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ABSTRACT
In this paper, we discuss matrix theoretic characterizations for
weighted conditional type operators in some operator classes on
L2(�) such as self-adjoint, normal, quasi-normal and positive opera-
tor classes. In addition, some necessary and sufficient conditions are
given for such operators to have reducing subspaces.
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1. Introduction and preliminaries

Let (X,�,μ) be a sigma-finite measure space and let A be a sigma-finite subalgebra of
�. The space L2(X,A,μ|A) is abbreviated by L2(A) and its norm is denoted by ‖.‖2. All
comparisons between two functions or two sets are to be interpreted as holding up to a
μ-null set. We denote the linear space of all complex-valued �-measurable functions on
X by L0(�). The support of a measurable function f ∈ L0(�) is defined by σ(f ) = {x ∈
X : f (x) �= 0}. Let E : L2(�) → L2(A) be the conditional expectation operator, so that for
f ∈ L2(�), E(f ) is the uniqueA-measurable function such that∫

A
f dμ =

∫
A
EA(f ) dμ

for all A ∈ A. As an operator on L2(�), E := EA is a positive and orthogonal projection
of L2(�) onto L2(A). Note that D(E), the domain of E, contains L2(�) ∪ {f ∈ L0(�) :
f ≥ 0}. This operator will play a major role in our work. A detailed discussion and verifi-
cation of most of the properties may be found in [1–4]. Those properties of E used in our
discussion are summarized below. In all cases, we assume that f , g, fg ∈ D(E).

• If g isA-measurable then E(fg) = E(f )g.
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• σ(E(|f |)) is the smallestA-measurable set containing σ(f ).
• (Conditional Cauchy–Schwarz) |E(fg)|2 ≤ E(|f |2)E(|g|2), where f , g ∈ L0(�) are finite-

valued functions.

The products of conditional expectation andmultiplication operators appearmore often
in the service of the study of other operators rather than being the object of study in and
of themselves. Weighted Lambert conditional operators in L2(�)-spaces turn out to be
interesting objects of measure and operator theory. The class of these operators includes
unweighted conditional operators [5], multiplication operators, integral operators and
their adjoints. Throughout the paper, we assume that the measure spaces under consider-
ation are complete and that the corresponding Lambert conditional operators are densely
defined. This enables us to use the conditional expectation E = EA with respect to the
sigma-finite subalgebraA of � and to regard a Lambert conditional operator T = Tw,u as
the products MwEMu of the operator Mw and Mu of multiplications by w and u and the
conditional expectation operator E.

In Section 2, using the matrix representation, complete measure-theoretic character-
izations are given for self-adjoint, normal, quasi-normal and positive weighted Lambert
conditional operators in L2(�) space.

2. Characterizations

Let w, u ∈ D(E), the domain of E. Then, the mapping T : L2(�) ⊇ D(T) → L2(�) given
by T(f ) = wE(uf ) for f ∈ D(T) = {f ∈ L2(�) : T(f ) ∈ L2(�)} is well-defined and linear.
Such an operator is called a Lambert conditional operator induced by the pair (w, u).
Let K := E(|u|2)E(|w|2) be a finite-valued function; that is μ(K∞) = 0, where K∞ =
{x ∈ X : K(x) = ∞}. Put dν = (1 + K) dμ and take f ∈ L2(X,�, ν). Then, by conditional
Cauchy–Schwarz inequality, we have

‖T(f )‖2μ =
∫
X

|wE(uf )|2 dμ =
∫
X
E(|w|2)|E(uf )|2 dμ

≤
∫
X
E(|u|2)E(|w|2)E(|f |2) dμ

=
∫
X
K|f |2 dμ ≤ ‖f ‖2ν < ∞.

Thus, L2(X,�, ν) ⊆ D(T). Now, let f ∈ L2(�). We can assume that f|K∞ = 0. Put
Fn = {x ∈ X : K(x) ≤ n} for n ∈ N. Then, Fn ↗ F := {x ∈ X : K(x) < ∞}, ‖χFn f ‖2ν ≤
(1 + n)‖f ‖2μ < ∞, and by Lebesgue’s dominated convergence theorem

∫
X |f − χFn f |

dμ → 0 as n → ∞. Therefore, L2(X,�, ν) is dense in L2(�) and so T is a densely defined
operator on L2(�).

It was shown in [6] that T = MwEMu is bounded in L2(�) if and only if K ∈ L∞(�).
In this case, ‖T‖2 = ‖K‖∞ and L2(X,�, ν) = D(T) = L2(�). For further information
on conditional type operators, see e.g. [3,5,7–12]. From now on, to avoid the repeti-
tion, we gather the following assumptions which will be used frequently throughout this
paper.
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The triplet (X,�,μ) is a complete sigma-finite measure space, A ⊆ � is complete
sigma-finite, w, u, uw ∈ D(E), E = EA and T = MwEMu ∈ B(L2(�)), the algebra of
bounded linear operators on L2(�).

