APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS

available online at http://pefmath.etf.rs $% \mathcal{A} = \mathcal{A} = \mathcal{A} = \mathcal{A}$

APPL. ANAL. DISCRETE MATH. **12** (2018), 318–335. https://doi.org/10.2298/AADM161026005J

PARALLELISM BETWEEN MOORE-PENROSE INVERSE AND ALUTHGE TRANSFORMATION OF OPERATORS

M. R. Jabbarzadeh, H. Emamalipour and M. Sohrabi Chegeni^{*}

In this paper we study some parallelisms between \dagger -Aluthge transform and binormal operators on a Hilbert space via the Moore-Penrose inverse. Moreover, we give some applications of these results on the Lambert multiplication operators acting on $L^2(\Sigma)$.

1. INTRODUCTION AND PRELIMINARIES

Let B(H) denote the C^* -algebra of all bounded linear operators on a complex Hilbert space H. We write $\mathcal{N}(T)$ and $\mathcal{R}(T)$ for the null-space and the range of an operator $T \in B(H)$, respectively. Recall that for $T \in B(H)$, there is a unique factorization T = U|T|, where $\mathcal{N}(T) = \mathcal{N}(U) = \mathcal{N}(|T|)$, U is a partial isometry, i.e. $UU^*U = U$, and $|T| = (T^*T)^{1/2}$ is a positive operator. This factorization is called the polar decomposition of T. Note that $T = |T^*|U = \sqrt{|T^*|U\sqrt{|T|}}$. More generally, $T = |T^*|^p U|T|^{1-p}$ for $p \in (0,1)$; see e.g. [13, Theorem 2.7]. If T = U|T|is the polar decomposition of $T \in B(\mathcal{H})$, then $\widetilde{T} = |T|^{1/2} U|T|^{1/2}$ is called the Aluthge transformation of T. Let CR(H) be the set of all bounded linear operators on H with closed range. For $T \in CR(H)$, the Moore-Penrose inverse of T, denoted by T^{\dagger} , is the unique operator T^{\dagger} that satisfies the following:

$$TT^{\dagger}T = T, \quad T^{\dagger}TT^{\dagger} = T^{\dagger}, \quad (TT^{\dagger})^* = TT^{\dagger}, \quad (T^{\dagger}T)^* = T^{\dagger}T.$$

^{*}Corresponding author. Morteza Sohrabi Chegeni

²⁰¹⁰ Mathematics Subject Classification. Primary: 47B20; Secondary: 47B38.

Keywords and Phrases. Aluthge transformation, Moore-Penrose inverse, polar decomposition, conditional expectation.

We recall that T^{\dagger} exists if and only if $T \in CR(H)$. Note that if $T \in CR(H)$, then T^* , |T| and T^{\dagger} have closed range. If T = U|T| is invertible, then $T^{-1} = T^{\dagger}$, U is unitary and so |T| is invertible. It is a classical fact that the polar decomposition of T^* is $U^*|T^*|$. It is easy to check that $U^*|T^*|^{\dagger}$ and $|T^{\dagger}|^{\frac{1}{2}}U^*|T^{\dagger}|^{\frac{1}{2}}$ are the polar decomposition and Aluthge transformation of T^{\dagger} , respectively. For other important properties of T^{\dagger} see [2, 10, 17].

An operator $T \in B(H)$ is said to be binormal if $[|T|, |T^*|] = 0$, where [A, B] = AB - BA for operators A and B. The numerical range W(T) of an operator $T \in B(H)$ is defined by $W(T) = \{\langle Tx, x \rangle : ||x|| = 1\}$. Also, $\omega(T) = \sup\{|\lambda| : \lambda \in W(T)\}$ and Sp(T) denote the numerical radius and spectrum of T, respectively.

Study of Moore-Penrose inverse and Aluthge transformationaton of bounded linear operators has a long history. In this paper, we introduce \dagger -Aluthge transformation which is parallel to Aluthge transformation. Then we investigate some connections and parallelisms between \dagger -Aluthge transformation and binormal operators via the Moore-Penrose inverse. In section 2, firstly, we give a necessary and sufficient condition to the quasinormality of T^{\dagger} . We show that if T is onto, then T^* is quasinormal if and only if T^{\dagger} is quasinormal. Afterward, we give a formula for $(\widetilde{T^*})^{\dagger}$ when T is binormal. Also, we prove that T^* is quasinormal if and only if $(T^{\dagger})^* = (\widetilde{T^*})^{\dagger}$, whenever T is onto. Moreover, we briefly discuss some classical results on the spectrum, numerical range and numerical radius via the Moore-Penrose inverse and Aluthge transformation. In section 3, we obtain some applications of these results to the Lambert multiplication operator $M_w E M_u$ on $L^2(\Sigma)$, where E is the conditional expectation operator with respect to a sub-sigma algebra $\mathcal{A} \subseteq \Sigma$. In addition, we determine lower and upper bounds estimates for the numerical range of $(M_w E M_u)^{\dagger}$.

2. ON SOME CHARACTERIZATIONS OF T^\dagger

For any closed subspace M of H, let P_M denote the orthogonal projection onto M. For $T \in CR(H)$, we shall make used the following general properties of $T^*, \tilde{T}, T^{\dagger}$ and their polar decompositions. For proofs and discussions of these facts see [10, 9, 12, 20, 22].

$$\begin{split} & \mathbf{P}(1) \ \widetilde{T^{\dagger}} = |T^{\dagger}|^{\frac{1}{2}} U^{*} |T^{\dagger}|^{\frac{1}{2}}; \\ & \mathbf{P}(2) \ \text{For } \lambda > 0, \ \lambda \in Sp(T) \ \text{if and only if } \lambda^{-1} \in Sp(T^{\dagger}); \\ & \mathbf{P}(3) \ |T^{\dagger}| = |T^{*}|^{\frac{1}{2}} \ \text{and } |T^{\dagger}|^{\frac{1}{2}} = (|T^{*}|^{\frac{1}{2}})^{\frac{1}{2}}; \\ & \mathbf{P}(4) \ |T^{*}|^{\frac{1}{2}} (|T^{*}|^{\frac{1}{2}})^{\frac{1}{2}} = P_{R(|T^{*}|)} = (|T^{*}|^{\frac{1}{2}})^{\frac{1}{2}} |T^{*}|^{\frac{1}{2}}; \\ & \mathbf{P}(5) \ \text{If } T \ \text{is binormal, then } P_{R(|T^{*}|)} P_{R(|T|)} = P_{R(|T|)} P_{R(|T^{*}|)}; \end{split}$$

$$\begin{split} & \mathbf{P}(6) \ U^* P_{R(|T^*|)} = U^* = P_{R(|T|)} U^*; \\ & \mathbf{P}(7) \ U^* U = P_{R(|T|)} \text{ and } UU^* = P_{R(|T^*|)}; \\ & \mathbf{P}(8) \ |T^{\dagger}|^{\frac{1}{2}} P_{R(|T^*|)} = |T^{\dagger}|^{\frac{1}{2}}; \\ & \mathbf{P}(9) \ U^*(|T^*|^{\dagger})^{\frac{1}{2}} = (|T|^{\dagger})^{\frac{1}{2}} U^*; \\ & \mathbf{P}(10) \ UU^*|T^*|^{\dagger} = |T^*|^{\dagger}; \\ & \mathbf{P}(11) \ (T^{\dagger})^* = |T^*|^{\dagger} U; \\ & \mathbf{P}(12) \ |(T^*)^{\dagger}| = |T|^{\dagger}; \\ & \mathbf{P}(13) \ T \ge 0 \Leftrightarrow T^{\dagger} \ge 0; \\ & \mathbf{P}(14) \ U^*|T^*| \text{ and } U^*|T^*|^{\dagger} \text{ are the polar decompositions of } T^* \text{ and } T^{\dagger}. \end{split}$$

Let f be a bounded Borel real-valued function defined in an interval $\mathcal{I} \subseteq \mathbb{R}$. If $T \in B(H)$ is a self-adjoint operator, then by f(T) we mean the self-adjoint operator $\int_{-\infty}^{+\infty} f(\lambda) dE_{\lambda}$ where E_{λ} is the spectral resolution of identity corresponding to T. The restriction of f to the set of all self-adjoint operators is called an operator function. For example, for each q > 0, $f(x) = x^q$ is an operator function. In addition, in this case, if U is any unitary operator, then $f(U^*TU) = U^*f(T)U$. For more details see $[\mathbf{3, 4}]$.

