), x〉 =

∞∑

n=0

a2n‖An(x)‖2 > 0.

Thus,

∥∥√
Ka(A)(x)

∥∥2
= 〈Ka(A)(x), x〉 = ‖x‖2 +

∞∑

n=1

a2n‖An(x)‖2 > ‖x‖2,
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and so

R(
√

Ka(A)) = R(
√

Ka(A)) = N(
√

Ka(A))⊥ = H.

It follows that
√

Ka(A) and hence Ka(A) is invertible. Now, replacing x by

(Ka(A))−1/2(x) we obtain ‖(Ka(A))−1/2(x)‖ 6 ‖x‖. This implies that
1

‖Ka(A)‖ 6
1

‖
√

Ka(A)‖2
6 1.

�

For A ∈ B(H) set Ra(A) = (Ka(A))−1 and Sa(A) =
√

Ra(A). Then by Lem-

ma 2.1, Ra(A) and Sa(A) = (Ka(A))−1/2 are positive and Sa(A) is a contraction.

Moreover, when A is a normal operator, i.e. AA∗ = A∗A, then Ra(A) = Ra(A∗),

ARa(A) = Ra(A)A and A∗Ra(A) = Ra(A)A∗.

Recall that for A ∈ C(H), the fundamental properties of RA = (I + A∗A)−1 and

SA = (I + A∗A)−1/2 have been investigated by many authors, e.g. [2], [1]. In the

following lemma we obtain a relationship between the concepts of Ra(A) and Sa(A)

when A ∈ B(H) is a normal operator.

Lemma 2.2. Let A ∈ B(H) be a normal operator and let n ∈ N∪ {0}. Then the
following assertions hold.

(a) AnRa(A) = Ra(A)An;

(b) AnSa(A) = Sa(A)An;

(c) Sa(A)(Ka(A) − I)Sa(A) = I − Ra(A);

(d)
√

Ka(A) − I = a|A|(Sa(A))−1;

(e) Ra(A) = I − a2|A|2;
(f) N (Sa(A)) ∩ N (A) = {0}.

P r o o f. (a) Since A is normal, from direct computations we obtain that

AnKa(A) = An(I + a2A∗A + a4(A∗)2A2 + . . . )

= An + a2AnA∗A + a4An(A∗)2A2 + . . .

= (I + a2AA∗ + a4A2(A∗)2 + . . . )An = Ka(A
∗)An = Ka(A)An.

Therefore, the inverse of Ka(A) is also commute with all An.

(b) Since AnRa(A) = Ra(A)An, it follows that AnP (Ra(A)) = P (Ra(A))An,

where P is any polynomial. Now let {Pm} be a sequence of polynomials converging
uniformly to a continuous function g. Then for each x, y ∈ H we have

〈Ang(Ra(A))(x), y〉 = lim
m→∞

〈Pm(Ra(A))(x), (An)∗y〉
= lim

m→∞
〈Pm(Ra(A))An(x), y〉 (by part (a))

= 〈g(Ra(A))An(x), y〉.
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Thus, Ang(Ra(A)) = g(Ra(A))An. Let g be a square root function. Consequently,

An
√

Ra(A) =
√

Ra(A)An, and so AnSa(A) = Sa(A)An.

(c) Since Ra(A) = S2
a(A), then

I − Ra(A) = (R−1
a (A) − I)Ra(A) = a2A∗ARa(A) + a4(A∗)2A2Ra(A) + . . .

= a2A∗Sa(A)Sa(A)A + a4(A∗)2Sa(A)Sa(A)A2 + . . .

= a2A∗Sa(A)ASa(A) + a4(A∗)2Sa(A)A2Sa(A) + . . .

=
∞∑

n=1

a2n(A∗)nSa(A)AnSa(A) = Sa(A)(Ka(A) − I)Sa(A).

(d) Normality of A implies that

Ka(A) − I = a2A∗A(I + a2A∗A + a4(A∗)2A2 + . . . )= a2|A|2Ka(A).

Thus,
√

Ka(A) − I = a|A|
√

Ka(A) = a|A|(Sa(A))−1.

(e) It follows from (c) and (d).

