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PARALLELISM BETWEEN MOORE-PENROSE
INVERSE AND ALUTHGE TRANSFORMATION OF

OPERATORS

M. R. Jabbarzadeh, H. Emamalipour and M. Sohrabi Chegeni∗

In this paper we study some parallelisms between †-Aluthge transform and
binormal operators on a Hilbert space via the Moore-Penrose inverse. More-
over, we give some applications of these results on the Lambert multiplication
operators acting on L2(Σ).

1. INTRODUCTION AND PRELIMINARIES

Let B(H) denote the C∗-algebra of all bounded linear operators on a complex
Hilbert space H. We write N (T ) and R(T ) for the null-space and the range of an
operator T ∈ B(H), respectively. Recall that for T ∈ B(H), there is a unique
factorization T = U |T |, where N (T ) = N (U) = N (|T |), U is a partial isometry,
i.e. UU∗U = U , and |T | = (T ∗T )1/2 is a positive operator. This factorization is
called the polar decomposition of T . Note that T = |T ∗|U =

√
|T ∗|U

√
|T |. More

generally, T = |T ∗|pU |T |1−p for p ∈ (0, 1); see e.g. [13, Theorem 2.7]. If T = U |T |
is the polar decomposition of T ∈ B(H), then T̃ = |T |1/2U |T |1/2 is called the
Aluthge transformation of T . Let CR(H) be the set of all bounded linear operators
on H with closed range. For T ∈ CR(H), the Moore-Penrose inverse of T , denoted
by T †, is the unique operator T † that satisfies the following:

TT †T = T, T †TT † = T †, (TT †)∗ = TT †, (T †T )∗ = T †T.
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We recall that T † exists if and only if T ∈ CR(H). Note that if T ∈ CR(H), then
T ∗, |T | and T † have closed range. If T = U |T | is invertible, then T−1 = T †, U is
unitary and so |T | is invertible. It is a classical fact that the polar decomposition

of T ∗ is U∗|T ∗|. It is easy to check that U∗|T ∗|† and |T †| 12U∗|T †| 12 are the polar
decomposition and Aluthge transformation of T †, respectively. For other important
properties of T † see [2, 10, 17].

An operator T ∈ B(H) is said to be binormal if [|T |, |T ∗|] = 0, where
[A,B] = AB −BA for operators A and B. The numerical range W (T ) of an oper-
ator T ∈ B(H) is defined by W (T ) = {〈Tx, x〉 : ‖x‖ = 1}. Also, ω(T ) = sup{|λ| :
λ ∈W (T )} and Sp(T ) denote the numerical radius and spectrum of T , respectively.

Study of Moore-Penrose inverse and Aluthge transformationaton of bounded
linear operators has a long history. In this paper, we introduce †-Aluthge trans-
formation which is parallel to Aluthge transformation. Then we investigate some
connections and parallelisms between †-Aluthge transformation and binormal op-
erators via the Moore-Penrose inverse. In section 2, firstly, we give a necessary
and sufficient condition to the quasinormality of T †. We show that if T is onto,
then T ∗ is quasinormal if and only if T † is quasinormal. Afterward, we give a
formula for (T̃ ∗)† when T is binormal. Also, we prove that T ∗ is quasinormal if

and only if (T †)∗ = (T̃ ∗)†, whenever T is onto. Moreover, we briefly discuss some
classical results on the spectrum, numerical range and numerical radius via the
Moore-Penrose inverse and Aluthge transformation. In section 3, we obtain some
applications of these results to the Lambert multiplication operator MwEMu on
L2(Σ), where E is the conditional expectation operator with respect to a sub-sigma
algebra A ⊆ Σ. In addition, we determine lower and upper bounds estimates for
the numerical range of (MwEMu)

†
.

2. ON SOME CHARACTERIZATIONS OF T †

For any closed subspace M of H, let PM denote the orthogonal projection
onto M . For T ∈ CR(H), we shall make used the following general properties of

T ∗, T̃ , T † and their polar decompositions. For proofs and discussions of these facts
see [10, 9, 12, 20, 22].

P(1) T̃ † = |T †| 12U∗|T †| 12 ;

P(2) For λ > 0, λ ∈ Sp(T ) if and only if λ−1 ∈ Sp(T †);
P(3) |T †| = |T ∗|† and |T †| 12 = (|T ∗| 12 )†;

P(4) |T ∗| 12 (|T ∗| 12 )† = PR(|T∗|) = (|T ∗| 12 )†|T ∗| 12 ;

P(5) If T is binormal, then PR(|T∗|)PR(|T |) = PR(|T |)PR(|T∗|);



320 M. R. Jabbarzadeh, H. Emamalipour and M. Sohrabi Chegeni

P(6) U∗PR(|T∗|) = U∗ = PR(|T |)U
∗;

P(7) U∗U = PR(|T |) and UU∗ = PR(|T∗|);

P(8) |T †| 12PR(|T∗|) = |T †| 12 ;

P(9) U∗(|T ∗|†) 1
2 = (|T |†) 1

2U∗;

P(10) UU∗|T ∗|† = |T ∗|†;
P(11) (T †)∗ = |T ∗|†U ;

P(12) |(T ∗)†| = |T |†;
P(13) T ≥ 0⇔ T † ≥ 0;

P(14) U∗|T ∗| and U∗|T ∗|† are the polar decompositions of T ∗ and T †.