Lemma 2.1. Let $T \in CR(H)$. Then the following assertions hold.

(i) $(|T|^{\dagger})^q = U^*(|T^*|^{\dagger})^q U$, for each q > 0.

(ii) T^{\dagger} is quasinormal if and only if $U^*|T^*|^{\dagger} = |T^*|^{\dagger}U^*$.

Proof. (i) By P(3), P(10), P(11) and P(14) we have

$$(|T|^{\dagger})^{2} = |(T^{*})^{\dagger}|^{2} = |(T^{\dagger})^{*}|^{2} = T^{\dagger}(T^{\dagger})^{*}$$
$$= U^{*}|T^{*}|^{\dagger}|T^{*}|^{\dagger}U$$
$$= U^{*}|T^{*}|^{\dagger}UU^{*}|T^{*}|^{\dagger}U$$
$$= (U^{*}|T^{*}|^{\dagger}U)^{2}.$$

Since for each q > 0, $f(x) = x^{\frac{q}{2}}$ is an operator function, we obtain $(|T|^{\dagger})^q = U^*(|T^*|^{\dagger})^q U$.

(ii) It is a classical fact that T is quasinormal if and only if U|T| = |T|U (see for example [12, Theorem 3]). Now, the desired conclusion follows from this and P(14).

Theorem 2.2. Let $T \in B(H)$ be onto. Then the following statements are equivalent:

(i) T^* is quasinormal.

(ii) T^{\dagger} is quasinormal.

Moreover, if one of the above statements hold then

(*iii*) $[(T^{\dagger})^*T^{\dagger}, (T^{\dagger})^* + T^{\dagger}] = 0.$

Proof. (i) \Leftrightarrow (ii) Since $|T^*||T^*|^{\dagger}|T^*| = |T^*|$, then we have

$$T^* \text{is quasinormal} \iff U^* |T^*| = |T^*| U^*$$
$$\iff U^* |T^*| |T^*|^{\dagger} |T^*| = |T^*| |T^*|^{\dagger} |T^*| U^*$$
$$\iff |T^*| U^* |T^*|^{\dagger} |T^*| = |T^*| |T^*|^{\dagger} U^* |T^*|$$
$$\iff |T^*| (U^* |T^*|^{\dagger} - |T^*|^{\dagger} U^*) |T^*| = 0.$$

By hypothesis, $\mathcal{N}(|T^*|) = \mathcal{N}(T^*) = \{0\}$. Hence $(U^*|T^*|^{\dagger} - |T^*|^{\dagger}U^*)|T^*| = 0$, and so $U^*|T^*|^{\dagger} = |T^*|^{\dagger}U^*$ on $\overline{R(|T^*|^{\dagger})}$. On the other hand, $U^*|T^*|^{\dagger} = |T^*|^{\dagger}U^*$ on $\mathcal{N}(|T^*|^{\dagger}) = \mathcal{N}(U^*)$. Thus, $U^*|T^*|^{\dagger} = |T^*|^{\dagger}U^*$ on H. Consequently, by Lemma 2.1(ii), (i) \Leftrightarrow (ii) holds.

Now, it is easy to check that

$$[(T^{\dagger})^*T^{\dagger}, (T^{\dagger})^* + T^{\dagger}] = [(|T^*|^{\dagger})^2, |T^*|^{\dagger}U + U^*|T^*|^{\dagger}]$$
$$= \{(|T^*|^{\dagger})^2 U^* |T^*|^{\dagger} - U^* (|T^*|^{\dagger})^3\} + |T^*|^{\dagger} \{(|T^*|^{\dagger})^2 U - U(|T^*|^{\dagger})^2\}$$

If (ii) is holds, then by Lemma 2.1(ii) we obtain

$$(|T^*|^{\dagger})^2 U^* |T^*|^{\dagger} = U^* (|T^*|^{\dagger})^3;$$

$$(|T^*|^{\dagger})^2 U = U (|T^*|^{\dagger})^2.$$

Thus, $[(T^{\dagger})^*T^{\dagger}, (T^{\dagger})^* + T^{\dagger}] = 0.$

For more details and applications on condition (iii) in Theorem 2.2 see [16]. Lemma 2.3. If $T \in CR(H)$ is binormal, then $(\widetilde{T^*})^{\dagger} = (|T^*|^{\dagger})^{\frac{1}{2}}U(|T^*|^{\dagger})^{\frac{1}{2}}$.

Proof. Since T is binormal, then we obtain from direct computations that

$$\begin{split} \widetilde{T^*}(\widetilde{T^*})^{\dagger}\widetilde{T^*} &= |T^*|^{\frac{1}{2}}U^*|T^*|^{\frac{1}{2}}(|T^*|^{\dagger})^{\frac{1}{2}}U(|T^*|^{\dagger})^{\frac{1}{2}}|T^*|^{\frac{1}{2}}U^*|T^*|^{\frac{1}{2}} \\ &= |T^*|^{\frac{1}{2}}U^*P_{R(|T^*|)}UP_{R(|T^*|)}U^*|T^*|^{\frac{1}{2}} \quad \text{by P(4)} \\ &= |T^*|^{\frac{1}{2}}U^*UP_{R(|T^*|)}U^*|T^*|^{\frac{1}{2}} \quad \text{by P(6)} \\ &= |T^*|^{\frac{1}{2}}P_{R(|T|)}P_{R(|T^*|)}U^*|T^*|^{\frac{1}{2}} \quad \text{by P(7)} \\ &= |T^*|^{\frac{1}{2}}P_{R(|T^*|)}P_{R(|T|)}U^*|T^*|^{\frac{1}{2}} \quad \text{by P(5)} \\ &= |T^*|^{\frac{1}{2}}U^*|T^*|^{\frac{1}{2}} = \widetilde{T^*} \quad \text{by P(4), P(6)}. \end{split}$$

Also,

$$\begin{split} (\widetilde{T^*})^{\dagger}\widetilde{T^*}(\widetilde{T^*})^{\dagger} &= (|T^*|^{\dagger})^{\frac{1}{2}}U(|T^*|^{\dagger})^{\frac{1}{2}}|T^*|^{\frac{1}{2}}U^*|T^*|^{\frac{1}{2}}(|T^*|^{\dagger})^{\frac{1}{2}}U(|T^*|^{\dagger})^{\frac{1}{2}}\\ &= (|T^*|^{\dagger})^{\frac{1}{2}}UP_{R(|T^*|)}U^*P_{R(|T^*|)}U(|T^*|^{\dagger})^{\frac{1}{2}} \qquad \text{by P(4)}\\ &= (|T^*|^{\dagger})^{\frac{1}{2}}UP_{R(|T^*|)}U^*U(|T^*|^{\dagger})^{\frac{1}{2}} \qquad \text{by P(6)}\\ &= (|T^*|^{\dagger})^{\frac{1}{2}}UP_{R(|T^*|)}P_{R(|T^*|)}(|T^*|^{\dagger})^{\frac{1}{2}} \qquad \text{by P(5)}\\ &= (|T^*|^{\dagger})^{\frac{1}{2}}P_{R(|T^*|)}UP_{R(|T^*|)}(|T^*|^{\dagger})^{\frac{1}{2}} \qquad \text{by P(6)}\\ &= (|T^*|^{\dagger})^{\frac{1}{2}}U(|T^*|^{\dagger})^{\frac{1}{2}} = (\widetilde{T^*})^{\dagger} \qquad \text{by P(6)} \end{split}$$

Similar computations show that

$$(\widetilde{T^*})^{\dagger}\widetilde{T^*} = UP_{R(|T^*|)}P_{R(|T|)}U^{\dagger}$$

and

$$\widetilde{T^*}(\widetilde{T^*})^{\dagger} = P_{R(|T|)}P_{R(|T^*|)}.$$

Hence, $(\widetilde{T^*})^{\dagger}\widetilde{T^*}$ and $\widetilde{T^*}(\widetilde{T^*})^{\dagger}$ are self-adjoint operators. This completes the proof.