(f) It suffices to show that ‖Sa(A)u‖2 + ‖a|A|u‖2 = ‖u‖2 for all u ∈ H . For this,

let u ∈ H . Then by (e) we have

‖Sa(A)u‖2 + ‖a|A|u‖2 = 〈Sa(A)u, Sa(A)u〉 + 〈a|A|u, a|A|u〉
= 〈u, Ra(A)u〉 + 〈u, a2|A|2u〉
= 〈u, Ra(A)u〉 + 〈u, (I − Ra(A))u〉 = 〈u, u〉 = ‖u‖2.

�

Lemma 2.3 ([2]). Let A be closed. Then

ΠG(A) =

[
RA A∗R∗

A

ARA I − R∗
A

]
,

where ΠG(A) denotes the orthogonal projection onto G(A) = {(x, Ax) : x ∈ D(A)}.

Now inspired by matrix ΠG(A), we define Πa(A) ∈ B(H ⊗ H) for A ∈ M:

Πa(A) =

[
Ra(A) a|A|Sa(A)

a|A|Sa(A) I − Ra(A)

]
.

In [1], Benharrat and Messirdi introduced metrics gG(T, S), pG(T, S), qG(T, S) and

ΣG(T, S) for S, T ∈ C(H1, H2) and a positive bijection G ∈ L+(H1).

4



Now, inspired by these metrics we define special types of metrics onM:

d
[1]
(a,b)(A, B) = ‖Πa(A) − Πb(B)‖;

d
[2]
(a,b)(A, B) =

√
‖Ra(A) − Rb(B)‖2 + ‖a|A|Sa(A) − b|B|Sb(B)‖2;

d
[3]
(a,b)(A, B) = ‖a|A| − b|B|‖;

d
[4]
(a,b)(A, B) =

√
2‖a|A| − b|B|‖2 + 2‖Sa(A) − Sb(B)‖2,

where 0 < a < ‖A‖−1
and 0 < b < ‖B‖−1

are arbitrary but fixed numbers, when-

ever A and B are nonzero elements ofM. Note that d[3] 6 d[4]. Hence, the topology

induced from the metric d[4] onM is stronger than that induced from d[3].

Lemma 2.4 ([6]).

(a) If A, B ∈ B(H) are positive, then

‖A − B‖ 6
√
‖A2 − B2‖.

(b) If T ∈ B(H ⊕ H) and

T =

[
A B

C D

]
,

then ‖T ‖2 6 ‖A‖2 + ‖B‖2 + ‖C‖2 + ‖D‖2.

It was proved that in [1] the topology induced from the metric gG(T, S) on

C(H1, H2) is strictly stronger than that induced from pG(T, S). But the following

proposition proves that the metrics d[1] and d[2] onM generate the same topology.

Proposition 2.5. The topology induced from the metric d[1] onM is equivalent

to the topology induced from d[2] onM.

P r o o f. Let A, B ∈ M. Evidently, d
[2]
(a,b)(A, B) 6 d

[1]
(a,b)(A, B). On the other

hand, by Lemma 2.4 (b) we have

‖Πa(A) − Πb(B)‖2
6 2‖Ra(A) − Rb(B)‖2 + 2‖a|A|Sa(A) − b|B|Sb(B)‖2.

Thus, d
[1]
(a,b)(A, B) 6

√
2d

[2]
(a,b)(A, B). �

Lemma 2.6. Let A and B be two nonzero elements of B(H). Then

∥∥∥
A

‖A‖ − B

‖B‖
∥∥∥ 6

2‖A− B‖
‖A‖ .
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P r o o f. Since ‖B‖ − ‖A‖ is not greater than ‖A − B‖, so

‖B‖‖A‖
∥∥∥

A

‖A‖ − B

‖B‖
∥∥∥ 6 ‖B‖‖A − B‖ + ‖B‖(‖B‖ − ‖A‖) 6 2‖B‖‖A− B‖.

The result follows. �

Now, let A and B be two nonzero normal elements of B(H). Then r(A) = ‖A‖ and
r(B) = ‖B‖. For 0 < α < 1 put aα = α‖A‖−1 and bα = α‖B‖−1. By Lemma 2.6

we obtain

‖aαA − bαB‖ =
∥∥∥

αA

‖A‖ − αB

‖B‖
∥∥∥ 6

2α‖A − B‖
‖A‖ .