Let f be a bounded Borel real-valued function defined in an interval I ⊆ R.
If T ∈ B(H) is a self-adjoint operator, then by f(T ) we mean the self-adjoint oper-

ator
∫ +∞
−∞ f(λ)dEλ where Eλ is the spectral resolution of identity corresponding to

T . The restriction of f to the set of all self-adjoint operators is called an operator
function. For example, for each q > 0, f(x) = xq is an operator function. In ad-
dition, in this case, if U is any unitary operator, then f(U∗TU) = U∗f(T )U . For
more details see [3, 4].

Lemma 2.1. Let T ∈ CR(H). Then the following assertions hold.

(i) (|T |†)q = U∗(|T ∗|†)qU , for each q > 0.

(ii) T † is quasinormal if and only if U∗|T ∗|† = |T ∗|†U∗.

Proof. (i) By P(3), P(10), P(11) and P(14) we have

(|T |†)2 = |(T ∗)†|2 = |(T †)∗|2 = T †(T †)∗

= U∗|T ∗|†|T ∗|†U
= U∗|T ∗|†UU∗|T ∗|†U
= (U∗|T ∗|†U)2.

Since for each q > 0, f(x) = x
q
2 is an operator function, we obtain (|T |†)q =

U∗(|T ∗|†)qU .

(ii) It is a classical fact that T is quasinormal if and only if U |T | = |T |U (see
for example [12, Theorem 3]). Now, the desired conclusion follows from this and
P(14).

Theorem 2.2. Let T ∈ B(H) be onto. Then the following statements are equiva-
lent:

(i) T ∗ is quasinormal.
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(ii) T † is quasinormal.

Moreover, if one of the above statements hold then

(iii) [(T †)∗T †, (T †)∗ + T †] = 0.

Proof. (i)⇔(ii) Since |T ∗||T ∗|†|T ∗| = |T ∗|, then we have

T ∗is quasinormal⇐⇒ U∗|T ∗| = |T ∗|U∗

⇐⇒ U∗|T ∗||T ∗|†|T ∗| = |T ∗||T ∗|†|T ∗|U∗

⇐⇒ |T ∗|U∗|T ∗|†|T ∗| = |T ∗||T ∗|†U∗|T ∗|
⇐⇒ |T ∗|(U∗|T ∗|† − |T ∗|†U∗)|T ∗| = 0.

By hypothesis, N (|T ∗|) = N (T ∗) = {0}. Hence (U∗|T ∗|† − |T ∗|†U∗)|T ∗| = 0, and

so U∗|T ∗|† = |T ∗|†U∗ on R(|T ∗|†). On the other hand, U∗|T ∗|† = |T ∗|†U∗ on
N(|T ∗|†) = N(U∗). Thus, U∗|T ∗|† = |T ∗|†U∗ on H. Consequently, by Lemma
2.1(ii), (i)⇔(ii) holds.

Now, it is easy to check that

[(T †)∗T †, (T †)∗ + T †] = [(|T ∗|†)2, |T ∗|†U + U∗|T ∗|†]

= {(|T ∗|†)2U∗|T ∗|† − U∗(|T ∗|†)3}+ |T ∗|†{(|T ∗|†)2U − U(|T ∗|†)2}.

If (ii) is holds, then by Lemma 2.1(ii) we obtain

(|T ∗|†)2U∗|T ∗|† = U∗(|T ∗|†)3;

(|T ∗|†)2U = U(|T ∗|†)2.

Thus, [(T †)∗T †, (T †)∗ + T †] = 0.

For more details and applications on condition (iii) in Theorem 2.2 see [16].

Lemma 2.3. If T ∈ CR(H) is binormal, then (T̃ ∗)† = (|T ∗|†) 1
2U(|T ∗|†) 1

2 .

Proof. Since T is binormal, then we obtain from direct computations that

T̃ ∗(T̃ ∗)†T̃ ∗ = |T ∗| 12U∗|T ∗| 12 (|T ∗|†) 1
2U(|T ∗|†) 1

2 |T ∗| 12U∗|T ∗| 12

= |T ∗| 12U∗PR(|T∗|)UPR(|T∗|)U
∗|T ∗| 12 by P(4)

= |T ∗| 12U∗UPR(|T∗|)U
∗|T ∗| 12 by P(6)

= |T ∗| 12PR(|T |)PR(|T∗|)U
∗|T ∗| 12 by P(7)

= |T ∗| 12PR(|T∗|)PR(|T |)U
∗|T ∗| 12 by P(5)

= |T ∗| 12U∗|T ∗| 12 = T̃ ∗ by P(4), P(6).
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Also,

(T̃ ∗)†T̃ ∗(T̃ ∗)† = (|T ∗|†) 1
2U(|T ∗|†) 1

2 |T ∗| 12U∗|T ∗| 12 (|T ∗|†) 1
2U(|T ∗|†) 1

2

= (|T ∗|†) 1
2UPR(|T∗|)U

∗PR(|T∗|)U(|T ∗|†) 1
2 by P(4)

= (|T ∗|†) 1
2UPR(|T∗|)U

∗U(|T ∗|†) 1
2 by P(6)

= (|T ∗|†) 1
2UPR(|T∗|)PR(|T |)(|T ∗|†)

1
2 by P(7)

= (|T ∗|†) 1
2UPR(|T |)PR(|T∗|)(|T ∗|†)

1
2 by P(5)

= (|T ∗|†) 1
2PR(|T∗|)UPR(|T∗|)(|T ∗|†)

1
2 by P(6)

= (|T ∗|†) 1
2U(|T ∗|†) 1

2 = (T̃ ∗)† by P(4).

