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Abstract
In this note, we discuss matrix theoretic characterizations for weighted composition
Lambert-type operators of the form Tϕ := MwEMuCϕ in some operator classes
on �2(N0), such as quasinormal, hyponormal, binormal, n-hyponormal, A-class and
∗-A-classes. Also, polar decomposition, Aluthge and mean transform of Tϕ will be
investigated.

Keywords Aluthge transformation · Mean transform · Polar decomposition · Matrix
representation · A-class operator

Mathematics Subject Classifiation 47B20 · 47B38

1 Introduction and Preliminaries

Let (X , �,μ) be a complete σ -finite measure space. For any complete σ -finite
subalgebra A ⊆ �, the Hilbert space L2(X ,A, μ|A) is abbreviated to L2(A) where
μ|A is the restriction of μ to A. We denote the linear space of all complex-valued
�-measurable functions on X by L0(�). All sets and function statements are to be
interpreted as being valid almost everywhere with respect to μ. For each nonnegative
f ∈ L0(�) or f ∈ L2(�), by the Radon–Nikodym theorem, there exists a unique
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A-measurable function EA( f ) such that

∫
A
f dμ =

∫
A
EA( f )dμ,

where A is anyA-measurable set for which
∫
A f dμ exists. Now associated with every

complete σ -finite subalgebra A ⊆ �, the mapping EA : L2(�) → L2(A) uniquely
defined by the assignment f �→ EA( f ), is called the conditional expectation operator
with respect to A. We shall henceforth find it convenient to write EA simply as E .
The mapping E is a linear orthogonal projection onto L2(A). Note that D(E), the
domain of E , contains L2(�) ∪ { f ∈ L0(�) : f ≥ 0}. The role of this operator is
important in this note. For more details on the properties of E, see [7,11]. In this note,
we will restrict ourselves to the Hilbert space �2(N0) = L2(N0, 2N0 , μ), where μ is
the counting measure on 2N0 . Put A0 = ϕ−1(2N0). It is easy to check that for each
f ∈ B(�2(N0)) and k ∈ N0, we have (see [9])

EA0( f )(k) =
∑

n∈ϕ−1(ϕ(k)) fn∑
n∈ϕ−1(ϕ(k)) 1

.

Let ϕ be a nonsingular measurable transformation from X into X ; that is, μ ◦ ϕ−1

is absolutely continuous with respect to μ and write μ ◦ ϕ−1 
 μ. Let h be the
Radon–Nikodym derivative dμ ◦ ϕ−1/dμ. The composition operator Cϕ : L2(�)

→ L0(�) induced by ϕ is given by Cϕ( f ) = f ◦ ϕ, for each f ∈ L2(�). Here,
the non-singularity of ϕ guarantees that Cϕ is well defined. A good reference for
information on (weighted) composition operators on measurable function spaces is
[1] and the monograph [12]. Now, take u, w ∈ D(E). Then the triple (u, w, ϕ)

induces a weighted composition Lambert-type operator Tϕ from L2(�) into L0(�)

defined by Tϕ = MwEMuCϕ , where Mw and Mu are multiplication operators, E
is a conditional expectation operator and Cϕ is a composition operator. Weighted
composition Lambert-type operators on L p(�) spaces were initially introduced in
[3]. These type of operators are a generalization of the Lambert operators, weighted
Lambert operators and the classical composition operators on measurable function
spaces. If hEA0(E(|u|2)E(|w|2)) ◦ ϕ−1 ∈ �∞(N0), then Tϕ is bounded on �2(N0)

(see [3]). Throughout this paper, we assume that uR(Cϕ) ⊆ D(E), w ∈ D(E),
E = EA, ϕ is non-singular and Tϕ = MwEMuCϕ = MwEW , where W = MuCϕ ,
R(Cϕ) denotes the range of Cϕ .