Relative to the direct sum decomposition L2(�) = R(E) ⊕ N (E), any element f of
L2(�) can be written uniquely as f = f1 + f2 where f1 = E(f ) ∈ L2(A) and f2 = f −
E(f ) ∈ N (E). Note thatR(E) = L2(A), σ(f1) ∈ A and E(f2) = 0. In caseA = {∅,X}with
μ(X) = 1, E(|f2|2) is called the variance of |f |. It is worth nothing that f =0 whenever
f ≥ 0 and E(f ) = 0. So, there is no strictly positive element in N (E). However, we have
the following simple but useful fact.

Lemma 2.1: Let f ∈ L2(�). Then, E(|f |2) = |f1|2 + E(|f2|2).

Proof: Knowing that for each f ∈ L2(�), E(f1) = f1 and E(f̄2) = E(f2) = 0 we have
E(|f |2) = E(|f1|2) + f1E(f̄2) + f̄1E(f2) + E(|f2|2) = |f1|2 + E(|f2|2). �

Corollary 2.2: The following statements hold:

(a) E(|f2|2) = 0 if and only if f ∈ L2(A);
(b) σ(E(|f |2)) = σ(f1) ∪ σ(E(|f2|2));
(c) σ(fi) ⊆ σ(E(|f |2)), for i=1,2.

Let f , g ∈ L0(�) be finite-valued functions. Then, by the conditional Cauchy–Schwarz
inequality, we have σ(E(fg)) ⊆ σ(E(|f |2)) ∩ σ(E(|g|2)). Moreover, if A ∈ � with σ(f ) ⊆
A, then fχA = f . Then, we have the following corollary.

Corollary 2.3: Let f , g ∈ D(E) and S = σ(E(|f |2)). Then,

(a) fiχS = fi, for i = 1, 2;
(b) E(fg)χS = E(fg).

Relative to the direct sum decomposition L2(�) = L2(A) ⊕ N (E), the matrix form of
each T = MwEMu ∈ B(L2(�)) is

[
T1 T2
T3 T4

]
=

[
ET|L2(A)

ET|N (E)

(I − E)T|L2(A)
(I − E)T|N (E)

]
,

where for f ∈ L2(A),

T1(f ) = E(w)E(u)(f ) = ME(w)E(u)(f );

T3(f ) = wE(u)f − E(w)E(u)f = ME(u)(w−E(w)(f )

and for f ∈ N (E),

T2(f ) = E(w)E(uf ) = ME(w)EMu(f );

T4(f ) = wE(uf ) − E(w)E(uf ) = Mw−E(w)EMu(f ).
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Replacing E(f ) and f − E(f ) by f1 and f2 in the above, respectively, we obtain

T =
[
Mw1u1 EMw1u2
Mw2u1 Mw2EMu2

]
. (1)

Note that we have used the fact that the expression EMu in T4 can be rewritten in the
following way:

EMu(f ) = E(u1f + u2f ) = u1E(f ) + E(u2f ) = EMu2(f ), f ∈ N (E).

From (1) we obtain

T∗ =
[
Mw1u1 EMw2u1
Mw1u2 Mū2EMw̄2

]
. (2)

The following corollary follows directly from (1) and (2).

Corollary 2.4: T is self-adjoint if and only if the followings hold.

(a) w1u1 = w1u1;
(b) w2u1 = w1u2;
(c) w2E(u2f ) = ū2E(w̄2f ), ∀f ∈ N (E).

Our next aim is to replace above conditions by the minimal ones.

Lemma 2.5: E(w)u = wE(u) if and only if w1u1 = w1u1 and w1u2 = w2u1. Moreover, in
this case ū1w2 = ū2w1.

Proof: Since w1u1 ∈ L2(A) and for 1 ≤ i �= j ≤ 2, wiuj ∈ N (E) we have

E(w)u = wE(u) ⇐⇒ w̄1(ū1 + ū2) = (w1 + w2)u1
⇐⇒ w1u1 + w1u2 = w1u1 + w2u1
⇐⇒ w1u1 = w1u1, w1u2 = w2u1. (3)

Moreover, the last equality in (3) implies that

w̄1u2χσ(u1) = w̄1u2; (4)

ū1w2χσ(w1) = ū1w2. (5)

By multiplying the sides of (3) we obtain

(w̄1ū1)(w2u1) = (w1u1)(w̄1ū2)
(4)==⇒
(5)

ū1w2 = ū2w1. �

Lemma 2.6: The following equalities are equivalent:

(a) ū2E(w̄2f ) = w2E(u2f ), ∀f ∈ N (E),
(b) w̄2E(|u2|2) = u2E(u2w2),
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(c) ū2E(|w2|2) = w2E(u2w2),

and in this case w2u2 = w2u2 and E(|w2|2)E(|u2|2) = (E(u2w2))
2.