Similar computations show that

(T̃ ∗)†T̃ ∗ = UPR(|T∗|)PR(|T |)U
∗

and
T̃ ∗(T̃ ∗)† = PR(|T |)PR(|T∗|).

Hence, (T̃ ∗)†T̃ ∗ and T̃ ∗(T̃ ∗)† are self-adjoint operators. This completes the proof.

Note that if T ∈ CR(H) is binormal, then Lemma 2.3 shows that T̃ ∗ and so

T̃ have closed range. Moreover, in this case, we have T̃ † = (|T |†) 1
2U∗(|T |†) 1

2 .

Theorem 2.4. Let T ∈ B(H) be onto and binormal. Then T ∗ is quasinormal if

and only if (T †)∗ = (T̃ ∗)†.

Proof. By [21, Theorem 10] and Theorem 2.2, T ∗ is quasinormal if and only if

T † = T̃ †. Now, taking adjoint of both sides and using Lemma 2.3 and P(1), we

obtain (T †)∗ = (T̃ ∗)†.

In the following, we concentrate on the polar decomposition of (T̃ )†. We
require the following lemma.

Lemma 2.5. (i) [11, Corollary 1] Let T = U |T | and S = V |S| be the polar
decompositions. If T and S are doubly commutative (i.e., [T, S] = [T, S∗] = 0),
then TS = UV |TS|.

(ii) [22, Proposition 3.9] Let T = U |T | be the polar decomposition of a bi-

normal operator T . Then T̃ = U∗UU |T̃ | is also the polar decomposition of T̃ .

(iii) [22, Theorem 2.1] Let T = U |T | and |T | 12 |T ∗| 12 = V ||T | 12 |T ∗| 12 | be the

polar decompositions. Then T̃ = V U |T̃ | is also the polar decomposition.
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Theorem 2.6. Let T = U |T | ∈ CR(H) and (|T |†) 1
2 (|T ∗|†) 1

2 = V |(|T |†) 1
2 (|T ∗|†) 1

2 |
be the polar decompositions. If T is binormal, then (T̃ )† = U∗V |(T̃ )†| is also the
polar decomposition.

Proof. (i) First we show that (T̃ )† = U∗V |(T̃ )†|.

U∗V |(T̃ )†| = U∗V (((T̃ )†)∗(T̃ )†)

= U∗V ((|T |†) 1
2U(|T |†)U∗(|T |†) 1

2 )
1
2 by Lemma 2.3

= U∗V ((|T |†) 1
2UU∗(|T ∗|†)UU∗(|T |†) 1

2 )
1
2 by Lemma 2.1(i)

= U∗V ((|T |†) 1
2 |T ∗|†(|T |†) 1

2 )
1
2 by P(8),P(10)

= U∗V |(|T |†) 1
2 (|T ∗|†) 1

2 |

= U∗(|T |†) 1
2 (|T ∗|†) 1

2

= U∗(|T ∗|†) 1
2 (|T |†) 1

2

= U∗(|T ∗|†) 1
2UU∗(|T |†) 1

2

= (|T |†) 1
2U∗(|T |†) 1

2 = (T̃ )†.

Now, we claim that N((T̃ )†) = N(U∗V ). Since T is binormal, then it is easy

to check that T † is binormal. Thus N((|T ∗|†) 1
2 (|T |†) 1

2 ) = N((|T |†) 1
2 (|T ∗|†) 1

2 ) =
N(V ). Then we have

U∗V x = 0⇔ U∗(|T |†) 1
2 (|T ∗|†) 1

2x = 0

⇔ U∗(|T ∗|†) 1
2 (|T |†) 1

2x = 0

⇔ U∗(|T ∗|†) 1
2UU∗(|T |†) 1

2x = 0 by P(8)

⇔ (|T |†) 1
2U∗(|T |†) 1

2x = 0 by Lemma 2.1(i)

⇔ (T̃ )†x = 0.

Lastly, we prove that U∗V is partial isometry. Since (|T |†) 1
2 = U∗U(|T |†) 1

2 and

(|T ∗|†) 1
2 = UU∗(|T ∗|†) 1

2 are the polar decompositions of (|T |†) 1
2 and (|T ∗|†) 1

2 ,
respectively then by Lemma 2.5(i) we have

(|T |†) 1
2 (|T ∗|†) 1

2 = (|T ∗|†) 1
2 (|T |†) 1

2 = UU∗U∗U |(|T ∗|†) 1
2 (|T |†) 1

2 |.