Let H be an infinite dimensional complex Hilbert space and B(H) be the
algebra of bounded linear operators acting on H. Let α denote a weight sequence,
α : α0, α1, α2, . . ., where it is without loss of generality to assume these are all
positive. The weighted shift Wα acting on �2(N0), with standard basis e0, e1, . . ., is
defined byWα(ek) = αkek+1 for all k ∈ N0 := N∪{0}. For T ∈ B(H), let T = U |T |
be the polar decomposition of T . We set T = [T ], where [T ] denotes the matrix

representation of T . The Aluthge transform T̃ of T is defined by T̃ = |T | 12U |T | 12 .
The mean transform T̂ of T is defined by T̂ = 1

2 (T + T̃ D), where T̃ D denotes the
Duggal transform T̃ D of T given by T̃ D = |T |U . The mean transform T̂ is more
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convenient than T̃ in practical use (see [10]). A good reference for information on
partial normality classes of operators is the monograph [6].

In Sect. 2, we discuss matrix theoretic characterizations for weighted
composition Lambert-type operators of the form Tϕ = MwEMuCϕ in
some operator classes on �2(N0) such as, quasinormal, hyponormal, binormal, n-
hyponormal, A-class and ∗-A-classes. Also, polar decomposition, Aluthge and mean
transform of Tϕ will be investigated. Our characterizations are based on the matrix
representation of Tϕ . The class of weighted composition Lambert-type operators
includes the two well-known classes of operators, namely, the class of weighted
composition operators and the weighted Lambert-type operators whenever E = I
and ϕ is identity transform, respectively. Most of these operator classes for these
special cases have been characterized (see, e.g., [2,4,7,8]) without using the matrix
representation with a relatively complex proof.

2 Main Results

Let {en}n∈N0 be an orthornormal basis for �2(N0) and let u ∈ �2(N0) with u0 = 0 and
u(n) = un ≥ 0 for all n ∈ N. Define ϕ : N0 → N0 as

ϕ(n) =
{
0 n = 0, 1,

n − 1 n ≥ 2.

Then for each f ∈ �2(N0), we have W f = (0, u1 f0, u2 f1, . . .), where W = MuCϕ

is a weighted composition operator induced by the pair (u, ϕ) and f (n) = fn . Thus,
the matrix representation of the forward weighted shift W can now be written as:

W =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 . . .

u1 0 0 0 . . .

0 u2 0 0 . . .

0 0 u3 0 . . .
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠

.

Then for u ∈ l∞(N0), we have

W ∗ =

⎛
⎜⎜⎜⎝

0 u1 0 0 . . .

0 0 u2 0 . . .

0 0 0 u3 . . .
...

...
...

...
. . .

⎞
⎟⎟⎟⎠ .

Recall that for T ∈ B(H), the C∗-algebras of all bounded linear operators on a
complex Hilbert space H, there is a unique factorization T = U |T |, where N (T )

= N (U ) = N (|T |), U is a partial isometry, i.e., UU∗U = U and |T | = (T ∗T )1/2

is a positive operator. This factorization is called the polar decomposition of T . Then
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the parts of the polar decomposition UW , |W | for W are given by

|W | =

⎛
⎜⎜⎜⎝

u1 0 0 0 . . .

0 u2 0 0 . . .

0 0 u3 0 . . .
...

...
...

...
. . .

⎞
⎟⎟⎟⎠ , U =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 . . .

1 0 0 0 . . .

0 1 0 0 . . .

0 0 1 0 . . .
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠

.

It is easy to check that UU∗U = U . Hence, U is a partial isometry. Moreover, the

matrix representation W̃ = |W | 12U |W | 12 , theAluthge transformation ofW , is obtained
as follows:

W̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 . . .

(u1u2)
1
2 0 0 0 . . .

0 (u2u3)
1
2 0 0 . . .

0 0 (u3u4)
1
2 0 . . .

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Now,we define themean transformof T by Ŵ = 1
2 (U |W |+|W |U ) = 1

2 (W+WD),
then we get that

Ŵ =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 . . .
1
2 (u1 + u2) 0 0 . . .