In the following theorem, we show that d
[i]
(aα,bα) < ‖·‖ for i = 3, 4 onM. This is why,

in the study carried out by Benharrat and Messirdi, it was found that the restriction

of the metric qG(T, S) to L(H1, H2) is equivalent to the operator norm.

Theorem 2.7. The topology induced from the operator norm on M is strictly

stronger than that induced from d
[i]
(aα,bα) for i = 3, 4 onM.

P r o o f. Let A, B ∈ M. Let A 6= 0 and B = 0. Then by Lemma 2.4 (a) we have

‖Saα
(A) − I‖ = ‖

√
I − a2

α|A|2 − I‖ 6
√
‖a2

α|A|2‖ 6 aα‖A‖

and ‖aα|A|‖ = aα‖A‖. It follows that d
[3]
(aα,bα)(A, 0) = aα‖A‖ and

d
[4]
(aα,bα)(A, 0) =

√
2(‖aα|A|‖)2 + 2‖Saα

(A) − I‖2 6 2aα‖A‖.

Now, let A and B be two nonzero elements of M. Then by Lemma 2.4 (a) and
Lemma 2.6 we have

d
[3]
(aα,bα)(A, B) = ‖aα|A| − bα|B|‖ 6

√
‖a2

αA∗A − b2
αB∗B‖

6
√
‖aαA∗ − bαB∗‖‖aαA‖ + ‖bαB∗‖‖aαA − bαB‖

=
√

(‖aαA‖ + ‖bαB‖)‖aαA − bαB‖

6
√
‖aαA‖ + ‖bαB‖

√
2α‖A − B‖

‖A‖ .

Also, since

‖Saα
(A) − Sbα

(B)‖ = ‖
√

I − a2
α|A|2 −

√
I − b2

α|B|2‖
6

√
‖(I − a2

α|A|2) − (I − b2
α|B|2)‖

=
√
‖a2

αA∗A − b2
αB∗B‖ 6

√
‖aαA‖ + ‖bαB‖

√
2α‖A − B‖

‖A‖ ,

6



we get that

d
[4]
(aα,bα)(A, B) 6

√
4(‖aαA‖ + ‖bαB‖)2α‖A − B‖

‖A‖ .

This completes the proof. �

Recall that in the study carried out by Benharrat and Messirdi in [1], it was proved

that the topology induced from the metric qG(T, S) on C(H1, H2) is strictly stronger

than that induced from gG(T, S). However, in the following theorem we show that

d[1] ∼= d[3].

Theorem 2.8. The topology induced from the metric d[1] onM is equivalent to

the topology induced from to the metric d[3] onM.

P r o o f. Let A, B ∈ M. Then by Lemma 2.4 (a) and the definition of d[i] for

i = 1, 3 we have

d
[3]
(a,b)(A, B) = ‖a|A| − b|B|‖ = ‖a|A|Sa(A)S−1

a (A) − b|B|Sb(B)S−1
b (B)‖

6 ‖a|A|Sa(A) − b|B|Sb(B)‖‖S−1
a (A)‖

+ ‖b|B|Sb(B)‖‖S−1
a (A) − S−1

b (B)‖

6 d
[1]
(a,b)(A, B)‖S−1

a (A)‖ + ‖b|B|Sb(B)‖
√

‖S−2
a (A) − S−2

b (B)‖

= d
[1]
(a,b)(A, B)‖S−1

a (A)‖ + ‖b|B|Sb(B)‖
√

‖R−1
a (A) − R−1

b (B)‖

= d
[1]
(a,b)(A, B)‖S−1

a (A)‖

+ ‖b|B|Sb(B)‖
√
‖R−1

a (A)(Ra(A) − Rb(B))R−1
b (B)‖

6 d
[1]
(a,b)(A, B)‖S−1

a (A)‖

+ ‖b|B|Sb(B)‖
√
‖R−1

a (A)‖
√
‖R−1

b (B)‖d[1]
(a,b)(A, B).

