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PARALLELISM BETWEEN MOORE-PENROSE
INVERSE AND ALUTHGE TRANSFORMATION OF

OPERATORS

M. R. Jabbarzadeh, H. Emamalipour and M. Sohrabi Chegeni*

In this paper we study some parallelisms between f-Aluthge transform and
binormal operators on a Hilbert space via the Moore-Penrose inverse. More-
over, we give some applications of these results on the Lambert multiplication
operators acting on L*(Z).

1. INTRODUCTION AND PRELIMINARIES

Let B(H) denote the C*-algebra of all bounded linear operators on a complex
Hilbert space H. We write N (T') and R(T') for the null-space and the range of an
operator T' € B(H), respectively. Recall that for T € B(H), there is a unique
factorization T = U|T|, where N (T)) = N(U) = N(|T|), U is a partial isometry,
ie. UU*U = U, and |T| = (T*T)"/? is a positive operator. This factorization is
called the polar decomposition of T. Note that T = |[T*|U = +/|T*|U+/|T|. More
generally, T = |T*[PU|T|'~P for p € (0,1); see e.g. [13, Theorem 2.7]. If T = U|T|
is the polar decomposition of T € B(H), then T = |T|/2U|T|/2 is called the
Aluthge transformation of T'. Let CR(H) be the set of all bounded linear operators
on H with closed range. For T € CR(H), the Moore-Penrose inverse of T', denoted
by T, is the unique operator T'T that satisfies the following:

rrir =T, T'TT' =7, (TTY)* =TT, (T'T)* =T'T.

*Corresponding author. Morteza Sohrabi Chegeni

2010 Mathematics Subject Classification. Primary: 47B20; Secondary: 47B38.

Keywords and Phrases. Aluthge transformation, Moore-Penrose inverse, polar decomposition,
conditional expectation.

318



Moore-Penrose inverse and Aluthge transformation 319

We recall that 7T exists if and only if 7 € CR(H). Note that if 7 € CR(H), then
T*, |T| and T have closed range. If T = U|T| is invertible, then T-! = T, U is
unitary and so |T'| is invertible. It is a classical fact that the polar decomposition
of T* is U*|T*|. It is easy to check that U*|T*|! and |TT|2U*|Tt|2 are the polar
decomposition and Aluthge transformation of 7', respectively. For other important
properties of T see [2, 10, 17].

An operator T € B(H) is said to be binormal if [|T|,|T*|]] = 0, where
[A, B] = AB — BA for operators A and B. The numerical range W (T') of an oper-
ator T € B(H) is defined by W(T) = {{Tx,x) : ||z|| = 1}. Also, w(T) = sup{|]| :
A € W(T)} and Sp(T') denote the numerical radius and spectrum of T', respectively.

Study of Moore-Penrose inverse and Aluthge transformationaton of bounded
linear operators has a long history. In this paper, we introduce -Aluthge trans-
formation which is parallel to Aluthge transformation. Then we investigate some
connections and parallelisms between f-Aluthge transformation and binormal op-
erators via the Moore-Penrose inverse. In section 2, firstly, we give a necessary
and sufficient condition to the quasinormality of TT. We show that if T" is onto,
then T™ is quasinormal if and only if Tt is quasinormal. Afterward, we give a
formula for (T*)" when T is binormal. Also, we prove that 7% is quasinormal if
and only if (TT)* = (T*)!, whenever T is onto. Moreover, we briefly discuss some
classical results on the spectrum, numerical range and numerical radius via the
Moore-Penrose inverse and Aluthge transformation. In section 3, we obtain some
applications of these results to the Lambert multiplication operator M,,EM, on
L?(X), where E is the conditional expectation operator with respect to a sub-sigma
algebra A C ¥. In addition, we determine lower and upper bounds estimates for
the numerical range of (MwEMu)T.

2. ON SOME CHARACTERIZATIONS OF 7'

For any closed subspace M of H, let Py; denote the orthogonal projection
onto M. For T € CR(H), we shall make used the following general properties of

T, f, Tt and their polar decompositions. For proofs and discussions of these facts
see [10, 9, 12, 20, 22].