0 1
2 (u2 + u3) 0 . . .

0 0 1
2 (u3 + u4) . . .

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠

.

Let r , s ∈ N. Define a non-singular measurable transformation ψ on N0 such that
ψ−1({0}) = {0, 1} and

ψ−1({2k}) = {(k − 1)(r + s) + r + i + 1 : 1 ≤ i ≤ s}, k = 1, 2, 3, . . .

ψ−1({2k − 1}) = {(k − 1)(r + s) + i + 1 : 1 ≤ i ≤ r}, k = 1, 2, 3, . . . .

Put Ar ,s = ψ−1(2N0) = {{0, 1}, {2, . . . , r + 1}, {r + 2, . . . , r + s + 1}, {r + s
+ 2, . . . , 2r + s + 1}, {2r + s + 2, . . . , 2r + 2s + 1}, . . .}. Then,

EAr ,s (ei )(k) =
∑

j∈ψ−1(ψ(k)) ei ( j)∑
j∈ψ−1(ψ(k)) 1

.
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The matrix of conditional expectation operator EAr ,s can now be written in block
matrix form as

EAr ,s =

⎛
⎜⎜⎜⎜⎜⎜⎝

A1,1 O
A2,2

. . .

An,n

O
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where Ai, j = 0 for i = j ,

A1,1 =
( 1

2
1
2

1
2

1
2

)
,

and for k = 1, 2, 3, . . ., we have

A2k,2k =
⎛
⎜⎝

1
r · · · 1

r
...

...
...

1
r · · · 1

r

⎞
⎟⎠ , A2k+1,2k+1 =

⎛
⎜⎝

1
s · · · 1

s
...

...
...

1
s · · · 1

s

⎞
⎟⎠ .

To avoid tedious calculations, from now on, wewill consider the case where r = s = 1
and take EA1,1 = E . In this case, we have

E =

⎛
⎜⎜⎜⎜⎜⎝

1
2

1
2 0 0 . . .

1
2

1
2 0 0 . . .

0 0 1 0 . . .

0 0 0 1 . . .
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠

,

and then

EW =

⎛
⎜⎜⎜⎜⎜⎝

1
2u1 0 0 . . .
1
2u1 0 0 . . .

0 u2 0 . . .

0 0 u3 . . .
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠

.

Now, let w = {wn}∞n=0 ∈ l∞(N0) be a sequence of real numbers. Then,

Mw =

⎛
⎜⎜⎜⎜⎜⎝

w0 0 0 0 . . .

0 w1 0 0 . . .

0 0 w2 0 . . .

0 0 0 0 . . .
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠

,
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and hence matrix Tϕ can be represented by

Tϕ = MwEW =

⎛
⎜⎜⎜⎜⎜⎝

1
2u1w0 0 0 . . .
1
2u1w1 0 0 . . .

0 u2w2 0 . . .

0 0 u3w3 . . .
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠

∈ B(l2(N0)). (2.1)

Thus,

T ∗
ϕ =

⎛
⎜⎜⎜⎜⎜⎝

1
2u1w0

1
2u1w1 0 0 . . .

0 0 u2w2 0 . . .

0 0 0 u3w3 . . .

0 0 0 0 . . .
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠

.

It follows that

T ∗
ϕ Tϕ =

⎛
⎜⎜⎜⎜⎜⎝

1
4 (u1w0)

2 + 1
4 (u1w1)

2 0 0 . . .

0 (u2w2)
2 0 . . .

0 0 (u3w3)
2 . . .

0 0 0 . . .
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠

(2.2)

and

TϕT
∗
ϕ =

⎛
⎜⎜⎜⎜⎜⎝

1
4 (u1w0)

2 1
4 (u1w0u1w1) 0 0 . . .

1
4 (u1w0u1w1)

1
4 (u1w1)

2 0 0 . . .

0 0 (u2w2)
2 0 . . .

0 0 0 (u3w3)
2 . . .