Note that if $T \in CR(H)$ is binormal, then Lemma 2.3 shows that $\widetilde{T^*}$ and so \widetilde{T} have closed range. Moreover, in this case, we have $\widetilde{T}^{\dagger} = (|T|^{\dagger})^{\frac{1}{2}} U^* (|T|^{\dagger})^{\frac{1}{2}}$.

Theorem 2.4. Let $T \in B(H)$ be onto and binormal. Then T^* is quasinormal if and only if $(T^{\dagger})^* = (\widetilde{T^*})^{\dagger}$.

Proof. By [21, Theorem 10] and Theorem 2.2, T^* is quasinormal if and only if $T^{\dagger} = \widetilde{T^{\dagger}}$. Now, taking adjoint of both sides and using Lemma 2.3 and P(1), we obtain $(T^{\dagger})^* = (\widetilde{T^*})^{\dagger}$.

In the following, we concentrate on the polar decomposition of $(\widetilde{T})^{\dagger}$. We require the following lemma.

Lemma 2.5. (i) [11, Corollary 1] Let T = U|T| and S = V|S| be the polar decompositions. If T and S are doubly commutative (i.e., $[T, S] = [T, S^*] = 0$), then TS = UV|TS|.

(ii) [22, Proposition 3.9] Let T = U|T| be the polar decomposition of a binormal operator T. Then $\widetilde{T} = U^*UU|\widetilde{T}|$ is also the polar decomposition of \widetilde{T} .

(iii) [22, Theorem 2.1] Let T = U|T| and $|T|^{\frac{1}{2}}|T^*|^{\frac{1}{2}} = V||T|^{\frac{1}{2}}|T^*|^{\frac{1}{2}}|$ be the polar decompositions. Then $\widetilde{T} = VU|\widetilde{T}|$ is also the polar decomposition.

Theorem 2.6. Let $T = U|T| \in CR(H)$ and $(|T|^{\dagger})^{\frac{1}{2}}(|T^*|^{\dagger})^{\frac{1}{2}} = V|(|T|^{\dagger})^{\frac{1}{2}}(|T^*|^{\dagger})^{\frac{1}{2}}|$ be the polar decompositions. If T is binormal, then $(\widetilde{T})^{\dagger} = U^*V|(\widetilde{T})^{\dagger}|$ is also the polar decomposition.

Proof. (i) First we show that $(\widetilde{T})^{\dagger} = U^* V | (\widetilde{T})^{\dagger} |$.

$$\begin{split} U^*V|(\widetilde{T})^{\dagger}| &= U^*V(((\widetilde{T})^{\dagger})^*(\widetilde{T})^{\dagger}) \\ &= U^*V((|T|^{\dagger})^{\frac{1}{2}}U(|T|^{\dagger})U^*(|T|^{\dagger})^{\frac{1}{2}})^{\frac{1}{2}} & \text{by Lemma 2.3} \\ &= U^*V((|T|^{\dagger})^{\frac{1}{2}}UU^*(|T^*|^{\dagger})UU^*(|T|^{\dagger})^{\frac{1}{2}})^{\frac{1}{2}} & \text{by Lemma 2.1(i)} \\ &= U^*V((|T|^{\dagger})^{\frac{1}{2}}|T^*|^{\dagger}(|T|^{\dagger})^{\frac{1}{2}})^{\frac{1}{2}} & \text{by P(8),P(10)} \\ &= U^*V|(|T|^{\dagger})^{\frac{1}{2}}(|T^*|^{\dagger})^{\frac{1}{2}}| \\ &= U^*(|T|^{\dagger})^{\frac{1}{2}}(|T^*|^{\dagger})^{\frac{1}{2}} \\ &= U^*(|T^*|^{\dagger})^{\frac{1}{2}}(|T|^{\dagger})^{\frac{1}{2}} \\ &= U^*(|T^*|^{\dagger})^{\frac{1}{2}}UU^*(|T|^{\dagger})^{\frac{1}{2}} \\ &= (|T|^{\dagger})^{\frac{1}{2}}U^*(|T|^{\dagger})^{\frac{1}{2}} = (\widetilde{T})^{\dagger}. \end{split}$$

Now, we claim that $N((\tilde{T})^{\dagger}) = N(U^*V)$. Since T is binormal, then it is easy to check that T^{\dagger} is binormal. Thus $N((|T^*|^{\dagger})^{\frac{1}{2}}(|T|^{\dagger})^{\frac{1}{2}}) = N((|T|^{\dagger})^{\frac{1}{2}}(|T^*|^{\dagger})^{\frac{1}{2}}) = N(V)$. Then we have

$$U^*Vx = 0 \Leftrightarrow U^*(|T|^{\dagger})^{\frac{1}{2}}(|T^*|^{\dagger})^{\frac{1}{2}}x = 0$$

$$\Leftrightarrow U^*(|T^*|^{\dagger})^{\frac{1}{2}}(|T|^{\dagger})^{\frac{1}{2}}x = 0$$

$$\Leftrightarrow U^*(|T^*|^{\dagger})^{\frac{1}{2}}UU^*(|T|^{\dagger})^{\frac{1}{2}}x = 0$$
 by P(8)

$$\Leftrightarrow (|T|^{\dagger})^{\frac{1}{2}}U^*(|T|^{\dagger})^{\frac{1}{2}}x = 0$$
 by Lemma 2.1(i)

$$\Leftrightarrow (\widetilde{T})^{\dagger}x = 0.$$

Lastly, we prove that U^*V is partial isometry. Since $(|T|^{\dagger})^{\frac{1}{2}} = U^*U(|T|^{\dagger})^{\frac{1}{2}}$ and $(|T^*|^{\dagger})^{\frac{1}{2}} = UU^*(|T^*|^{\dagger})^{\frac{1}{2}}$ are the polar decompositions of $(|T|^{\dagger})^{\frac{1}{2}}$ and $(|T^*|^{\dagger})^{\frac{1}{2}}$, respectively then by Lemma 2.5(i) we have

$$(|T|^{\dagger})^{\frac{1}{2}}(|T^*|^{\dagger})^{\frac{1}{2}} = (|T^*|^{\dagger})^{\frac{1}{2}}(|T|^{\dagger})^{\frac{1}{2}} = UU^*U^*U|(|T^*|^{\dagger})^{\frac{1}{2}}(|T|^{\dagger})^{\frac{1}{2}}|.$$

Then by the uniqueness of the polar decomposition we get that $V = UU^*U^*U$. It

follows that

$$\begin{split} (U^*V)(U^*V)^*(U^*V) &= (U^*UU^*U^*U)(U^*UU^*U^*U)^*(U^*UU^*U^*U) \\ &= P_{R(|T|)}U^*P_{R(|T|)}UP_{R(|T|)}U^*P_{R(|T|)} & \text{by P(7)} \\ &= U^*P_{R(|T|)}UU^*P_{R(|T|)} & \text{by P(6)} \\ &= U^*P_{R(|T|)}P_{R(|T|)}P_{R(|T|)} & \text{by P(6)} \\ &= U^*P_{R(|T^*|)}P_{R(|T|)} & \text{by P(5)} \\ &= P_{R(|T|)}U^*P_{R(|T|)} & \text{by P(6)} \\ &= U^*UU^*U^*U = U^*V. \end{split}$$

This completes the proof.

Corollary 2.7. Let $T \in CR(H)$ be binormal and let $T^{\dagger} = U^* |T^*|^{\dagger}$ and $(|T|^{\dagger})^{\frac{1}{2}} (|T^*|^{\dagger})^{\frac{1}{2}} = V|(|T|^{\dagger})^{\frac{1}{2}} (|T^*|^{\dagger})^{\frac{1}{2}}|$ be the polar decompositions. Then the following statements are hold:

(i) $\widetilde{T^{\dagger}} = UU^*U^*|\widetilde{T^{\dagger}}|$ is the polar decomposition. (ii) $(\widetilde{T})^{\dagger} = U^*U^*U|(\widetilde{T})^{\dagger}|$ is the polar decomposition.