P(1) Tt = |TT|3U*|T"|3;

(2) For A > 0, A € Sp(T) if and only if A=* € Sp(T');
(3) [TT] = |T*|1 and |T[3 = (IT*|)T;
(4)
(5)

o

P() [T*[2(|1T*|2) = Py = (IT*[2)1T7]3;
P(5) If T is binormal, then Pg(1+)Pr(1)) = Pr(1))Pr(T*));
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P3)T>0& T >0;
P(14) U*|T*| and U*|T*|! are the polar decompositions of T* and T'.

P(6) U*PR(|T*\) = U* = PR(|T|)U*;
P(?) U*U = PR(\T\) and UU* = PR(|T*|)§
P(8) |T1|2 Prp-)y = |TH|2;
P(9) U*(|T*[")= = (IT|")=U
P(10 UU*|T*\T |T* |t
P(11) (TH* = |T*|U;
P(
(
(

)
)
12) [(T*)f| = |T";
)
)

Let f be a bounded Borel real-valued function defined in an interval Z C R.
If T € B(H) is a self-adjoint operator, then by f(T") we mean the self-adjoint oper-
ator fjoooo f(N)dE) where E) is the spectral resolution of identity corresponding to
T. The restriction of f to the set of all self-adjoint operators is called an operator
function. For example, for each ¢ > 0, f(x) = 27 is an operator function. In ad-
dition, in this case, if U is any unitary operator, then f(U*TU) = U*f(T)U. For
more details see [3, 4].

Lemma 2.1. Let T € CR(H). Then the following assertions hold.
(i) (|T|"e = U*(|T*|")9U, for each q > 0.
(ii) TT is quasinormal if and only if U*|T*|" = |T*|TU*.
Proof. (i) By P(3), P(10), P(11) and P(14) we have
(T1M? = (T2 = [(T1)*]> = TH(T")*
=U*|T*['|T*|'U
=U*|T*|'uUr T |TU
= (U*|T*|'U)2.
Since for each ¢ > 0, f(z) = 3 is an operator function, we obtain (|7|")4 =
U*(|T*|")4U.

(ii) It is a classical fact that 7" is quasinormal if and only if U|T| = |T'|U (see
for example [12, Theorem 3]). Now, the desired conclusion follows from this and
P(14). O

Theorem 2.2. Let T € B(H) be onto. Then the following statements are equiva-
lent:

(i) T* is quasinormal.
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(i) T1 is quasinormal.
Moreover, if one of the above statements hold then
(iii) [(TT)*TT, (TT)* + TT] = 0.
Proof. (i)<(ii) Since |T*||T*||T*| = |T*|, then we have
T*is quasinormal < U*|T"*| = |T*|U*
= Ur|r|T YT | = ||| T N T U
= [T U T | = |7 ||T* [ U T
— |T*|(U*|T*|! — |T*|TU*)|T*| = 0.

By hypothesis, N'(|T*|) = N(T*) = {0}. Hence (U*|T*|T — |T*|TU*)|T*| = 0, and

so U*|T*|T = |T*|TU* on R(|T*|t). On the other hand, U*|T*|' = |T*|TU* on
N(|T*|") = N(U*). Thus, U*|T*|T = |T*|'U* on H. Consequently, by Lemma
2.1(ii), (i)« (ii) holds.

Now, it is easy to check that

(T Tt () + T = (712, 1T 'U + U7

= {(IT* 20| T[T = U (1T 1)} + [T (T )0 = U(T*[")*}.

If (ii) is holds, then by Lemma 2.1(ii) we obtain

(T2 o ||t = U (1T,
(MU =U(T7|")*.