Then by the uniqueness of the polar decomposition we get that V = UU∗U∗U. It
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follows that

(U∗V )(U∗V )∗(U∗V ) = (U∗UU∗U∗U)(U∗UU∗U∗U)∗(U∗UU∗U∗U)

= PR(|T |)U
∗PR(|T |)UPR(|T |)U

∗PR(|T |) by P(7)

= U∗PR(|T |)UU
∗PR(|T |) by P(6)

= U∗PR(|T |)PR(|T∗|)PR(|T |) by P(6)

= U∗PR(|T∗|)PR(|T |) by P(5)

= PR(|T |)U
∗PR(|T |) by P(6)

= U∗UU∗U∗U = U∗V.

This completes the proof.

Corollary 2.7. Let T ∈ CR(H) be binormal and let T † = U∗|T ∗|† and (|T |†) 1
2 (|T ∗|†) 1

2 =

V |(|T |†) 1
2 (|T ∗|†) 1

2 | be the polar decompositions. Then the following statements are
hold:

(i) T̃ † = UU∗U∗|T̃ †| is the polar decomposition.

(ii) (T̃ )† = U∗U∗U |(T̃ )†| is the polar decomposition.

Proof. (i) Since T is binormal, T † is binormal. Now, the desired conclusion follows
by Lemma 2.5(iii).

(ii) Recall that (|T |†) 1
2 = U∗U(|T |†) 1

2 and (|T ∗|†) 1
2 = UU∗(|T ∗|†) 1

2 are the

polar decompositions of (|T |†) 1
2 and (|T ∗|†) 1

2 , respectively. Then by Lemma 2.5(i)
we obtain

(|T |†) 1
2 (|T ∗|†) 1

2 = (|T ∗|†) 1
2 (|T |†) 1

2 = UU∗U∗U |(|T ∗|†) 1
2 (|T |†) 1

2 |.

Thus, by Theorem 2.6, (T̃ )† = U∗UU∗U∗U |(T̃ )†| = U∗U∗U |(T̃ )†|.

In [19], Yamazaki introduce the notion of the ∗-Aluthge transformation T̃ (∗)

of T by setting T̃ (∗) = |T ∗| 12U |T ∗| 12 . Like this notion we introduce †-Aluthge

transformation T̃ (†) of T by setting T̃ (†) = (T̃ †)†. Similar computations show that

T̃ (†) = T̃ (∗), whenever T ∈ CR(H) is binormal.

Proposition 2.8. Let T ∈ CR(H). Then the following statements hold.

(i) If T is self-adjoint, then W (T ) ⊆W (T †)W (T 2).

(ii) If T is onto and T ∗ is quasinormal, then W (T̃ †) = W (T †) ⊆W (U∗)W (|T ∗|†).

(iii) If T is binormal, then W ((T̃ )(†)) ⊆W (U)W (|T ∗|).
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Proof. (i) Let x ∈ H with ‖x‖ = 1. Then we get that

〈Tx, x〉 = 〈TT †Tx, x〉 = 〈T †Tx, Tx〉

= 〈T † Tx

‖Tx‖
,
Tx

‖Tx‖
〉〈Tx, Tx〉.

It follows that 〈Tx, x〉 ∈W (T †)W (T 2), for each x ∈ H with ‖x‖ = 1.

(ii) By Theorem 2.2 and Lemma 2.1, T † is quasinormal and so U∗|T ∗|† =

|T ∗|†U∗. It follows that U∗(|T ∗|†) 1
2 = (|T ∗|†) 1

2U∗. Then by P(1) and P(14) we
have

〈T †x, x〉 = 〈U∗|T ∗|†x, x〉 = 〈T̃ †x, x〉

= 〈U∗(|T ∗|†) 1
2x, (|T ∗|†) 1

2x〉

= 〈U∗ (|T ∗|†) 1
2x

‖(|T ∗|†) 1
2x‖

,
(|T ∗|†) 1

2x

‖(|T ∗|†) 1
2x‖
〉〈(|T ∗|†)x, x〉,

for each x ∈ H with ‖x‖ = 1.

(iii) Direct replacement shows that

〈T̃ (†)x, x〉 = 〈|T ∗| 12U |T ∗| 12x, x〉

= 〈U |T ∗| 12x, |T ∗| 12x〉

= 〈U |T
∗| 12x

‖|T ∗| 12x‖
,
|T ∗| 12x
‖|T ∗| 12x‖

〉〈|T ∗|x, x〉,

for each x ∈ H with ‖x‖ = 1. This completes the proof.

Proposition 2.9. Let T ∈ CR(H). Then the following assertions hold.

(i) Let T ∈ CR(H) be self-adjoint. Then ω(T ) ≤ ω(T †)‖T‖2.

(ii) If T is onto and T ∗ be quasinormal, then

ω(T̃ †) = ω(T †) ≤ ω(U∗)‖|T ∗|†‖.

Proof. (i) Since T is self-adjoint and T = TT †T , we have

ω(T ) = sup
‖x‖=1

|〈TT †Tx, x〉| = sup
‖x‖=1

|〈T †Tx, Tx〉|

= sup
‖x‖=1

|〈T † Tx

‖Tx‖
,
Tx

‖Tx‖
〉| ‖Tx‖2

≤ ω(T †)‖T‖2.
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(ii) Since T ∗ is quasinormal then by Theorem 2.2, we obtain

ω(T †) = sup
‖x‖=1

|〈T †x, x〉|

= sup
‖x‖=1

|〈U∗|T ∗|†x, x〉|

= sup
‖x‖=1

|〈(|T ∗|†) 1
2U∗(|T ∗|†) 1

2x, x〉| = ω(T̃ †).