Proof. (i) Since T is binormal, T^{\dagger} is binormal. Now, the desired conclusion follows by Lemma 2.5(iii).

(ii) Recall that $(|T|^{\dagger})^{\frac{1}{2}} = U^* U(|T|^{\dagger})^{\frac{1}{2}}$ and $(|T^*|^{\dagger})^{\frac{1}{2}} = UU^*(|T^*|^{\dagger})^{\frac{1}{2}}$ are the polar decompositions of $(|T|^{\dagger})^{\frac{1}{2}}$ and $(|T^*|^{\dagger})^{\frac{1}{2}}$, respectively. Then by Lemma 2.5(i) we obtain

$$(|T|^{\dagger})^{\frac{1}{2}}(|T^*|^{\dagger})^{\frac{1}{2}} = (|T^*|^{\dagger})^{\frac{1}{2}}(|T|^{\dagger})^{\frac{1}{2}} = UU^*U^*U|(|T^*|^{\dagger})^{\frac{1}{2}}(|T|^{\dagger})^{\frac{1}{2}}|.$$

Thus, by Theorem 2.6, $(\widetilde{T})^{\dagger} = U^*UU^*U^*U|(\widetilde{T})^{\dagger}| = U^*U^*U|(\widetilde{T})^{\dagger}|.$

In [19], Yamazaki introduce the notion of the *-Aluthge transformation $\widetilde{T}^{(*)}$ of T by setting $\widetilde{T}^{(*)} = |T^*|^{\frac{1}{2}}U|T^*|^{\frac{1}{2}}$. Like this notion we introduce \dagger -Aluthge transformation $\widetilde{T}^{(\dagger)}$ of T by setting $\widetilde{T}^{(\dagger)} = (\widetilde{T^{\dagger}})^{\dagger}$. Similar computations show that $\widetilde{T}^{(\dagger)} = \widetilde{T}^{(*)}$, whenever $T \in CR(H)$ is binormal.

Proposition 2.8. Let $T \in CR(H)$. Then the following statements hold.

- (i) If T is self-adjoint, then $W(T) \subseteq W(T^{\dagger})W(T^{2})$.
- (ii) If T is onto and T^* is quasinormal, then $W(\widetilde{T^{\dagger}}) = W(T^{\dagger}) \subseteq W(U^*)W(|T^*|^{\dagger})$.
- (iii) If T is binormal, then $W((\widetilde{T})^{(\dagger)}) \subseteq W(U)W(|T^*|)$.

Proof. (i) Let $x \in H$ with ||x|| = 1. Then we get that

$$\begin{split} \langle Tx,x\rangle &= \langle TT^{\dagger}Tx,x\rangle = \langle T^{\dagger}Tx,Tx\rangle \\ &= \langle T^{\dagger}\frac{Tx}{\|Tx\|},\frac{Tx}{\|Tx\|}\rangle \langle Tx,Tx\rangle. \end{split}$$

It follows that $\langle Tx, x \rangle \in W(T^{\dagger})W(T^{2})$, for each $x \in H$ with ||x|| = 1.

(ii) By Theorem 2.2 and Lemma 2.1, T^{\dagger} is quasinormal and so $U^*|T^*|^{\dagger} = |T^*|^{\dagger}U^*$. It follows that $U^*(|T^*|^{\dagger})^{\frac{1}{2}} = (|T^*|^{\dagger})^{\frac{1}{2}}U^*$. Then by P(1) and P(14) we have

$$\begin{split} \langle T^{\dagger}x,x\rangle &= \langle U^{*}|T^{*}|^{\dagger}x,x\rangle = \langle \widetilde{T^{\dagger}}x,x\rangle \\ &= \langle U^{*}(|T^{*}|^{\dagger})^{\frac{1}{2}}x, (|T^{*}|^{\dagger})^{\frac{1}{2}}x\rangle \\ &= \langle U^{*}\frac{(|T^{*}|^{\dagger})^{\frac{1}{2}}x}{\|(|T^{*}|^{\dagger})^{\frac{1}{2}}x\|}, \frac{(|T^{*}|^{\dagger})^{\frac{1}{2}}x}{\|(|T^{*}|^{\dagger})^{\frac{1}{2}}x\|}\rangle \langle (|T^{*}|^{\dagger})x,x\rangle, \end{split}$$

for each $x \in H$ with ||x|| = 1.

(iii) Direct replacement shows that

$$\begin{split} \langle \widetilde{T}^{(\dagger)} x, x \rangle &= \langle |T^*|^{\frac{1}{2}} U|T^*|^{\frac{1}{2}} x, x \rangle \\ &= \langle U|T^*|^{\frac{1}{2}} x, |T^*|^{\frac{1}{2}} x \rangle \\ &= \langle U \frac{|T^*|^{\frac{1}{2}} x}{\||T^*|^{\frac{1}{2}} x\|}, \frac{|T^*|^{\frac{1}{2}} x}{\||T^*|^{\frac{1}{2}} x\|} \rangle \langle |T^*| x, x \rangle, \end{split}$$

for each $x \in H$ with ||x|| = 1. This completes the proof.

Proposition 2.9. Let $T \in CR(H)$. Then the following assertions hold.

- (i) Let $T \in CR(H)$ be self-adjoint. Then $\omega(T) \leq \omega(T^{\dagger}) ||T||^2$.
- (ii) If T is onto and T^* be quasinormal, then

$$\omega(T^{\dagger}) = \omega(T^{\dagger}) \le \omega(U^*) |||T^*|^{\dagger}||$$

Proof. (i) Since T is self-adjoint and $T = TT^{\dagger}T$, we have

$$\begin{split} \omega(T) &= \sup_{\|x\|=1} |\langle TT^{\dagger}Tx, x\rangle| = \sup_{\|x\|=1} |\langle T^{\dagger}Tx, Tx\rangle| \\ &= \sup_{\|x\|=1} |\langle T^{\dagger}\frac{Tx}{\|Tx\|}, \frac{Tx}{\|Tx\|}\rangle| \ \|Tx\|^2 \\ &\leq \omega(T^{\dagger})\|T\|^2. \end{split}$$

(ii) Since T^* is quasinormal then by Theorem 2.2, we obtain

$$\begin{split} \omega(T^{\dagger}) &= \sup_{\|x\|=1} |\langle T^{\dagger}x, x \rangle| \\ &= \sup_{\|x\|=1} |\langle U^*|T^*|^{\dagger}x, x \rangle| \\ &= \sup_{\|x\|=1} |\langle (|T^*|^{\dagger})^{\frac{1}{2}} U^*(|T^*|^{\dagger})^{\frac{1}{2}}x, x \rangle| = \omega(\widetilde{T}^{\dagger}). \end{split}$$

Thus,

$$\begin{split} \omega(T^{\dagger}) &= \sup_{\|x\|=1} |\langle T^{\dagger}x, x \rangle| \\ &= \sup_{\|x\|=1} |\langle U^{*}|T^{*}|^{\dagger}x, x \rangle| \\ &= \sup_{\|x\|=1} |\langle U^{*}(|T^{*}|^{\dagger})^{\frac{1}{2}}x, (|T^{*}|^{\dagger})^{\frac{1}{2}}x \rangle| \\ &= \sup_{\|x\|=1} |\langle U^{*}\frac{(|T^{*}|^{\dagger})^{\frac{1}{2}}x}{\|(|T^{*}|^{\dagger})^{\frac{1}{2}}x\|}, \frac{(|T^{*}|^{\dagger})^{\frac{1}{2}}x}{\|(|T^{*}|^{\dagger})^{\frac{1}{2}}x\|} \rangle| \parallel |T^{*}|^{\dagger}x\| \\ &\leq \omega(U^{*})\| |T^{*}|^{\dagger}\|. \end{split}$$

Proposition 2.10. Let $T \in CR(H)$. Then the following assertions hold.