Thus, [(TH)*TT, (T1)* + Tt = 0. O

For more details and applications on condition (iii) in Theorem 2.2 see [16].
Lemma 2.3. If T € CR(H) is binormal, then (T*)" = (|T*|")zU(|T*|1)z.
Proof. Since T is binormal, then we obtain from direct computations that

TH(T)IT = [T FU T2 (77 )2 U (T2 77 |2 U777
= |T*|2U* Pr(r-)U Prqr-pU*|T*|Z by P(4)

= |T*[3U*U Py U* T by P(6)
*| % k| L

= |T*|2 Pr(r)) Prqr-)U"|T"|?2 by P(7)
x| 1 PR

= |T"|2 Prr+) Pr(rp U™ | T"|2 by P(5)

=|T*|2U*|T"|> =T~ by P(4), P(6).
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Also,
(T)IT(T*)" = (" 2u (T2 [T ]2 U T2 (\T*m% (7*1">
= (1T*|")2U Pr(- U Prqr-pU(T" HE by P@)
= (IT7[")2U Py U U(|T7[1) 2 by P(6)
= (IT*[") 2 U Prqyre)) Prqry (IT*11)? by P(7)
= (|7*[") 2 U Pr(z)) Prqz-) (IT*[1)? by P(5)
= (IT*|")% P+ U Prqr- (IT*[1)? by P(6)
= (IT*["=U(T*[")? = (T)f by P(4).

Similar computations show that
(T*)'T* = UPp(r+) Pr(rU”

and o
T(T*)" = Pr(ry) Pr(r+))-

Hence, (ﬁ)Tﬁ and ﬁ(ﬁ)T are self-adjoint operators. This completes the proof.
[

Note that if T € CR(H) is binormal, then Lemma 2.3 shows that T* and so
T have closed range. Moreover, in this case, we have T = (|T|")zU*(|T|1)z.

Theorem 2.4. Let T € B(H) be onto and binormal. Then T* is quasinormal if
and only if (TT)* = (T*)T.

Proof. By [21, Theorem 10] and Theorem 2.2, T* is quasinormal if and only if
Tt = Tt. Now, taking adjoint of both sides and using Lemma 2.3 and P(1), we
obtain (TT)* = (T*)T. O

In the following, we concentrate on the polar decomposition of (T)F. We
require the following lemma.

Lemma 2.5. (i) 11, Corollary 1] Let T = U|T| and S = VS| be the polar
decompositions. If T and S are doubly commutative (i.e., [T,S] = [T,5*] = 0),
then TS =UVI|TS|.

(it) [22, Proposition 3.9] Let T = U|T| be the polar decomposition of a bi-
normal operator T'. Then T = U*UU|T| is also the polar decomposition ofT

(iii) [22, Theorem 2.1] Let T = U|T| and |T|z|T*|z = V||T|2|T*|2| be the
polar decompositions. Then T = VU|T| is also the polar decomposition.
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Theorem 2.6. Let T = U|T| € CR(H) and (|T|")z(|T*|")z = V|(|T|)2 (|T*|1)z|
be the polar decompositions. If T is binormal, then (T)' = U*V|(T)| is also the
polar decomposition.

Proof. (i) First we show that (T)T = U*V|(T)1].

UV =vurv
= urv((Thzu(THu*(|T|H?)? by Lemma 2.3
T zuu (T HuUE(| T )2 by Lemma 2.1(i)

(A ERE: by P(8),P(10)

o~ o~ o~

X 1
=ur(rfh= ()
= U(IT*")* (7]
= U*(|T*|T)%UU*

= (T")=U"
Now, we claim that N((T)) = N(U*V). Since T is binormal, then it is easy

to check that 7T is binormal. Thus N((|T*|T (|T|T) z) = ((|T\T)%(|T*|T)%) =
N(V). Then we have

UVa =0« U (T2 (T N2z =0
& U (IT* Mz (1T") 2z =0
Ut (TNt e =0 by P(8)
e (T2 ()22 =0 by Lemma 2.1(i)
o (Mfz=o0.