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠

. (2.3)

Then,

|Tϕ | =

⎛
⎜⎜⎜⎜⎜⎝

1
2

√
(u1w0)2 + (u1w1)2 0 0 . . .

0 u2|w2| 0 . . .

0 0 u3|w3| . . .

0 0 0 . . .
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠

.
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Let Tϕ = Uϕ |Tϕ | be the polar decomposition of Tϕ . Then we obtain

Uϕ =

⎛
⎜⎜⎜⎜⎜⎜⎝

u1w0√
(u1w0)2+(u1w1)2

0 0 · · ·
u1w1√

(u1w0)2+(u1w1)2
0 0 · · ·

0 1 0 . . .

0 0 1 . . .
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

.

It is easy to check that Uϕ is a partial isometry, i.e., UϕU∗
ϕUϕ = Uϕ . Put λ

:= 1
2 (u1|w1|) + u1u2|w2w3|√

(u1w0)2+(u1w1)2
. Then we get that

T̂ϕ = 1

2

⎛
⎜⎜⎜⎜⎜⎝

u1|w0| 0 0 · · ·
λ 0 0 . . .

0 u2|w2| + u3|w3| 0 . . .

0 0 u3|w3| + u4|w4| . . .
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠

. (2.4)

Consequently,

(T̂ϕ)∗T̂ϕ = 1

4

⎛
⎜⎜⎜⎜⎜⎝

(u1w0)
2 + λ2 0 0 . . .

0 (u2|w2| + u3|w3|)2 0 . . .

0 0 (u3|w3| + u4|w4|)2 . . .

0 0 0 . . .
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠

and

T̂ϕ(T̂ϕ)∗ = 1

4

⎛
⎜⎜⎜⎜⎜⎝

(u1w0)
2 λu1|w0| 0 . . .

λu1|w0| λ2 0 . . .

0 0 (u2|w2| + u3|w3|)2 . . .

0 0 0 . . .
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠

. (2.5)

These observations establish the following theorem.

Theorem 2.1 Let Tϕ ∈ B(l2(N0)) and let λ = 1
2 (u1|w1|) + u1u2|w2w3|√

(u1w0)2+(u1w1)2
. Then

the following assertions hold.

(a) Tϕ is partial isometry, i.e., TϕT ∗
ϕ Tϕ = Tϕ if and only if u1w0 = 0, (u1w0)

2

+ (u1w1)
2 = 4 and, for each n ≥ 1, un|wn+1| = 0 and (un+1wn+1)

2 = 1.
(b) T̂ϕ = Tϕ if and only if 2(u2|w2|) = √

(u1w0)2 + (u1w1)2 and for each n ≥ 2,
un|wn| = un+1|wn+1|.
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(c) Tϕ is hyponormal if and only if w0w1 ≤ 0, 4(u2w2)
2 ≥ (u1w1)

2 and for each
n ≥ 3, (unwn)

2 ≥ (un−1wn−1)
2.

(d) T̂ϕ is hyponormal if and only if λu1w0 ≤ 0, (u2w2 + u3w3)
2 ≥ λ2 and for each

n ≥ 3, (unwn + un+1wn+1)
2 ≥ (un−1wn−1 + unwn)

2.
(e) The matrix form of the Aluthge transformation of Tϕ is

T̃ϕ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
2 (u1|w0|) 0 0 . . .

(u1|w1|)√u2|w2|√
2((u1w0)2+(u1w1)2)

1
4

0 0 . . .

0
√

(u2|w2|)(u3|w3|) 0 . . .

0 0
√

(u3|w3|)(u4|w4|) . . .
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Proof Since

Tϕ =

⎛
⎜⎜⎜⎜⎜⎝

1
2u1w0 0 0 . . .
1
2u1w1 0 0 . . .

0 u2w2 0 . . .

0 0 u3w3 . . .
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠

,

and

T ∗
ϕ Tϕ =

⎛
⎜⎜⎜⎜⎜⎝

1
4 (u1w0)

2 + 1
4 (u1w1)

2 0 0 . . .