(i) $\omega(\widetilde{T}^{(\dagger)}) \leq \omega(|T^*|) \leq ||||T^*|||.$ (ii) If T is binormal, then $\omega(\widetilde{T^{\dagger}}) = \omega(\widetilde{T^{\dagger}})$ and $||\widetilde{T^{\dagger}}|| = ||\widetilde{T^{\dagger}}||.$

 $\mathit{Proof.}$ The first part is easily follow from Proposition 2.8. For the second part, since

$$\begin{split} \widetilde{T}^{\dagger} &= (|T|^{\dagger})^{\frac{1}{2}} U^* (|T|^{\dagger})^{\frac{1}{2}} & \text{by Lemma 2.3} \\ &= U^* (|T^*|^{\dagger})^{\frac{1}{2}} U U^* U^* (|T^*|^{\dagger})^{\frac{1}{2}} U & \text{by Lemma 2.1(i)} \\ &= U^* (|T^*|^{\dagger})^{\frac{1}{2}} U^* (|T^*|^{\dagger})^{\frac{1}{2}} U & \text{by P(8)} \\ &= U^* |T^{\dagger}|^{\frac{1}{2}} U^* |T^{\dagger}|^{\frac{1}{2}} U & \text{by P(3)} \\ &= U^* \widetilde{T^{\dagger}} U & \text{by P(1),} \end{split}$$

then

$$\begin{split} \omega(\widetilde{T}^{\dagger}) &= \sup_{\|x\|=1} |\langle U^* \widetilde{T^{\dagger}} U x, x \rangle| = \sup_{\|x\|=1} |\langle \widetilde{T^{\dagger}} U x, U x \rangle| \\ &= \sup_{\|x\|=1} |\langle \widetilde{T^{\dagger}} \frac{U x}{\|U x\|}, \frac{U x}{\|U x\|} \rangle \|U x\|^2 \le \omega(\widetilde{T^{\dagger}}). \end{split}$$

On the other hand, since

$$\widetilde{T^{\dagger}} = (|T^*|^{\dagger})^{\frac{1}{2}} U^* (|T^*|^{\dagger})^{\frac{1}{2}} \qquad \text{by P(1)} \\ = (|T^*|^{\dagger})^{\frac{1}{2}} U U^* U^* (|T^*|^{\dagger})^{\frac{1}{2}} \qquad \text{by P(8)} \\ = U (|T|^{\dagger})^{\frac{1}{2}} U^* (|T|^{\dagger})^{\frac{1}{2}} U^* \qquad \text{by P(9)} \\ = U \widetilde{T^{\dagger}} U^* \qquad \text{by Lemma 2.3,} \end{cases}$$

then

$$\begin{split} \omega(\widetilde{T^{\dagger}}) &= \sup_{\|x\|=1} |\langle U\widetilde{T}^{\dagger}U^{*}x, x\rangle| = \sup_{\|x\|=1} |\langle \widetilde{T}^{\dagger}U^{*}x, U^{*}x\rangle| \\ &= \sup_{\|x\|=1} |\langle \widetilde{T}^{\dagger}\frac{U^{*}x}{\|U^{*}x\|}, \frac{U^{*}x}{\|U^{*}x\|}\rangle \|U^{*}x\|^{2} \leq \omega(\widetilde{T}^{\dagger}). \end{split}$$

Moreover, since $\widetilde{T}^{\dagger} = U^* \widetilde{T}^{\dagger} U$ and $\widetilde{T}^{\dagger} = U^* \widetilde{T}^{\dagger} U$, we obtain $\|\widetilde{T}^{\dagger}\| = \|\widetilde{T}^{\dagger}\|$.

Lemma 2.11. [7, Theorem 2.8] If A be an arbitrary operator and B is normal. Then Sp(AB) = Sp(BA).

Proposition 2.12. Let $T \in CR(H)$. Then the following statements hold.

- (i) $(T^*)^{\dagger} = U|T|^{\dagger}$ is the polar decomposition.
- (ii) If T is binormal, then $Sp(T^{\dagger}) = Sp(\widetilde{T^{\dagger}}) = Sp(\widetilde{T^{\dagger}})$.
- (iii) If T is binormal and $\lambda > 0$, then $\lambda \in Sp(T) \Leftrightarrow \lambda \in Sp((\widetilde{T})^{(\dagger)})$.

Proof. (i) Since $U^*|T^*|^{\dagger}$ is the unique polar decomposition of T^{\dagger} , then $N(U^*) = N(|T^*|^{\dagger})$, and so $N(U^*U) = N(|T^*|^{\dagger}U)$. Now, by Lemma 2.1(i), P(11) and P(12) we have

(2.1)
$$(T^*)^{\dagger} = (T^{\dagger})^* = |T^*|^{\dagger}U = UU^*|T^*|^{\dagger}U = U|T|^{\dagger};$$

 $N(U) = N(U^*U) = N(|T^*|^{\dagger}U) = N((T^*)^{\dagger}) = N(|(T^{\dagger})^*|) = N(|T|^{\dagger}).$

Therefore, $(T^*)^{\dagger} = U|T|^{\dagger}$ is the unique polar decomposition.

(ii) By P(14), $(|T|^{\dagger})^{\frac{1}{2}} \ge 0$ and hence it is normal. Thus, by (2.1) and Lemma 2.11 we have

$$Sp(T^{\dagger}) = Sp(|T|^{\dagger}U^{*}) = Sp((|T|^{\dagger})^{\frac{1}{2}}(|T|^{\dagger})^{\frac{1}{2}}U^{*})$$

= $Sp((|T|^{\dagger})^{\frac{1}{2}}U^{*}(|T|^{\dagger})^{\frac{1}{2}}) = Sp(\widetilde{T}^{\dagger}).$

Similarly, we get that

$$Sp(\overline{T^{\dagger}}) = Sp((|T^*|^{\dagger})^{\frac{1}{2}}U^*(|T^*|^{\dagger})^{\frac{1}{2}})$$

= $Sp(U^*(|T^*|^{\dagger})^{\frac{1}{2}}(|T^*|^{\dagger})^{\frac{1}{2}}) = Sp(T^{\dagger}).$

(iii) If $\lambda > 0$, then by Lemma 2.3 and part (ii) we have

$$\begin{split} \lambda \in Sp(T) \Leftrightarrow \lambda^{-1} \in Sp(T^{\dagger}) \Leftrightarrow \lambda^{-1} \in Sp(T^{\dagger}) \\ \Leftrightarrow \lambda \in Sp((\widetilde{T^{\dagger}})^{\dagger}) = Sp((\widetilde{T})^{(\dagger)}). \end{split}$$

Recall that an operator $T \in CR(H)$ is an EP operator if and only if $TT^{\dagger} = T^{\dagger}T$ [8]. If $T = T^{\dagger}$, then $T^3 = TT^{\dagger}T = T$ and hence $T^{2n+1} = T$ for all $n \in \mathbb{N}$. On the other hand, if $TT^{\dagger} = T^{\dagger}T$ and $T^{2n+1} = T$, then for n = 3 we obtain $T^{\dagger} = T^{\dagger}TT^{\dagger} = T^{\dagger}T^{3}T^{\dagger}$ and thus

$$T^{\dagger} = T^{\dagger}TTTT^{\dagger} = TT^{\dagger}TTT^{\dagger} = TT^{\dagger}TT^{\dagger}T = TT^{\dagger}T = T.$$

Now, let $T^{2n+3} = T$. Since T is an EP operator, then

$$T^{\dagger} = T^{\dagger}TT^{\dagger} = T^{\dagger}T^{2n+3}T^{\dagger} = T^{\dagger}T^{2n+1}T^{\dagger}T^{2} = T^{\dagger}T^{2} = TT^{\dagger}T = T.$$

These observations establish the following proposition.

Proposition 2.13. Let $T \in CR(H)$ and $n \in \mathbb{N}$. Then the following statements hold.