Lastly, we prove that U*V is partial isometry. Since (|T|7)z = U*U(|T|")z and
(|T*|")z = UU*(JT*|")z are the polar decompositions of (|T]7)z and (|T%|")z,
respectively then by Lemma 2.5(i) we have

(rMHz(r*h: = (Ir*[H=(7l") = = vurvru|(r (7)) 3]

Then by the uniqueness of the polar decomposition we get that V = UU*U*U. It
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follows that

(U*V)(UV)H(U*V) = (U UUUU ) U UUU*U)* (U UU*U*U)

= Pr(rpU"Pr(r))U Pr(1)U" Pr(17)) by P(7)
= U"Prr)UU" Prr)) by P(6)
= U" Pr(1)) Pr(+)) Pr( /1)) by P(6)
= U" Pr(r+)) Pr(11)) by P(5)
= Pr(rpU"Pr(r)) by P(6)
— U*UU*U*U = U*V.
This completes the proof. O

Corollary 2.7. Let T € CR(H) be binormal and let Tt = U*|T*|t and (|T|")z (|T*|")z =

VI(IT|)z (|T*[1) 2| be the polar decompositions. Then the following statements are
hold:

(i) Tt = UU*U*|ﬁ| is the polar decomposition.
(ii) (T)t = U*U*U|(T)!| is the polar decomposition.

Proof. (i) Since T is binormal, T is binormal. Now, the desired conclusion follows
by Lemma 2.5(iii).

(i) Recall that (|T|")z = U*U(|T[1)2 and (|T*|")2 = UU*(|T*|")= are the
polar decompositions of (|T']7)z and (|T*|1)2, respectively. Then by Lemma 2.5(i)
we obtain

(rHz(r*hz = (IT*H2 (7" = vururu|(THh (7))
Thus, by Theorem 2.6, (T)! = U*UU*U*U|(T)| = U*U*U|(T)1|. O

In [19], Yamazaki introduce the notion of the *-Aluthge transformation T
of T by setting T*) = |T*|2U|T*|2. Like this notion we introduce f-Aluthge
transformation 7 of T by setting T = (ﬁ)* Similar computations show that
T® = T™) whenever T € CR(H) is binormal.

Proposition 2.8. Let T € CR(H). Then the following statements hold.

(i) If T is self-adjoint, then W(T) C W (TH)W (T?).

(ii) If T is onto and T* is quasinormal, then W(ﬁ) =W(T") C WU )W(T*|").

(iii) If T is binormal, then W ((T)(D) C W(U)W (|T*]).
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Proof. (i) Let z € H with ||z|| = 1. Then we get that

(Tx,z) = (TT'Tx,z) = (T"Tx, Tx)
Tx Tz

= (TT ", ——\(Tx,Tx).
[T]|” || 7]

It follows that (Tx,z) € W(TT)W (T?), for each z € H with ||z| = 1.

(ii) By Theorem 2.2 and Lemma 2.1, 7T is quasinormal and so U*|T*|T =
|T*[tU*. Tt follows that U*(|T*[')2 = (|T*|")2U*. Then by P(1) and P(14) we
have

(T2, ) = (U*|T*| 2, 2) = (T1x, )

(Tt
(7=

- (U ST ),

for each x € H with ||z|| = 1.

(iii) Direct replacement shows that
(TWa,2) = (T72U|T" >, )
= (UIT"|#x, [T"|*2)
7|5z |T*|a
= <U %1 ’ w1
Tz ]| [T =]

W[, ),

for each x € H with ||z|| = 1. This completes the proof. O

Proposition 2.9. Let T € CR(H). Then the following assertions hold.
(i) Let T € CR(H) be self-adjoint. Then w(T) < w(TH)|T|.

(i1) If T is onto and T* be quasinormal, then
w(TT) = w(TT) < (U]
Proof. (i) Since T is self-adjoint and T' = TT'T, we have

w(T) = sup (TT'Tx,z)| = sup (T1Txz, Tx)]|

llzll=1 llzll=1

Tx Tx
= sup [(TT—— ——
ell=1 |Tz||” | Tz

< w(TH|T*.