0 (u2w2)
2 0 . . .

0 0 (u3w3)
2 . . .

0 0 0 . . .
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠

,

then

TϕT
∗
ϕ Tϕ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
8 (u1w0)

3 + 1
8 (u1w0)(u1w1)

2 0 0 . . .
1
8 (u1w0)

2(u1w1) + 1
8 (u1w1)

3 0 0 . . .

0 (u2w2)
3 0 . . .

0 0 (u3w3)
3 . . .

0 0 0 . . .
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

By the above relations (a) holds. The proofs of the other implications are similar by
relations (2.1), (2.2), (2.3), (2.4), (2.5). ��

Recall that an operator T ∈ B(H) is quasinormal if [Tϕ, T ∗
ϕ Tϕ] = 0 and T is

binormal if [T ∗
ϕ Tϕ, TϕT ∗

ϕ ] = 0. For each n ∈ N, if (T ∗T )n ≥ (T T ∗)n , T is called
n-hyponormal operator. T is an A-class operator if |T 2| ≥ |T |2 and T is a ∗-A-class
if |T 2| ≥ |T ∗|2.
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By using (2.2) and (2.3), T is quasinormal if and only if (u1w0)
2 + (u1w1)

2

= 4(u2w2)
2 = 4(u3w3)

2 = · · · = 4(unwn)
2 for all n ∈ N. Moreover, by (2.2)

and (2.3), we obtain

T ∗
ϕ TϕTϕT

∗
ϕ =

⎛
⎜⎜⎜⎜⎜⎝

M1 M2 0 0 . . .

M3 M4 0 0 . . .

0 0 (u2w2)
2(u3w3)

2 0 . . .

0 0 0 (u3w3)
2(u4w4)

2 . . .
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠

and

TϕT
∗
ϕ T

∗
ϕ Tϕ =

⎛
⎜⎜⎜⎜⎜⎝

M1 M3 0 0 . . .

M2 M4 0 0 . . .

0 0 (u2w2)
2(u3w3)

2 0 . . .

0 0 0 (u3w3)
2(u4w4)

2 . . .
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠

,

where

M1 = 1

16
{(u1w0)

2 + (u1w1)
2}(u1w0)

2;

M2 = 1

16
(u1w0)(u1w1){(u1w0)

2 + (u1w1)
2};

M3 = 1

4
(u1w0)(u1w1)(u2w2)

2;

M4 = 1

4
(u1w1)

2(u2w2)
2.

Then, T ∗
ϕ TϕTϕT ∗

ϕ = TϕT ∗
ϕ T

∗
ϕ Tϕ if and only if M2 = M3. Now, by direct calculations

we have

T 2
ϕ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
4 (u1w0)

2 0 0 . . .
1
4 (u1w0)(u1w1) 0 0 . . .
1
2 (u1w1)(u2w2) 0 0 . . .

0 (u2w2)(u3w3) 0 . . .

0 0 (u3w3)(u4w4) . . .
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(T ∗
ϕ )2 =

⎛
⎜⎜⎜⎜⎜⎝

1
4 (u1w0)

2 1
4 (u1w0)(u1w1)

1
2 (u1w1)(u2w2) 0 . . .

0 0 0 (u2w2)(u3w3) . . .

0 0 0 0 . . .

0 0 0 0 . . .
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠
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and

|T 2
ϕ |2 = (T ∗

ϕ )2(Tϕ)2 =

⎛
⎜⎜⎜⎜⎜⎝

A1 0 0 0 . . .

0 (u2w2)
2(u3w3)

2 0 0 . . .

0 0 (u3w3)
2(u4w4)

2 0 . . .

0 0 0 0 . . .
...

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎠

,

where A1 = 1
16 (u1w0)

4 + 1
16 (u1w0)

2(u1w1)
2 + 1

4 (u1w1)
2(u2w2)

2. Thus,

|T 2
ϕ | =

⎛
⎜⎜⎜⎜⎜⎝

√
A1 0 0 0 . . .