Thus,

ω(T †) = sup
‖x‖=1

|〈T †x, x〉|

= sup
‖x‖=1

|〈U∗|T ∗|†x, x〉|

= sup
‖x‖=1

|〈U∗(|T ∗|†) 1
2x, (|T ∗|†) 1

2x〉|

= sup
‖x‖=1

|〈U∗ (|T ∗|†) 1
2x

‖(|T ∗|†) 1
2x‖

,
(|T ∗|†) 1

2x

‖(|T ∗|†) 1
2x‖
〉| ‖ |T ∗|†x‖

≤ ω(U∗)‖ |T ∗|†‖.

Proposition 2.10. Let T ∈ CR(H). Then the following assertions hold.

(i) ω(T̃ (†)) ≤ ω(|T ∗|) ≤ ‖‖T ∗|‖.

(ii) If T is binormal, then ω(T̃ †) = ω(T̃ †) and ‖T̃ †‖ = ‖T̃ †‖.

Proof. The first part is easily follow from Proposition 2.8. For the second part,
since

T̃ † = (|T |†) 1
2U∗(|T |†) 1

2 by Lemma 2.3

= U∗(|T ∗|†) 1
2UU∗U∗(|T ∗|†) 1

2U by Lemma 2.1(i)

= U∗(|T ∗|†) 1
2U∗(|T ∗|†) 1

2U by P(8)

= U∗|T †| 12U∗|T †| 12U by P(3)

= U∗T̃ †U by P(1),

then

ω(T̃ †) = sup
‖x‖=1

|〈U∗T̃ †Ux, x〉| = sup
‖x‖=1

|〈T̃ †Ux,Ux〉|

= sup
‖x‖=1

|〈T̃ † Ux

‖Ux‖
,
Ux

‖Ux‖
〉‖Ux‖2 ≤ ω(T̃ †).
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On the other hand, since

T̃ † = (|T ∗|†) 1
2U∗(|T ∗|†) 1

2 by P(1)

= (|T ∗|†) 1
2UU∗U∗(|T ∗|†) 1

2 by P(8)

= U(|T |†) 1
2U∗(|T |†) 1

2U∗ by P(9)

= UT̃ †U∗ by Lemma 2.3,

then

ω(T̃ †) = sup
‖x‖=1

|〈UT̃ †U∗x, x〉| = sup
‖x‖=1

|〈T̃ †U∗x, U∗x〉|

= sup
‖x‖=1

|〈T̃ † U∗x

‖U∗x‖
,
U∗x

‖U∗x‖
〉‖U∗x‖2 ≤ ω(T̃ †).

Moreover, since T̃ † = U∗T̃ †U and T̃ † = U∗T̃ †U , we obtain ‖T̃ †‖ = ‖T̃ †‖.

Lemma 2.11. [7, Theorem 2.8] If A be an arbitrary operator and B is normal.
Then Sp(AB) = Sp(BA).

Proposition 2.12. Let T ∈ CR(H). Then the following statements hold.

(i) (T ∗)† = U |T |† is the polar decomposition.

(ii) If T is binormal, then Sp(T †) = Sp(T̃ †) = Sp(T̃ †).

(iii) If T is binormal and λ > 0, then λ ∈ Sp(T )⇔ λ ∈ Sp((T̃ )(†)).

Proof. (i) Since U∗|T ∗|† is the unique polar decomposition of T †, then N(U∗) =
N(|T ∗|†), and so N(U∗U) = N(|T ∗|†U). Now, by Lemma 2.1(i), P(11) and P(12)
we have

(2.1) (T ∗)† = (T †)∗ = |T ∗|†U = UU∗|T ∗|†U = U |T |†;

N(U) = N(U∗U) = N(|T ∗|†U) = N((T ∗)†) = N(|(T †)∗|) = N(|T |†).
Therefore, (T ∗)† = U |T |† is the unique polar decomposition.

(ii) By P(14), (|T |†) 1
2 ≥ 0 and hence it is normal. Thus, by (2.1) and Lemma

2.11 we have

Sp(T †) = Sp(|T |†U∗) = Sp((|T |†) 1
2 (|T |†) 1

2U∗)

= Sp((|T |†) 1
2U∗(|T |†) 1

2 ) = Sp(T̃ †).

Similarly, we get that

Sp(T̃ †) = Sp((|T ∗|†) 1
2U∗(|T ∗|†) 1

2 )

= Sp(U∗(|T ∗|†) 1
2 (|T ∗|†) 1

2 ) = Sp(T †).
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(iii) If λ > 0, then by Lemma 2.3 and part (ii) we have

λ ∈ Sp(T )⇔ λ−1 ∈ Sp(T †)⇔ λ−1 ∈ Sp(T̃ †)

⇔ λ ∈ Sp((T̃ †)†) = Sp((T̃ )(†)).