Tz
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(ii) Since T™* is quasinormal then by Theorem 2.2, we obtain

w(T") = sup (T, )]
|z]=1

s (U7 a.)
* Lo * 1
sup |((IT° 1)U (17" 1)

llzll=1

Thus,
w(TT) = sup |(T"z, )|
llzll=1

s (01112,
z||=1

sup [(U*(|1 T2, (T2

z,z)| = w(Th.

)|

T[Tl

=1
_ . (T Yz (T

lel=t (T z2| (T
< w(U| [T

Proposition 2.10. Let T € CR(H). Then the foll
(i) w(TW) <w(|T7)) < IIT7|]|-

(i) If T is binormal, then w(ﬁ) =w(T") an

‘T)%x
T
3

)z x|

owing assertions hold.

d [Tt =T

Proof. The first part is easily follow from Proposition 2.8. For the second part,

since
AR ADECAADE
= U (T ) UUTUT (T 2 U
= U (T U
=U*|Thzu*|T ]2 U
— U*TTU
then
w(TT) = I\Sll\lpl \(U*ﬁUx,xH = ||Sl\|l
~ Ux Ux
= sup ‘<TTW7W

llzll=1

by Lemma 2.3
by Lemma 2.1(i)
by P(8)

by P(3)

by P(1),

p |<ﬁU.I, Uz)|

=1

Uzl < w(T).
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On the other hand, since

Tt = (I |hrus (Tt by P(1)
= (|IT*H2uuru(|IT*|")* by P(8)
= u(|T/Hrur(T|h U by P(9)
- by Lemma 2.3,
then
w(Th) = Sy (UT U 2, z)| = s (T U2, U*2)|
~. Uz U*x _
- Hilnl:pl izt T HU*x||>”U*”"”2 < w(Th.
Moreover, since 7 = U*TTU and TT = U*TTU, we obtain ||TT|| _ Hﬁ” .

Lemma 2.11. [7, Theorem 2.8] If A be an arbitrary operator and B is normal.
Then Sp(AB) = Sp(BA).

Proposition 2.12. Let T € CR(H). Then the following statements hold.
(i) (T*)t = U|T|' is the polar decomposition.
(i) If T is binormal, then Sp(TT) = Sp(ﬁ) = Sp(TH).

(iii) If T is binormal and A > 0, then A € Sp(T) < X € Sp((T)M).

Proof. (i) Since U*|T*|' is the unique polar decomposition of Tf, then N(U*) =
N(IT*["), and so N(U*U) = N(|T*|'U). Now, by Lemma 2.1(i), P(11) and P(12)

we have
(2.1) () = (1) = |[T°|'U = UU* |70 = U

N(U) = N(U*U) = N(|T*|'U) = N((T*)") = N(|(T")*]) = N(IT|").
Therefore, (T*)" = U|T|" is the unique polar decomposition.

(ii) By P(14), (|T|")2 > 0 and hence it is normal. Thus, by (2.1) and Lemma
2.11 we have

Sp(Th) = Sp(|T|'U™) = Sp((IT[")? (|T|1)7U)
= Sp((IT|")zU"(IT[")2) = Sp(T").
Similarly, we get that
Sp(Tt) = Sp((|T7[1)2U*(IT*[1)?)
= SpU=(IT*[")2(IT7[1)?) = Sp(1),
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(iii) If A > 0, then by Lemma 2.3 and part (ii) we have

A€ Sp(T) & A1 e Sp(T) & A" e Sp(T)
& e Sp((TH) = Sp((T)D).
O

Recall that an operator T € CR(H) is an EP operator if and only if TTT =
TIT [8]. If T =TT, then T3 = TT'T = T and hence T?"*! = T for all n € N.
On the other hand, if 7Tt = TTT and T?"*t! = T, then for n = 3 we obtain
Tt =T'TTt = TTT3TT and thus

T =T'TTTT' = TT'TTT" = TT'TTIT = TT'T =T.
Now, let T?"*3 = T. Since T is an EP operator, then
Tt =TiTTt = T3t = pip2ntipir? — Ti7T2 = 77T = T
These observations establish the following proposition.