(i) If T = T[†], then T = T²ⁿ⁺¹.
(ii) If T = T²ⁿ⁺¹ and T is an EP operator, then T = T[†].

3. APPLICATIONS TO THE LAMBERT MULTIPLICATION OPERATORS

Let (X, Σ, μ) be a complete σ -finite measure space. For any complete σ -finite subalgebra $\mathcal{A} \subseteq \Sigma$ the Hilbert space $L^2(X, \mathcal{A}, \mu|_{\mathcal{A}})$ is abbreviated to $L^2(\mathcal{A})$ where $\mu|_{\mathcal{A}}$ is the restriction of μ to \mathcal{A} . We denote the linear space of all complex-valued Σ -measurable functions on X by $L^0(\Sigma)$. The support of a measurable function fis defined by $\sigma(f) = \{x \in X : f(x) \neq 0\}$. All sets and functions statements are to be interpreted as being valid almost everywhere with respect to μ . For each nonnegative $f \in L^0(\Sigma)$ or $f \in L^2(\Sigma)$, by the Radon-Nikodym theorem, there exists a unique \mathcal{A} -measurable function $E^{\mathcal{A}}(f)$ such that

$$\int_{A} f d\mu = \int_{A} E^{\mathcal{A}}(f) d\mu,$$

where A is any \mathcal{A} -measurable set for which $\int_A f d\mu$ exists. Now associated with every complete σ -finite subalgebra $\mathcal{A} \subseteq \Sigma$, the mapping $E^{\mathcal{A}} : L^2(\Sigma) \to L^2(\mathcal{A})$ uniquely defined by the assignment $f \mapsto E^{\mathcal{A}}(f)$, is called the conditional expectation operator with respect to \mathcal{A} . Put $E = E^{\mathcal{A}}$. The mapping E is a linear orthogonal projection onto $L^2(\mathcal{A})$. Note that $\mathcal{D}(E)$, the domain of E, contains $L^2(\Sigma) \cup \{f \in L^0(\Sigma) : f \geq 0\}$. For more details on the properties of E see [14, 18].

We shall always take $u \in L^0(\Sigma)$ for which $uf \in \mathcal{D}(E)$ for all $f \in L^2(\Sigma)$. In other words, EM_u is a well-defined operator on $L^2(\Sigma)$. The mapping $T : L^2(\Sigma) \to L^2(\Sigma)$ defined by T(f) = wE(uf) is called Lambert multiplication operator. For other important properties of T see ([5, 6, 15]). By [15, Proposition 2.1(b)], EM_u is bounded on $L^2(\Sigma)$ if and only if $E(|u|^2) \in L^{\infty}(\mathcal{A})$. In this case $||EM_u|| =$ $||E(|u|^2)||_{\infty}^{1/2}$. Now, let $f \in L^2(\Sigma)$. Then

$$||Tf||^{2} = \int E(|w|^{2})|E(uf)|^{2}d\mu = \int |E(u(E(|w|^{2}))^{\frac{1}{2}}f)|^{2}d\mu$$

(3.2)
$$= \int |E(M_{\upsilon}f)|^2 d\mu = ||EM_{\upsilon}f||^2,$$

where $v := u(E(|w|^2))^{\frac{1}{2}}$. It follows that $T = M_w EM_u$ is bounded on $L^2(\Sigma)$ if and only if $E(|w|^2)E(|u|^2) \in L^{\infty}(\mathcal{A})$, and in this case $||T|| = ||E(|w|^2)^{1/2}E(|u|^2)^{1/2}||_{\infty}$. Now, let $0 \le u \in L^0(\Sigma)$ and let $E(u) \ge \delta$ on $S := \sigma(E(u))$. Note that $L^2(\Sigma) = L^2(S) \oplus L^2(S^c)$, where $S^c = X \setminus S$, $L^2(S) = L^2(S, \Sigma_S, \mu|_S)$ and $\Sigma_S = \{A \cap S : A \in \Sigma\}$. We claim that $T_1 := EM_u$ has closed range. To this end let $f_n, g \in L^2(\Sigma)$ with $||g||_2 > 0$ and $T_1 f_n \to g$ in $L^2(\Sigma)$. Since $L^2(S^c) \subseteq N(T)$, then g = 0 on S^c and hence $T_1 f_n \to \chi_S g$ in $L^2(\Sigma)$. But $\chi_S g = EM_u(\frac{\chi_S g}{E(u)})$, because $g \in L^2(\mathcal{A})$ and

$$\|\frac{\chi_{s}g}{E(u)}\|_{2} \leq \frac{1}{\delta}\|g\|_{2}.$$

It follows that $g = \chi_{s^c}g + \chi_s g = 0 + E(\frac{\chi_s ug}{E(u)}) \in R(T_1)$, and so T_1 has closed range. By (3.1), $T \in B(L^2(\Sigma))$ has closed range if and only if $T_1 \in B(L^2(\Sigma))$ has closed range. These observations establish the following proposition.

Proposition 3.14. Let $T : L^2(\Sigma) \to L^0(\Sigma)$ defined by $T = M_w E M_u$ is a Lambert multiplication operator.

(i) $T \in B(L^{2}(\Sigma))$ if and only if $E(|w|^{2})E(|u|^{2}) \in L^{\infty}(\mathcal{A})$, and in this case $||T|| = ||E(|w|^{2})E(|u|^{2})||_{\infty}^{1/2}$.

(ii) Let $T \in B(L^2(\Sigma))$, $0 \le u \in L^0(\Sigma)$ and $v = u(E(|w|^2))^{\frac{1}{2}}$. If $E(v) \ge \delta$ on $\sigma(v)$, then T has closed range.

In what follows, since for each $u \ge 0$, $\sigma(u) \subseteq \sigma(E(u^2))$, we use the notational convention of $\frac{u}{E(u)}$ for $\frac{u}{E(u)}\chi_{\sigma(u)}$. From now on, we assume that $u, w \in \mathcal{D}(E)$ are

non-negative, $S = \sigma(E(u^2)) = \sigma(E(u))$ and $T = M_w E M_u \in CR(L^2(\Sigma))$.

Let B, C be bounded positive operators on H such that BC = CB. Put A = BC. Since $f(x) = x^p$ is an operator function, we obtain $A^p = B^p C^p$ for each p > 0. In particular, take $B = M_{\nu}$ and $C = M_{\bar{\omega}} E M_{\omega}$, where $0 \leq \nu \in L^0(\mathcal{A})$ and $\omega \in L^0(\Sigma)$. A direct computations shows that $C^p = M_{\omega E(|\omega|^2)^{p-1}} E M_{\omega}$. Consequently, we have the following lemma.

Lemma 3.15. Let $0 \leq \nu \in L^0(\mathcal{A})$, $\omega \in L^0(\Sigma)$ and let $A := M_{\nu\bar{\omega}} EM_{\omega} \in B(L^2(\Sigma))$. Then for each $p \in (0, \infty)$, $A^p = M_{\nu^p\bar{\omega}E(|\omega|^2)^{p-1}}EM_{\omega}$.

 Put

(3.3)
$$A(f) = \frac{u\chi_G}{E(u^2)E(w^2)}E(wf), \quad f \in L^2(\Sigma), \ G = \sigma(E(w)).$$

Then by Proposition 3.1, $A \in B(L^2(\Sigma))$. Also, it is easy to check that

$$TAT = T, \quad ATA = A, \quad (TA)^* = TA, \quad (AT)^* = AT.$$

Thus, $A = T^{\dagger} = M_{\frac{\chi_{S \cap G}}{E(u^2)E(w^2)}} T^*$ and hence A has closed range.