Recall that an operator T ∈ CR(H) is an EP operator if and only if TT † =
T †T [8]. If T = T †, then T 3 = TT †T = T and hence T 2n+1 = T for all n ∈ N.
On the other hand, if TT † = T †T and T 2n+1 = T , then for n = 3 we obtain
T † = T †TT † = T †T 3T † and thus

T † = T †TTTT † = TT †TTT † = TT †TT †T = TT †T = T.

Now, let T 2n+3 = T . Since T is an EP operator, then

T † = T †TT † = T †T 2n+3T † = T †T 2n+1T †T 2 = T †T 2 = TT †T = T.

These observations establish the following proposition.

Proposition 2.13. Let T ∈ CR(H) and n ∈ N. Then the following statements
hold.

(i) If T = T †, then T = T 2n+1.

(ii) If T = T 2n+1 and T is an EP operator, then T = T †.

3. APPLICATIONS TO THE LAMBERT MULTIPLICATION
OPERATORS

Let (X,Σ, µ) be a complete σ-finite measure space. For any complete σ-finite
subalgebra A ⊆ Σ the Hilbert space L2(X,A, µ|A) is abbreviated to L2(A) where
µ|A is the restriction of µ to A. We denote the linear space of all complex-valued
Σ-measurable functions on X by L0(Σ). The support of a measurable function f
is defined by σ(f) = {x ∈ X : f(x) 6= 0}. All sets and functions statements are to
be interpreted as being valid almost everywhere with respect to µ. For each non-
negative f ∈ L0(Σ) or f ∈ L2(Σ), by the Radon-Nikodym theorem, there exists a
unique A-measurable function EA(f) such that∫

A

fdµ =

∫
A

EA(f)dµ,

where A is any A-measurable set for which
∫
A
fdµ exists. Now associated with

every complete σ-finite subalgebra A ⊆ Σ, the mapping EA : L2(Σ) → L2(A)
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uniquely defined by the assignment f 7→ EA(f), is called the conditional expec-
tation operator with respect to A. Put E = EA. The mapping E is a linear
orthogonal projection onto L2(A). Note that D(E), the domain of E, contains
L2(Σ)∪ {f ∈ L0(Σ) : f ≥ 0}. For more details on the properties of E see [14, 18].

We shall always take u ∈ L0(Σ) for which uf ∈ D(E) for all f ∈ L2(Σ). In
other words, EMu is a well-defined operator on L2(Σ). The mapping T : L2(Σ)→
L2(Σ) defined by T (f) = wE(uf) is called Lambert multiplication operator. For
other important properties of T see ([5, 6, 15]). By [15, Proposition 2.1(b)], EMu

is bounded on L2(Σ) if and only if E(|u|2) ∈ L∞(A). In this case ‖EMu‖ =

‖E(|u|2)‖1/2∞ . Now, let f ∈ L2(Σ). Then

‖Tf‖2 =

∫
E(|w|2)|E(uf)|2dµ =

∫
|E(u(E(|w|2))

1
2 f)|2dµ

(3.2) =

∫
|E(Mυf)|2dµ = ‖EMυf‖2,

where υ := u(E(|w|2))
1
2 . It follows that T = MwEMu is bounded on L2(Σ) if and

only if E(|w|2)E(|u|2) ∈ L∞(A), and in this case ‖T‖ = ‖E(|w|2)1/2E(|u|2)1/2‖∞.
Now, let 0 ≤ u ∈ L0(Σ) and let E(u) ≥ δ on S := σ(E(u)). Note that L2(Σ) =
L2(S)⊕L2(Sc), where Sc = X \S, L2(S) = L2(S,ΣS , µ|S ) and ΣS = {A∩S : A ∈
Σ}. We claim that T1 := EMu has closed range. To this end let fn, g ∈ L2(Σ) with
‖g‖2 > 0 and T1fn → g in L2(Σ). Since L2(Sc) ⊆ N(T ), then g = 0 on Sc and
hence T1fn → χ

S
g in L2(Σ). But χ

S
g = EMu(

χ
S
g

E(u) ), because g ∈ L2(A) and

‖ χSg
E(u)

‖2 ≤
1

δ
‖g‖2.

It follows that g = χ
Sc
g+χ

S
g = 0 +E(

χ
S
ug

E(u) ) ∈ R(T1), and so T1 has closed range.

By (3.1), T ∈ B(L2(Σ)) has closed range if and only if T1 ∈ B(L2(Σ)) has closed
range. These observations establish the following proposition.

Proposition 3.14. Let T : L2(Σ)→ L0(Σ) defined by T = MwEMu is a Lambert
multiplication operator.

(i) T ∈ B(L2(Σ)) if and only if E(|w|2)E(|u|2) ∈ L∞(A), and in this case

‖T‖ = ‖E(|w|2)E(|u|2)‖1/2∞ .

(ii) Let T ∈ B(L2(Σ)), 0 ≤ u ∈ L0(Σ) and υ = u(E(|w|2))
1
2 . If E(υ) ≥ δ on

σ(υ), then T has closed range.

In what follows, since for each u ≥ 0, σ(u) ⊆ σ(E(u2)), we use the notational
convention of u

E(u) for u
E(u)χσ(u) . From now on, we assume that u,w ∈ D(E) are
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non-negative, S = σ(E(u2)) = σ(E(u)) and T = MwEMu ∈ CR(L2(Σ)).