Proposition 2.13. Let T € CR(H) and n € N. Then the following statements
hold.

(i) If T =T1, then T = T?"+1,

(i) If T = T?"*! and T is an EP operator, then T = T.

3. APPLICATIONS TO THE LAMBERT MULTIPLICATION
OPERATORS

Let (X, ¥, ) be a complete o-finite measure space. For any complete o-finite
subalgebra A C ¥ the Hilbert space L?(X, A, p.4) is abbreviated to L?(A) where
p, is the restriction of y to A. We denote the linear space of all complex-valued
Y-measurable functions on X by L°(X). The support of a measurable function f
is defined by o(f) = {x € X : f(x) # 0}. All sets and functions statements are to
be interpreted as being valid almost everywhere with respect to p. For each non-
negative f € L°(X) or f € L?*(X), by the Radon-Nikodym theorem, there exists a
unique A-measurable function E4(f) such that

/Afdu=/AEA(f)du,

where A is any A-measurable set for which f 4 Jdp exists. Now associated with
every complete o-finite subalgebra A C ¥, the mapping EA : L?(X) — L?(A)
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uniquely defined by the assignment f +— E“(f), is called the conditional expec-
tation operator with respect to A. Put E = E“. The mapping E is a linear
orthogonal projection onto L?(A). Note that D(E), the domain of E, contains
LA(Z)U{f € L°(X) : f > 0}. For more details on the properties of E see [14, 18].

We shall always take u € LY(X) for which uf € D(E) for all f € L*(X). In
other words, EM,, is a well-defined operator on L*(X). The mapping T : L*(3) —
L?(%) defined by T(f) = wE(uf) is called Lambert multiplication operator. For
other important properties of T see ([5, 6, 15]). By [15, Proposition 2.1(b)], EM,,
is bounded on L%(X) if and only if E(ju?) € L>®(A). In this case |[EM,| =
IE(Jul?)||3%. Now, let f € L2(S). Then

ITfP = / (w]?)|E(uf) 2y = / B(u(E(wl?)} f)2dp

(3.2) - / B(M, f) 2 = | EM, |1,

where v 1= u(E(Jw|? ))% It follows that T' = M,, EM, is bounded on L*(¥) if and
only if E(|w|?)E(|u|?) € L>°(A), and in this case ||T|| = | E(|w|*)Y?E(|u|*)"/?|
Now, let 0 < u € L°(X) and let E(u) > 6 on S := o(E(u)). Note that L*(X) =
L*(S) & L?(S¢), where S¢ = X'\ S, L*(S) = L*(5,%g,15) and g = {ANS: Ae
¥}, We claim that Ty := EM,, has closed range. To this end let f,, g € L?(X) with
llgll2 > 0 and T1f, — g in L*(¥). Since L2(SC) N(T), then g = 0 on S°¢ and
hence T fr, — x59 in L*(). But x,g = EM, (%2 2l )) because g € L?(A) and

ng

It follows that g = xs.9+ X9 = 0+E(>;35(Z§) € R(T1), and so T; has closed range.

By (3.1), T € B(L*(X)) has closed range if and only if 71 € B(L*(X)) has closed
range. These observations establish the following proposition.

Proposition 3.14. Let T : L*(X) — L%(X) defined by T = M, EM,, is a Lambert
multiplication operator.

(i) T € B(L3(X)) if and only if E(|w|?)E(|u|?) € L>(A), and in this case
I7) = B () E(|uf) 5.

(ii) Let T € B(L*(X)), 0 < u € LX) and v = u(E(jw|?))2. If E(v) > § on
o(v), then T has closed range.

In what follows, since for each u > 0, o(u) C o(E(u?)), we use the notational
convention of % for %XUW)- From now on, we assume that u,w € D(E) are
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non-negative, S = o(E(u?)) = o(E(u)) and T = M,,EM,, € CR(L?(X)).