Now, we concentrate on the parts of the polar decomposition T, T^{\dagger} and their Aluthge transformations. Let $f \in L^2(\Sigma)$. Then we can obtain from direct computations that

$$\begin{split} |T|^2(f) &= \chi_s u E(w^2) E(uf); \\ |T| \ (f) &= u(E(u^2))^{-\frac{1}{2}} (E(w^2))^{\frac{1}{2}} E(uf) & \text{by Lemma 3.2;} \\ |T|^{\frac{1}{2}}(f) &= u(E(u^2))^{-\frac{3}{4}} (E(w^2))^{\frac{1}{4}} E(uf) & \text{by Lemma 3.2;} \\ U \ (f) &= \chi_s w(E(u^2))^{-\frac{1}{2}} (E(w^2))^{-\frac{1}{2}} E(uf) & \text{because } U|T| = T. \end{split}$$

It follows that

(3.4)
$$\widetilde{T}(f) = |T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}(f) = \frac{uE(uw)}{E(u^2)} E(uf),$$

for each $f \in L^2(\Sigma)$. Also, we have

$$\begin{split} |T^*|^2(f) &= \chi_S w E(u^2) E(wf); \\ |T^*| (f) &= w(E(u^2))^{\frac{1}{2}} (E(w^2))^{-\frac{1}{2}} E(wf) & \text{by Lemma 3.2}; \\ |T^*|^{\dagger}(f) &= (\frac{\chi_S}{E(u^2)(E(w^2))^3})^{\frac{1}{2}} w E(wf) & \text{by (3.2)}; \\ U^*(f) &= (\frac{\chi_G}{E(u^2)E(w^2)})^{\frac{1}{2}} u E(wf). \end{split}$$

Take $r = \chi_{c}(E(u^{2})E(w^{2}))^{-1/2}$. Then $U^{*} = M_{r}M_{u}EM_{w}$, and

 $UU^*U = M_w (M_r)^3 M_{E(u^2)} M_{E(w^2)} E M_u = M_r M_w E M_u = U.$

Thus, U^* is a partial isometry. By (3.1), $N(M_w E M_u) = N(E M_u \sqrt{E(w^2)})$. It follows that

$$N(U) = N(|T|) = N(T);$$

 $N(U^*) = N(|T^*|^{\dagger}) = N(T^{\dagger});$

and so T = U|T| and $T^{\dagger} = U^*|T^*|^{\dagger}$ are the unique polar decompositions.

Theorem 3.16. Let $T, \widetilde{T} \in CR(L^2(\Sigma))$ with $u, w \ge 0$. Then

$$\begin{aligned} (a) \ T^{\dagger} &= M_{\frac{u\chi_{\sigma(E(w))}}{E(u^{2})E(w^{2})}} EM_{w}. \\ (b) \ \widetilde{T} &= M_{\frac{uE(uw)}{E(u^{2})}} EM_{u}. \\ (c) \ (\widetilde{T})^{\dagger} &= M_{\frac{u\chi_{\sigma(E(uw))}}{E(u^{2})E(uw)}} EM_{u}. \\ (d) \ \widetilde{T^{\dagger}} &= M_{\frac{\chi_{S}wE(uw)}{E(u^{2})(E(w^{2}))^{2}}} EM_{w}. \\ (e) \ \widetilde{T}, \ (\widetilde{T})^{\dagger} \ and \ \widetilde{T^{\dagger}} \ are \ self-adjoint. \end{aligned}$$

Proof. (a) and (b) follows from (3.2) and (3.3).

(c) Take $\nu = \frac{uE(uw)}{E(u^2)}$. Then by (3.3), $\widetilde{T} = M_{\nu}EM_u$. Moreover, by (3.2) we obtain that $(\widetilde{T})^{\dagger} = M_{\frac{\chi_{\sigma(\nu)}}{E(u^2)E(\nu^2)}} M_{\nu}EM_u$, where $\sigma(\nu) = \sigma(u) \cap \sigma(E(uw))$. Therefore,

$$(\widetilde{T})^{\dagger}(f) = \frac{u\chi_{\sigma(E(uw))}}{E(u^2)E(uw)}E(uf), \qquad f \in L^2(\Sigma).$$

(d) Put $\vartheta = \frac{u\chi_G}{E(u^2)E(w^2)}$. Then by (3.2), $T^{\dagger} = M_{\vartheta}EM_w$. Hence

$$\widetilde{T^{\dagger}}(f) = \frac{\chi_{\scriptscriptstyle S} w E(uw)}{E(u^2)(E(w^2))^2} E(wf), \qquad f \in L^2(\Sigma).$$

(e) It follows from (3.3), (c) and (d).

Remark 3.17. If we omit the non-negativity hypothesis of u and w in Theorem 3.3, then for every bounded Lambert multiplication $T \in \operatorname{CR}(\operatorname{L}^2(\Sigma))$, \widetilde{T} , \widetilde{T}^{\dagger} and \widetilde{T}^{\dagger} are always normal operators. Also, by using Theorem 3.3, once again, $\widetilde{T}^{\dagger} = \widetilde{T}^{\dagger}$ if and only if u = w.

Let $f \in L^2(\Sigma)$. It is easy to see that

$$TT^{*}(f) = wE(u^{2})E(wf);$$

$$T^{*}T(f) = uE(w^{2})E(uf);$$

$$T^{*}TTT^{*}(f) = uE(w^{2})E(u^{2})E(uw)E(wf);$$

$$TT^{*}T^{*}T(f) = wE(u^{2})E(w^{2})E(uw)E(uf).$$

So, if u = w or $u, w \in L^0(\mathcal{A})$, then $TT^* = T^*T$. Conversely, if T is normal then

(3.5)
$$wE(u^2)E(wf) = uE(w^2)E(uf), \quad f \in L^2(\Sigma).$$

Since \mathcal{A} is sigma-finite, there exists $f_0 \in L^2(\mathcal{A})$ with $\sigma(f_0) = X$. By replacing f_0 by f and then taking the conditional expectation E of both sides of (3.4) gives $E(u^2)(E(w))^2 = (E(u))^2 E(w^2)$. Thus, $E(u^2) = (E(u))^2$ and $E(w^2) = (E(w))^2$. But, we know that $E(|f|^2) = |E(f)|^2$ if and only if $f \in L^0(\mathcal{A})$. Consequently, $u, w \in L^0(\mathcal{A})$. Moreover, $T = M_w E M_u$ is binormal if and only if u E(w) = w E(u) on $\sigma(E(uw))$.

We recall that T is an EP operator if and only if $T^{\dagger}T = TT^{\dagger}$. Since

$$T^{\dagger}T = M_{\frac{\chi_{S\cap G}}{E(u^2)E(w^2)}}T^*T;$$

$$TT^{\dagger} = M_{\frac{\chi_{S\cap G}}{E(u^2)E(w^2)}}TT^*,$$

then T is an EP operator on $L^2(\Sigma)$ if and only if T is a normal operator on $L^2(\Sigma_K)$, where $K = S \cap G$. Thus, we have the following result.

Theorem 3.18. Let $0 \leq u, w \in L^0(\Sigma)$ with $u \neq w$ and let $T = M_w E M_u \in B(L^2(\Sigma))$. Then the following assertions hold.

(i) T is normal if and only if $u, w \in L^0(\mathcal{A})$.

(ii) $T \in CR(L^2(\Sigma))$ is an EP operator on $L^2(\Sigma)$ if and only if $u, w \in L^0(\mathcal{A}_K)$, where $K = S \cap G$.

(iii) T is binormal if and only if uE(w) = wE(u) on $\sigma(E(uw))$.