Let B, C be bounded positive operators on H such that BC = CB. Put
A = BC. Since f(x) = xp is an operator function, we obtain Ap = BpCp for
each p > 0. In particular, take B = Mν and C = Mω̄EMω, where 0 ≤ ν ∈
L0(A) and ω ∈ L0(Σ). A direct computations shows that Cp = MωE(|ω|2)p−1EMω.
Consequently, we have the following lemma.

Lemma 3.15. Let 0 ≤ ν ∈ L0(A), ω ∈ L0(Σ) and let A := Mνω̄EMω ∈ B(L2(Σ)).
Then for each p ∈ (0,∞), Ap = Mνpω̄E(|ω|2)p−1EMω.

Put

(3.3) A(f) =
uχ

G

E(u2)E(w2)
E(wf), f ∈ L2(Σ), G = σ(E(w)).

Then by Proposition 3.1, A ∈ B(L2(Σ)). Also, it is easy to check that

TAT = T, ATA = A, (TA)∗ = TA, (AT )∗ = AT.

Thus, A = T † = M χS∩G
E(u2)E(w2)

T ∗ and hence A has closed range.

Now, we concentrate on the parts of the polar decomposition T , T † and
their Aluthge transformations. Let f ∈ L2(Σ). Then we can obtain from direct
computations that

|T |2(f) = χ
S
uE(w2)E(uf);

|T | (f) = u(E(u2))−
1
2 (E(w2))

1
2E(uf) by Lemma 3.2;

|T | 12 (f) = u(E(u2))−
3
4 (E(w2))

1
4E(uf) by Lemma 3.2;

U (f) = χ
S
w(E(u2))−

1
2 (E(w2))−

1
2E(uf) because U |T | = T.

It follows that

(3.4) T̃ (f) = |T | 12U |T | 12 (f) =
uE(uw)

E(u2)
E(uf),

for each f ∈ L2(Σ). Also, we have

|T ∗|2(f) = χ
S
wE(u2)E(wf);

|T ∗| (f) = w(E(u2))
1
2 (E(w2))−

1
2E(wf) by Lemma 3.2;

|T ∗|†(f) = (
χ
S

E(u2)(E(w2))3
)

1
2wE(wf) by (3.2);

U∗(f) = (
χ
G

E(u2)E(w2)
)

1
2uE(wf).
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Take r = χ
G

(E(u2)E(w2))−1/2. Then U∗ = MrMuEMw, and

UU∗U = Mw(Mr)
3ME(u2)ME(w2)EMu = MrMwEMu = U.

Thus, U∗ is a partial isometry. By (3.1), N(MwEMu) = N(EM
u
√
E(w2)

). It

follows that

N(U) = N(|T |) = N(T );

N(U∗) = N(|T ∗|†) = N(T †),

and so T = U |T | and T † = U∗|T ∗|† are the unique polar decompositions.

Theorem 3.16. Let T, T̃ ∈ CR(L2(Σ)) with u,w ≥ 0. Then

(a) T † = M uχ
σ(E(w))

E(u2)E(w2)

EMw.

(b) T̃ = MuE(uw)

E(u2)

EMu.

(c) (T̃ )† = Muχ
σ(E(uw))

E(u2)E(uw)

EMu.

(d) T̃ † = M χ
S
wE(uw)

E(u2)(E(w2))2

EMw.

(e) T̃ , (T̃ )† and T̃ † are self-adjoint.

Proof. (a) and (b) follows from (3.2) and (3.3).

(c) Take ν = uE(uw)
E(u2) . Then by (3.3), T̃ = MνEMu. Moreover, by (3.2) we

obtain that (T̃ )† = M χσ(ν)

E(u2)E(ν2)

MνEMu, where σ(ν) = σ(u)∩σ(E(uw)). Therefore,

(T̃ )†(f) =
uχ

σ(E(uw))

E(u2)E(uw)
E(uf), f ∈ L2(Σ).

(d) Put ϑ =
uχ

G

E(u2)E(w2) . Then by (3.2), T † = MϑEMw. Hence

T̃ †(f) =
χ
S
wE(uw)

E(u2)(E(w2))2
E(wf), f ∈ L2(Σ).

(e) It follows from (3.3), (c) and (d).

Remark 3.17. If we omit the non-negativity hypothesis of u and w in Theorem 3.3,

then for every bounded Lambert multiplication T ∈ CR(L2(Σ)), T̃ , T̃ † and T̃ † are

always normal operators. Also, by using Theorem 3.3, once again, T̃ † = T̃ † if and
only if u = w.
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Let f ∈ L2(Σ). It is easy to see that

TT ∗(f) = wE(u2)E(wf);

T ∗T (f) = uE(w2)E(uf);

T ∗TTT ∗(f) = uE(w2)E(u2)E(uw)E(wf);

TT ∗T ∗T (f) = wE(u2)E(w2)E(uw)E(uf).

So, if u = w or u,w ∈ L0(A), then TT ∗ = T ∗T . Conversely, if T is normal then

(3.5) wE(u2)E(wf) = uE(w2)E(uf), f ∈ L2(Σ).