Conversely, by Lemma 2.2 (e) and Lemma 2.4 (a) we obtain

‖Ra(A) − Rb(B)‖ = ‖(I − Ra(A)) − (I − Rb(B))‖ = ‖a2|A|2 − b2|B|2‖
6 ‖a|A| − b|B|‖(‖a|A|‖ + ‖b|B|‖) = d

[3]
(a,b)(A, B)(‖a|A|‖ + ‖b|B|‖)

and

‖a|A|Sa(A) − b|B|Sb(B)‖ 6 ‖a|A| − b|B|‖‖Sa(A)‖ + ‖b|B|‖‖Sa(A) − Sb(B)‖
6 ‖a|A| − b|B|‖ + ‖b|B|‖‖

√
Ra(A) −

√
Rb(B)‖

6 d
[3]
(a,b)(A, B) + ‖b|B|‖

√
‖Ra(A) − Rb(B)‖

6 d
[3]
(a,b)(A, B) + ‖b|B|‖

√
d
[3]
(a,b)(A, B)(‖a|A|‖ + ‖b|B|‖).
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But

(d
[1]
(a,b)(A, B))2 6 2‖Ra(A) − Rb(B)‖2 + 2‖a|A|Sa(A) − b|B|Sb(B)‖2.

This completes the proof. �

3. Some operator transformations

The following lemma will be used in this section to obtain a new operator trans-

form.

Lemma 3.1. Let A ∈ B(H) be a normal operator. Then

‖(I + Sa(A))−1‖ 6 1.

P r o o f. For all x ∈ H we have

∥∥√
(I + Sa(A))(x)

∥∥2
=

〈√
I + Sa(A)(x),

√
I + Sa(A)x

〉

= 〈(I + Sa(A))(x), x〉 = 〈x, x〉 + 〈(Sa(A))x, x〉 > ‖x‖2,

and R
(√

I + Sa(A)
)

= N
(√

I + Sa(A)
)⊥

= H . Thus,
√

I + Sa(A) and hence

I + Sa(A) is invertible. Now, replacing x by
√

I + Sa(A)(x) we obtain

‖
√

I + Sa(A)(x)‖ 6 ‖x‖.

It follows that
∥∥(I + Sa(A))−1

∥∥ 6
∥∥√

I + Sa(A)
∥∥2

6 1.

�

Definition 3.2. For A ∈ M and 0 < a < ‖A‖−1 the bisecting of A, in the sense

of Lambert and Petrovic, is the operator Ãa defined as

Ãa = a|A|(I + Sa(A))−1.

The bisecting of A was originally introduced in [8] by Labrousse in order to study

closed operators. By Lemma 3.1, I + Sa(A) is invertible and so Ãa as a positive

operator is well defined. Moreover, ‖Ãa‖ 6 ‖a|A|‖‖(I + Sa(A))−1‖ 6 1.
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Now we consider the maps

F1 : (M, ‖·‖) → (M, ‖·‖), A → (I + Sa(A))−1;

F2 : (M, ‖·‖) → (M, ‖·‖), A → Ãa;

F3 : (M, d[3]) → (M, ‖·‖), A → Ãa;

F4 : (M, d[4]) → (M, ‖·‖), A → Ãa.

We note that in (M, ‖·‖), ‖·‖ is the norm of H . We pose the following question:

For which operators A ∈ M is the map Fi continuous?

Theorem 3.3. The maps F1, F2, F3 and F4 are continuous.

P r o o f. Let A ∈ M and ‖A‖ → 0. By Theorem 2.7 and Lemma 3.1 we obtain

‖F1(A) − F1(0)‖ = ‖(I + Saα
(A))−1 − (I + I)−1‖

6 ‖(I + Saα
(A))−1‖‖I + Saα

(A) − 2I‖‖(2I)−1‖
6 ‖Saα

(A) − I‖ 6 aα‖A‖ → 0.

Now, let A and B be two nonzero elements ofM and ‖A − B‖ → 0. We show that

‖F1(A) − F1(B)‖ → 0. Again by Theorem 2.7 and Lemma 3.1, if ‖A − B‖ → 0, we

have

‖F1(A) − F1(B)‖ = ‖(I + Saα
(A))−1 − (I + Sbα

(B))−1‖
6 ‖(I + Saα

(A))−1‖‖Saα
(A) − Sbα

(B)‖‖(I + Sbα
(B))−1‖

6
√
‖aαA‖ + ‖bαB‖

√
2α‖A − B‖

‖A‖ → 0.

Thus, F1 is continuous.