Now, we determine the lower and upper estimates for the numerical range of T^{\dagger} . Let $\mu(X) = 1$ and let $T = M_w E M_u \in CR(L^2(\Sigma))$ with $0 \leq u, w \in \mathcal{D}(E)$. By (3.2) and definition of $\omega(T^{\dagger})$ we have

$$\begin{split} \omega(T^{\dagger}) &\geq |\langle T^{\dagger}1,1\rangle| = |\int_{X} \frac{\chi_{S\cap G}}{E(u^{2})E(w^{2})} uE(w)d\mu| \\ &\geq \int_{S\cap G} |\frac{E(u)E(w)}{E(u^{2})E(w^{2})}|d\mu. \end{split}$$

On the other hand, since $L^{\infty}(\Sigma) \cap L^2(\Sigma)$ is dense in $L^2(\Sigma)$, then by the Hölder and conditional Hölder inequality we get that,

$$\begin{split} \omega(T^{\dagger}) &= \sup_{\|f\| \le 1} |\langle T^{\dagger}f, f \rangle| \le \sup_{\|f\| \le 1} |\int_{X} \frac{\chi_{S \cap G}}{E(u^{2})E(w^{2})} uE(wf)\bar{f}d\mu| \\ &\le \sup_{\|f\| \le 1} \int_{X} |\frac{\chi_{S \cap G}}{E(u^{2})E(w^{2})} (E(u^{2}))^{\frac{1}{2}} (E(w^{2}))^{\frac{1}{2}} E(|f|^{2})|d\mu| \\ &\le \sup_{\|f\| \le 1} \int_{S \cap G} \frac{1}{(E(u^{2}))^{\frac{1}{2}} (E(w^{2}))^{\frac{1}{2}}} E(|f|^{2})d\mu| \\ &\le \int_{S \cap G} \frac{d\mu}{(E(u^{2}))^{\frac{1}{2}} (E(w^{2}))^{\frac{1}{2}}}. \end{split}$$

Consequently, we have the following theorem.

Theorem 3.19. Let $\mu(X) = 1$ and let $T = M_w E M_u \in CR(L^2(\Sigma))$ with $0 \le u, w \in \mathcal{D}(E)$. Then

$$\int_{S\cap G} \frac{E(u)E(w)}{E(u^2)E(w^2)} d\mu \le \omega(T^{\dagger}) \le \int_{S\cap G} \frac{d\mu}{\sqrt{E(u^2)E(w^2)}},$$

where $S = \sigma(E(u)), G = \sigma(E(w)).$

Example 3.20. Let $X = [-\frac{1}{2}, \frac{1}{2}]$, $d\mu = dx$, Σ be the Lebesgue sets, and let $\mathcal{A} \subseteq \Sigma$ be the σ -algebra generated by the symmetric sets about the origin. Let $0 < a \leq \frac{1}{2}$ and $f \in L^2(\Sigma)$. Then

$$\int_{-a}^{a} E(f)(x)dx = \int_{-a}^{a} f(x)dx$$

$$= \int_{-a}^{a} \left\{ \frac{f(x) + f(-x)}{2} + \frac{f(x) - f(-x)}{2} \right\} dx = \int_{-a}^{a} \frac{f(x) + f(-x)}{2} dx.$$

Thus, $E(f)(x) = \frac{f(x)+f(-x)}{2}$. Put u(x) = x + 2, w(x) = x + 3 and $T = M_w E M_u$. Then E(u) = 2, E(w) = 3, $E(u^2) = x^2 + 4$ and $E(w^2) = x^2 + 9$. Now, by Proposition 3.1(i) we get that

$$||T|| = ||\sqrt{(x^2+4)(x^2+9)}||_{\infty} = \frac{\sqrt{629}}{4} = 6.2699.$$

Moreover, since $u\sqrt{E(w^2)} = (x+2)\sqrt{x^2+9} \ge \frac{9}{2}$, then by Proposition 3.1(ii),

 $T \in CR(L^2(\Sigma))$. Also, it is easy to check that

$$\begin{split} \int_{\left[-\frac{1}{2},\frac{1}{2}\right]} \frac{E(u)E(w)}{E(u^2)E(w^2)} d\mu &= \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{6dx}{(x^2+4)(x^2+9)} = 0.1618;\\ \int_{\left[-\frac{1}{2},\frac{1}{2}\right]} \frac{d\mu}{\sqrt{E(u^2)E(w^2)}} &= \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{dx}{\sqrt{(x^2+4)(x^2+9)}} = 0.1642;\\ \|T^{\dagger}\| &= \|\frac{1}{\sqrt{E(u^2)E(w^2)}}\|_{\infty} = \frac{1}{6} = 1.666;\\ \|\widetilde{T}\| &= \|E(uw)\|_{\infty} = \frac{25}{4} = 6.250. \end{split}$$

Thus, $\|\widetilde{T}\| \leq \|T\|$, $\|T^{\dagger}\| \geq 1/\|T\|$ and by Theorem 3.6 we obtain

$$0.1618 \le \omega(T^{\dagger}) \le 0.1642 \le 1.666 = ||T^{\dagger}||.$$

Acknowledgements

The authors would like to thank the referee for very helpful comments and valuable suggestions.

REFERENCES

- 1. A. Aluthge, On *p*-hyponormal operators for 0 , Integral Equations Operator Theory**13**(1990), 307-315.
- 2. A. Ben-Israel and T. N. E. Greville, Generalized inverses: Theory and Applications, Springer-Verlag, New York, 2003.
- J. Bendat and S. Sherman, Monotone and convex operator functions, Trans. Amer. Math. Soc. 79 (1955), 58-71.
- A. Brown, C. K. Fong and D. W. Hadwin, Parts of operators on Hilbert space, Illinois J. Math. 22 (1978), 306-314.
- Y. Estaremi, On a class of operators with normal Aluthge transformations, Filomat 29 (2015), 969-975.
- Y. Estaremi, Some classes of weighted conditional type operators and their spectra, Positivity 19 (2015), 83-93.
- 7. M. Cho, R. E. Curto and T. Huruya, *n*-tuples of operators satisfying $\sigma_T(AB) = \sigma_T(BA)$, Linear Algebra Appl. **341** (2002), 291-298.
- D. S. Djordjević, Products of EP operators on Hilbert spaces, Proc. Amer. Math. Soc. 129 (2001), 1727-1731.
- D. S. Djordjević, Characterizations of normal, hyponormal and EP operators, J. Math. Anal. Appl. **329** (2007), 1181-1190.
- D. S. Djordjević and N. C. Dinčić, Reverse order law for the MoorePenrose inverse, J. Math. Anal. Appl. 361 (2010), 252-261.

- T. Furuta, On the polar decomposition of an operator, Acta Sci. Math. (Szeged) 46 (1983), 261-268.
- 12. T. Furuta, Invitation to linear operators, Taylor & Francis, Ltd. London, 2001.
- F. Gesztesy, M. Malamud, M. Mitrea and S. Naboko, Generalized polar decompositions for closed operators in Hilbert spaces and some applications, Integral Equations Operator Theory 64 (2009), 83-113.
- J. Herron, Weighted conditional expectation operators, Oper. Matrices 5 (2011), 107-118.
- M. R. Jabbarzadeh, A conditional expectation type operator on L^p spaces, Oper. Matrices 4 (2010), 445-453.
- 16. S. Jung, Y. Kim and E. Ko, Composition operators for which $C_{\phi}^* C_{\phi}$ and $C_{\phi} + C_{\phi}^*$ commute, Complex Var. Elliptic Equ. **59** (2014), 1608-1625.
- F. Kimura, Analysis of non-normal operators via Aluthge transformation, Integral Equations Operator Theory 50 (2004), 375-384.
- 18. M. M. Rao, Conditional measure and applications, Marcel Dekker, New York, 1993.
- T. Yamazaki, Parallelisms between Aluthge transformation and powers of operators, Acta Sci. Math. (Szeged) 67(2001), 809-820.
- T. Yamazaki, On numerical range of the Aluthge transformation, Linear Algebra Appl. 341 (2002), 111-117.
- 21. T. Yamazaki, Characterizations of $\log A \geq \log B$ and normaloid operators via Heinz inequality, Integral Equations Operator Theory 43 (2002), 237-247.
- 22. T. Yamazaki, On the polar decomposition of the Aluthge transformation and related results, J. Operator Theory **51** (2004), 303-319.

Mohammad Reza Jabbarzadeh

University of Tabriz Faculty of Mathematical Sciences Tabriz, Iran, E-mail: *mjabbar@tabrizu.ac.ir*

Hossein Emamalipour

University of Tabriz Faculty of Mathematical Sciences Tabriz, Iran, E-mail: h_emamali@tabrizu.ac.ir

Morteza Sohrabi Chegeni

Lorestan University Department of Mathematics Khorramabad, Iran, E-mail: mortezasohrabi021@gmail.com (Received 26.10.2016) (Revised 23.02.2018)