Since A is sigma-finite, there exists f0 ∈ L2(A) with σ(f0) = X. By replacing f0

by f and then taking the conditional expectation E of both sides of (3.4) gives
E(u2)(E(w))2 = (E(u))2E(w2). Thus, E(u2) = (E(u))2 and E(w2) = (E(w))2.
But, we know that E(|f |2) = |E(f)|2 if and only if f ∈ L0(A). Consequently,
u,w ∈ L0(A). Moreover, T = MwEMu is binormal if and only if uE(w) = wE(u)
on σ(E(uw)).

We recall that T is an EP operator if and only if T †T = TT †. Since

T †T = M χS∩G
E(u2)E(w2)

T ∗T ;

TT † = M χS∩G
E(u2)E(w2)

TT ∗,

then T is an EP operator on L2(Σ) if and only if T is a normal operator on L2(ΣK),
where K = S ∩G. Thus, we have the following result.

Theorem 3.18. Let 0 ≤ u,w ∈ L0(Σ) with u 6= w and let T = MwEMu ∈
B(L2(Σ)). Then the following assertions hold.

(i) T is normal if and only if u,w ∈ L0(A).

(ii) T ∈ CR(L2(Σ)) is an EP operator on L2(Σ) if and only if u,w ∈
L0(AK), where K = S ∩G.

(iii) T is binormal if and only if uE(w) = wE(u) on σ(E(uw)).

Now, we determine the lower and upper estimates for the numerical range of
T †. Let µ(X) = 1 and let T = MwEMu ∈ CR(L2(Σ)) with 0 ≤ u,w ∈ D(E). By
(3.2) and definition of ω(T †) we have

ω(T †) ≥ |〈T †1, 1〉| = |
∫
X

χS∩G
E(u2)E(w2)

uE(w)dµ|

≥
∫
S∩G
| E(u)E(w)

E(u2)E(w2)
|dµ.
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On the other hand, since L∞(Σ)∩L2(Σ) is dense in L2(Σ), then by the Hölder and
conditional Hölder inequality we get that,

ω(T †) = sup
‖f‖≤1

|〈T †f, f〉| ≤ sup
‖f‖≤1

|
∫
X

χS∩G
E(u2)E(w2)

uE(wf)f̄dµ|

≤ sup
‖f‖≤1

∫
X

| χS∩G
E(u2)E(w2)

(E(u2))
1
2 (E(w2))

1
2E(|f |2)|dµ

≤ sup
‖f‖≤1

∫
S∩G

1

(E(u2))
1
2 (E(w2))

1
2

E(|f |2)dµ

≤
∫
S∩G

dµ

(E(u2))
1
2 (E(w2))

1
2

.

Consequently, we have the following theorem.

Theorem 3.19. Let µ(X) = 1 and let T = MwEMu ∈ CR(L2(Σ)) with 0 ≤ u,w ∈
D(E). Then

∫
S∩G

E(u)E(w)

E(u2)E(w2)
dµ ≤ ω(T †) ≤

∫
S∩G

dµ√
E(u2)E(w2)

,

where S = σ(E(u)), G = σ(E(w)).

Example 3.20. Let X = [− 1
2 ,

1
2 ], dµ = dx, Σ be the Lebesgue sets, and let A ⊆ Σ

be the σ-algebra generated by the symmetric sets about the origin. Let 0 < a ≤ 1
2

and f ∈ L2(Σ). Then ∫ a

−a
E(f)(x)dx =

∫ a

−a
f(x)dx

=

∫ a

−a
{f(x) + f(−x)

2
+
f(x)− f(−x)

2
}dx =

∫ a

−a

f(x) + f(−x)

2
dx.

Thus, E(f)(x) = f(x)+f(−x)
2 . Put u(x) = x + 2, w(x) = x + 3 and T = MwEMu.

Then E(u) = 2, E(w) = 3, E(u2) = x2 + 4 and E(w2) = x2 + 9. Now, by
Proposition 3.1(i) we get that

‖T‖ = ‖
√

(x2 + 4)(x2 + 9)‖∞ =

√
629

4
= 6.2699.

Moreover, since u
√
E(w2) = (x + 2)

√
x2 + 9 ≥ 9

2 , then by Proposition 3.1(ii),
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T ∈ CR(L2(Σ)). Also, it is easy to check that∫
[− 1

2 ,
1
2 ]

E(u)E(w)

E(u2)E(w2)
dµ =

∫ 1
2

− 1
2

6dx

(x2 + 4)(x2 + 9)
= 0.1618;

∫
[− 1

2 ,
1
2 ]

dµ√
E(u2)E(w2)

=

∫ 1
2

− 1
2

dx√
(x2 + 4)(x2 + 9)

= 0.1642;

‖T †‖ = ‖ 1√
E(u2)E(w2)

‖∞ =
1

6
= 1.666;

‖T̃‖ = ‖E(uw)‖∞ =
25

4
= 6.250.

Thus, ‖T̃‖ ≤ ‖T‖, ‖T †‖ ≥ 1/‖T‖ and by Theorem 3.6 we obtain

0.1618 ≤ ω(T †) ≤ 0.1642 ≤ 1.666 = ‖T †‖.
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