Let B, C be bounded positive operators on H such that BC' = CB. Put
A = BC. Since f(x) = zP is an operator function, we obtain AP = BPC? for
each p > 0. In particular, take B = M, and C = MgzEM,, where 0 < v €
L°(A) and w € L(X). A direct computations shows that C? = M, p(|w2)p—1 EM,,.
Consequently, we have the following lemma.

Lemma 3.15. Let 0 <v € LY(A), w € LX) and let A := M, EM,, € B(L*(%)).
Then for each p € (0,00), AP = Mpgp(|wj2)r—1 EM,, .

Put

(3.3) A(f) = WE(W), f e LX), G = o(E(w)).

Then by Proposition 3.1, A € B(L?(X)). Also, it is easy to check that
TAT =T, ATA=A, (TA)*=TA, (AT)" = AT.

Thus, A =T' = M_ xsne _T* and hence A has closed range.

E(u2)E(w?2)
Now, we concentrate on the parts of the polar decomposition T, Tt and
their Aluthge transformations. Let f € L?(X). Then we can obtain from direct
computations that

ITP(f) = xsuBE(w?)E(uf);
IT] (f) = w(E(u?)" % (E(w?))? E(uf) by Lemma 3.2;
712 (f) = w(E(u?)) "% (E(w?)) E(uf) by Lemma 3.2;
U(f)= XSw(E(u2))_%(E(wg))_%E(uf) because U|T| =T.
It follows that
(3.4 7)) = 1T 0) = S B),
for each f € L?(¥). Also, we have
IT*[2(f) = xswE(u?) E(wf);
7% (f) = w(B(u?) (E(w?) 2 E(wf) by Lemma 3.2;
) = (s ViB(w .2);

Ut(f) = <W>%w<w).
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Take r = x (E(u?)E(w?))~Y/2. Then U* = M, M, EM,,, and
UU*U = My (M, )* M2 Mg EM, = M, M,EM, = U.

Thus, U* is a partial isometry. By (3.1), N(M,EM,) = N(EMM\/W) It
follows that

N(U) = N(|T) = N(T);
NU*) = N(|T*[") = N(T"),

and so T = U|T| and Tt = U*|T*|" are the unique polar decompositions.

Theorem 3.16. Let T,T € CR(L2(X)) with u,w > 0. Then

(a) Tt = M wx, iy, EMy.

B(u?)B(w?)

(b) T = M usw EM,.

E(u?)

(¢) (T)" = Mxy (puuy EMu.

E(u2)E(uw)
(d) TT == M XgwE(uw) EM’LU'
B(u?)(B(w?))?

(e) T, (T)" and Tt are self-adjoint.
Proof. (a) and (b) follows from (3.2) and (3.3).

(c) Take v = % Then by (3.3), T = M, EM,. Moreover, by (3.2) we

obtain that (T)t = M x,o, M, EM,, where o(v) = o(u)No(E(uw)). Therefore,

E(u2)E(v2)

(D) () = prae Buf),  f € L3(3).

(u?) E(uw)
(d) Put ¥ = gz ey Then by (3.2), T = MyEM,,. Hence
T) = g Bwl).  f € 12(5)
(e) It follows from (3.3), (c¢) and (d). O

Remark 3.17. If we omit the non-negativity hypothesis of v and w in Theorem 3.3,
then for every bounded Lambert multiplication 7' € CR(L2(X)), T, Tt and Tt are

always normal operators. Also, by using Theorem 3.3, once again, Tt =Tt if and
only if u = w.
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Let f € L?(X). It is easy to see that

TT*(f) = wEu?*)E(wf);

T*T(f) = uB(w?)E(uf);
T*TTT*(f) = uE(w?)E(u?)E(uw)E(wf);
TT*T*T(f) = wE(u*)E(w?)E(uw)E(uf).