Let A ∈ M and ‖A‖ → 0. By Lemma 3.1 we have

‖F2(A) − F2(0)‖ = ‖Ãa − 0̃‖ = ‖aα|A|(I + Saα
(A))−1‖ 6 ‖aα|A|‖ = aα‖A‖ → 0.

Now, let A and B be two nonzero elements of M and ‖A − B‖ → 0. Then from

Theorem 2.7 we obtain

‖F2(A) − F2(B)‖ = ‖Ãa − B̃b‖ = ‖aα|A|(I + Saα
(A))−1 − bα|B|(I + Sbα

(B))−1‖
6

√
‖a2

αA∗A − b2
αB∗B‖ ‖(I + Saα

(A))−1‖
+

√
‖bαB∗B‖ ‖(I + Saα

(A))−1 − (I + Sbα
(B))−1‖

6
√
‖aαA‖ + ‖bαB‖

√
2α‖A − B‖

‖A‖
(
1 +

√
‖bαB∗B‖

)
→ 0.

This implies that F2 is continuous.
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Let A ∈ M such that d
[3]
(a,0)(A, 0) → 0. Then ‖a|A|‖ → 0. Then we have

‖F3(A) − F3(0)‖ = ‖Ãa − 0̃‖ = ‖a|A|(I + Sa(A))−1 − 0‖ 6 ‖a|A|‖ → 0.

Let A and B be two nonzero elements ofM and d
[3]
(a,b)(A, B) → 0. Then

‖a|A| − b|B|‖ → 0.

Again by Theorem 2.7 and definition of d[3] we have

‖F3(A) − F3(B)‖ = ‖Ãa − B̃b‖ = ‖a|A|(I + Sa(A))−1 − b|B|(I + Sb(B))−1‖
6 ‖a|A| − b|B|‖‖(I + Sa(A))−1‖

+ ‖b|B|‖‖(I + Sa(A))−1‖‖Sa(A) − Sb(B)‖‖(I + Sb(B))−1‖
6 ‖a|A| − b|B|‖ + ‖b|B|‖

√
‖a2|A|2 − b2|B|2‖

6 ‖a|A| − b|B|‖ + ‖b|B|‖
√
‖a|A|‖ + ‖b|B|‖

√
‖a|A| − b|B|‖ → 0.

Thus, F3 is also continuous.

Let A ∈ M and d
[4]
(a,0)(A, 0) → 0. Then ‖a|A|‖ → 0. Then

‖F4(A) − F4(0)‖ = ‖Ãa − 0̃‖ = ‖a|A|(I + Sa(A))−1 − 0‖
6 ‖a|A|‖‖(I + Sa(A))−1‖ 6 ‖a|A|‖ → 0.

Let A, B ∈ M such that d
[4]
(a,b)(A, B) → 0. Then ‖a|A| − b|B|‖ → 0 and ‖Sa(A) −

Sb(B)‖ → 0. Then we have

‖F4(A) − F4(B)‖ = ‖Ãa − B̃b‖ = ‖a|A|(I + Sa(A))−1 − b|B|(I + Sb(B))−1‖
6 ‖a|A| − b|B|‖‖(I + Sa(A))−1‖

+ ‖b|B|‖‖(I + Sa(A))−1‖‖Sa(A) − Sb(B)‖‖(I + Sb(B))−1‖
6 ‖a|A| − b|B|‖ + ‖b|B|‖‖Sa(A) − Sb(B)‖ → 0.

Consequently, ‖F4(A) − F4(B)‖ → 0 as d
[4]
(a,b)(A, B) → 0. �

Definition 3.4. If A, B ∈ M, 0 < a < ‖A‖−1 and 0 < b < ‖B‖−1. The

Cordes-Labrousse transform with respect to the pair (A, B) is the operator V
(a,b)
A,B

given by

V
(a,b)
A,B = Sa(A)Sb(B) + (a|A|)(b|B|).

We will write V
(a,b)
A,B simply as VA,B for fixed elements A and B when no confusion

can arise. Since A and B are normal operators then V ∗
A,B = VB,A. Also, VA,A =

Ra(A) + a2|A|2 = Ra(A) + I − Ra(A) = I.
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The proof of the following proposition is similar in spirit to [2], Lemma 5.3.

Lemma 3.5. Let A, B ∈ M and let x ∈ H . Then the following assertions hold.