0
√

(u2w2)2(u3w3)2 0 0 . . .

0 0
√

(u3w3)2(u4w4)2 0 . . .

0 0 0 0 . . .
...

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎠

.

Then Tϕ is an A-class operator if and only if

√
A1 ≥ 1

4
(u1w0)

2 + 1

4
(u1w1)

2;
√

(u2w2)2(u3w3)2 ≥ (u2w2)
2;√

(u3w3)2(u4w4)2 ≥ (u3w3)
2.

These observations establish the following theorem.

Theorem 2.2 Let Tϕ ∈ B(l2(N0)). Then the following assertions hold.

(a) Tϕ is quasinormal iff (u1w0)
2 + (u1w1)

2 = 4(unwn)
2 for each n ≥ 2.

(b) Tϕ is binormal iff u21w0w1{(u1w0)
2 + (u1w1)

2} = 4(u21w0w1)(u2w2)
2.

(c) Tϕ is 2-hyponormal iff w0w1 ≤ 0, 16(u2w2)
4 ≥ (u1w1)

2{(u1w0)
2 + (u1w1)

2}
and for each n ≥ 3, (unwn)

4 ≥ (un−1wn−1)
4.

(d) Tϕ is 3-hyponormal iff w0w1 ≤ 0, 64(u2w2)
6 ≥ (u1w1)

2{(u1w0)
2 + (u1w1)

2}2
and for each n ≥ 3, (unwn)

6 ≥ (un−1wn−1)
6.

(e) Tϕ is an A-class operator iff 4(u2w2)
2 ≥ (u1w0)

2 + (u1w1)
2 and for each n ≥ 3,

(unwn)
2 ≥ (un−1wn−1)

2.
(f) Tϕ is a ∗-A-class operator iff w0w1 ≤ 0, 16(u2w2)

2(u3w3)
2 ≥ (u1w1)

4 and for
each n ≥ 3, (unwn)

2(un+1wn+1)
2 ≥ (un−1wn−1)

4.

Example 2.3 (i) Let un = {0, 0, 1, 0, 1, 1, 1, . . .} andwn = {0, 2, 0, 1, 0, 0, . . .}. Then
it is easy to check that Tϕ is hyponormal, binormal, A-class and ∗-A-class operator,
but it is neither quasinormal nor partial isometry. Moreover, T̂ϕ is also hyponormal.

(ii) Let un = {0, 1, 0, 1, 1, 1, 1, . . .} and wn = {1, 0, 1, 0, 0, . . .}. Then Tϕ is
hyponormal, binormal, ∗-A-class operator, but it is not quasinormal and partial
isometry and A-class operator. In this case, T̂ϕ is also hyponormal.
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Remark 2.4 Estaremi in [5] proved that T̃ϕ is always normal whenever ϕ is an identity
map. Now, let ϕ be a not identity map. Direct computations show that

T ∗
ϕ Tϕ f = h{Eϕ(uE(|w|2))E(u f ◦ ϕ)} ◦ ϕ−1.

But it is sometimes difficult to obtain |Tϕ |. For showing this, we consider only the case
ϕ−1(�) ⊆ A. Put v = wE(u). In this case, Tϕ = MvCϕ is a weighted composition

operator. Let V |Tϕ | be the polar decomposition of Tϕ . It is easy to check that |Tϕ | 12
= M 4√J and V = M√

J◦ϕTϕ , where J = hEϕ(|w|2|E(w)|2) ◦ ϕ−1. Thus,

T̃ϕ = |Tϕ | 12 V |Tϕ | 12 = M 4√J√
J◦ϕ

TϕM 4√J .

We recall that Tϕ is normal if and only if T̃ϕ = Tϕ (see e.g. [6]). So, in this case, if
J = 1 on X or Tϕ is normal, then so is T̃ϕ . But, in general T̃ϕ is not normal.
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