So, if u = w or u,w € LY(A), then TT* = T*T. Conversely, if T is normal then
(3.5) wE(W?)E(wf) = uB(w?)E(uf), f¢€L*%).

Since A is sigma-finite, there exists fo € L?(A) with o(fy) = X. By replacing fo
by f and then taking the conditional expectation E of both sides of (3.4) gives
E(W?)(E(w))? = (E(u))?E(w?). Thus, E(u?) = (E(u))? and E(w?) = (E(w))?2.
But, we know that E(|f|?) = |E(f)|? if and only if f € L°(A). Consequently,
u,w € L°(A). Moreover, T = M,, EM,, is binormal if and only if uF(w) = wE(u)
on o(E(uw)).

We recall that T is an EP operator if and only if TtT = TT*. Since

T'T=M_ xsne  T*T;

B(u?)B(w?)

TT' = M__xsoe  TT*,

E(u?)E(w?)

then T is an EP operator on L?(X) if and only if T is a normal operator on L?(Zx),
where K = SN G. Thus, we have the following result.

Theorem 3.18. Let 0 < uw,w € L°(X) with w # w and let T = M,EM, €
B(L?(X)). Then the following assertions hold.

(i) T is normal if and only if u,w € LY(A).

(ii)) T € CR(L%(X)) is an EP operator on L*(X) if and only if u,w €
LY(Ak), where K = SNG.
(15i) T is binormal if and only if uE(w) = wE(u) on o(E(uw)).

Now, we determine the lower and upper estimates for the numerical range of
TT. Let w(X) =1 and let T = M,EM, € CR(L?(X)) with 0 < u,w € D(E). By
(3.2) and definition of w(T'") we have

2 = f et

B(u)E(w)
= /m B Bw?)
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On the other hand, since L>(X)N L2(X) is dense in L?(X), then by the Holder and
conditional Holder inequality we get that,

w(T") = su T su XSmG wf) Fd
o H§|\21|<T |<|f”§1|/ Bt B £ fdp)
XSnG 1 -
SS?%/X'W(EW )3 (B(w?)? E(|f[)|dy
1
< su ; 1
||f|21/sm( 2)3(E(w?))? E(|f1*)dp

Elu
du
< Lo (B (@)

Consequently, we have the following theorem.

Theorem 3.19. Let u(X) =1 and let T = M, EM, € CR(L3(X)) with 0 < u,w €
D(E). Then

E(u)E(w) o(T du
sna E(UQ)E(wz)d'uS T < snc VEW2)E(w?)’

where S = o(E(u)),G = o(E(w)).

Example 3.20. Let X = [—3, 1], du = dz, ¥ be the Lebesgue sets, and let A C %
be the o-algebra generated by the symmetric sets about the origin. Let 0 < a < 3 1
and f € L?(X). Then

a

B @)z = [ fa)de

—a —a

PR R OET IRy oy (OES P

—a

Thus, E(f)(z) = L2H 2 put u(z) = 2 + 2, w(= ) =@ +3and T = MyEMy.

Then E(u) = 2, E(w) = 3, E(u?) 2?2 + 4 and E(w?) = 2% + 9. Now, by
Proposition 3.1(i) we get that
1629
171 = V(@2 + (@2 +9)lls = = = 6.269.

Moreover, since uy/E(w?) = (z + 2)vVaz2+9 > 2, then by Proposition 3.1(ii),
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T € CR(L%(X)). Also, it is easy to check that

/ BuwBw) / 6 _o161s:
[7

111 E(u2)E(w?) 1 (@2 +4)(22 +9)
/ T dx — 0.1642;
3.3 VE@)EW?) Sy /(2® +4)(2* +9)
1 1
1T = ||ﬁ||oo = - = 1.666;
VEW?)E(w?) 6
25

171} = 1E(uw)lloc = = = 6.250.

Thus, ||T]| < ||T||, |TF|| > 1/||T| and by Theorem 3.6 we obtain

0.1618 < w(TT) < 0.1642 < 1.666 = || TT||.
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