(a)
∣∣‖VA,B(x)‖2 − ‖x‖2

∣∣ 6 ‖x‖2d
[2]
(a,b)(A, B);

(b) ‖VA,B(x)‖2 > (1 − (d
[2]
(a,b)(A, B))2)‖x‖2;

(c) If d
[2]
(a,b)(A, B) < 1, then VA,B is invertible.

E x am p l e 3.6. Let (X, Σ, µ) be a complete σ-finite measure space. Let

ϕ : X → X be a non-singular measurable point transformation, which means the

measure µ ◦ ϕ−1, defined by µ ◦ ϕ−1(B) = µ(ϕ−1(B)) for all B ∈ Σ, is absolutely

continuous with respect to µ (we write µ◦ϕ−1 ≪ µ). It follows that µ◦ϕ−n ≪ µ for

every n ∈ N. Then by Radon-Nikodym theorem there exists a unique non-negative

Σ-measurable function hn on X with hn = dµ ◦ ϕ−n/dµ. Put h1 = h. Now,

let Cϕ defined by Cϕ(f) = f ◦ ϕ be a composition operator on L2(Σ). Note that

Cϕ ∈ B(L2(Σ)) if and only if h ∈ L∞(Σ) and in this case ‖Cϕ‖ = ‖h‖1/2
∞ . Also

it is a classical fact that Cϕ ∈ B(L2(Σ)) is normal if and only if ϕ−1(Σ) = Σ and

h◦ϕ = h (see [10]). LetM = {Cϕ ∈ B(L2(Σ)): Cϕ is normal}. Let Cϕ ∈ B(L2(Σ))

and f ∈ L2(Σ). Then we have

〈C∗n

ϕ Cn
ϕf, f〉 = 〈Cn

ϕf, Cn
ϕf〉 = ‖Cn

ϕf‖2 = ‖Cϕnf‖2

= ‖M√
hn

f‖2 = 〈M√
hn

f, M√
hn

f〉 = 〈Mhn
f, f〉,

where Mhn
is the multiplication operator. So, C∗n

ϕ Cn
ϕ = Mhn

. In particular, if

Cϕ ∈ M, then C∗n

ϕ Cn
ϕ = (C∗

ϕCϕ)n = (Mh)n = Mhn , and so hn = hn for each n ∈ N.

Let 0 < a < ‖h‖−1/2
∞ = ‖Cϕ‖−1 = r(Cϕ)−1. Then

Ka(Cϕ) =
∞∑

n=0

a2nC∗n

ϕ Cn
ϕ =

∞∑

n=0

Ma2nhn = (I − Ma2h)−1.

Hence

Ra(Cϕ) = Ka(Cϕ)−1 = I − Ma2h, Sa(Cϕ) = Ra

√
Cϕ = M√

1−a2h,

(C̃ϕ)a = a|Cϕ|(I + Sa(Cϕ))−1 = M√
a2h/(1+

√
1−a2h).

Now, for i = 1, 2 let Cϕi
∈ M and hi = (dµ ◦ ϕ−1

i )/dµ. Then we have

VCϕ1
,Cϕ2

= Sa(Cϕ1
)Sb(Cϕ2

) + (a|Cϕ1
|)(b|Cϕ2

|) = M√
(1−a2h1)(1−b2h2)+

√
a2b2h1h2

.
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Hilbert et leurs applications. Faculté des Sciences de Nice (Math.) 1 (1970), 47 pages;
http://catalogue.cmi.univ-mrs.fr/cgi-bin/koha/opac-detail.pl?biblionumber=

6301&shelfbrowse itemnumber=9886.
[9] A.Lambert, S. Petrovic: Beyond hyperinvariance for compact operators J. Funct. Anal.
219 (2005), 93–108.

[10] R.K. Singh, J. S.Manhas: Composition Operators on Function Spaces. North-Holland
Mathematics Studies 179. North-Holland, Amsterdam, 1993.

Authors’ address: Mohammad Reza Jabbarzadeh, Rana Hajipouri, Faculty of Mathe-
matical Sciences, University of Tabriz, P.O.Box: 5166616471, Tabriz, Iran, e-mail: mjabbar
@tabrizu.ac.ir, r.hajipouri@tabrizu.ac.ir.

12