Proof: (a) ⇒ (b) Since A is sigma-finite, there exists {An}n ⊆ A such that X = ∪nAn,
An ⊆ An+1 with μ(An) < ∞ for all n ∈ N. In this case, An ↗ X and so χAn ↗ χX . Put
f = ū2

√
E(|w2|2) χAn . Then,

‖f ‖2 =
∫
An

|u2|2E(|w2|2) dμ ≤ ‖T‖2μ(An) < ∞,

so that f ∈ L2(�) ∩ N (E). By hypothesis and using Corollary 2.3, we have

(a) =⇒ w̄2E(ū2u2
√
E(|w2|2) χAn) = u2E(u2w2

√
E(|w2|2) χAn)

=⇒ w̄2E(|u2|2)χAn = u2E(u2w2)χAn , ∀n ∈ N.

It follows that w̄2E(|u2|2) = u2E(u2w2) as n → ∞.
(b) ⇒ (c) Using Corollary 2.3, we have

(b) ×ū2==⇒
E

E(u2w2)E(|u2|2) = E(|u2|2)E(u2w2)

=⇒ E(u2w2) = E(u2w2) (6)

and

(b) ×w2==⇒
E

E(|w2|2)E(|u2|2) = (E(u2w2))
2

=⇒ E(|w2|2)χG = (E(u2w2))
2χG

E(|u2|2) , G = σ(E(|u2|2)). (7)

Then, we have

ū2E(|w2|2) = ū2E(|w2|2)χG = ū2
(E(u2w2))

2

E(|u2|2) χG, by (7)

= w2E(|u2|2)E(u2w2)

E(|u2|2) χG by (b) and (6)

= w2E(u2w2).

(c) ⇒ (a) Put G = σ(E(|w2|2). Multiplying both sides of (c) by u2 and w̄2, respectively,
and then taking the conditional expectation E of both sides equation we obtain

ū2E(|w2|2) = w2E(u2w2)
×u2==⇒
E

E(|u2|2)E(|w2|2) = (E(u2w2))
2. (8)

ū2E(|w2|2) = w2E(u2w2)
×w̄2==⇒
E

E(u2w2)E(|w2|2) = E(|w2|2)E(u2w2)

(8)==⇒
Cor. 2.3

E(u2w2) = E(u2w2). (9)
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Moreover, we obtain

ū2E(|w2|2) = w2E(u2w2)
×u2==⇒ |u2|2E(|w2|2) = (u2w2)E(u2w2)

(9)==⇒ u2w2 = u2w2.

These imply that

ū2E(|w2|2) = w2E(u2w2)
(9)==⇒ u2E(|w2|2) = w̄2E(u2w2) (by conjugation)

×f==⇒
E

E(|w2|2)E(u2f ) = E(u2w2)E(w̄2f )

×ū2==⇒ (ū2E(|w2|2))E(u2f ) = ū2E(u2w2)E(w̄2f )

(b)==⇒ w2E(u2w2)E(u2f ) = ū2E(u2w2)E(w̄2f )

(8)==⇒
Cor.2.3

ū2E(w̄2f ) = w2E(u2f ), ∀f ∈ N (E).

This completes the proof. �

Lemma 2.7: If ūE(uw) = wE(|u|2), then E(ū)w = ūE(w).

Proof: Put S = σ(E(|u|2)). Then, ūχS = ū and by assumption wχS = (ūE(uw)/

E(|u|2))χS. It follows that

E(ū)w = E(ū)wχS = E(ū)
ūE(uw)

E(|u|2) χS

= E(ūE(uw))

E(|u|2) ūχS = E(wE(|u|2))
E(|u|2) ūχS = ūE(w).

�

Lemma 2.8: The following statements are equivalent:

(a) ūE(uw) = wE(|u|2);
(b) ū2E(u2w2) = w2E(|u2|2) and ū1w2 = ū2w1.

Proof: Direct computations show that ūE(uw) = wE(|u|2) if and only if

(ū1 + ū2)(u1w1 + E(u2w2)) = (w1 + w2)(|u1|2 + E(|u2|2).

By Lemma 2.7, this is equivalent to ū2E(u2w2) = w2E(|u2|2) and ū1w2 = ū2w1. �

By Corollary 2.4 and the previous lemmas, we have the following theorem.
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Theorem 2.9: The Lambert conditional operator T ∈ B(L2(�)) is self-adjoint if and only if
the followings hold:

(a) E(w)u = wE(u);
(b) ūE(uw) = wE(|u|2).

Moreover, in this case, the conditional Cauchy–Schwarz inequality for u,w turns into
equality, i.e. |E(uw)|2 = E(|u|2)E(|w|2).

Example 2.10: Suppose � is the sigma-algebra of Lebesgue-measurable sets in D = {z ∈
C : |z| < 1} andμ is the area measure inD. For fix n ∈ N, letA = A(ϕ) be the sub-sigma
algebra of � generated by {(zn)−1(U) : U ⊂ D is open} and E = EA. Put cz = {ζ : ζ n =
zn} for each z ∈ D. Then, by [9, Example 2.5(ii)], we have

E(f )(z) = 1
n

∑
ζ∈cz

f (ζ ), f ∈ L2(�), z ∈ D.

Let u, h ∈ L∞(D)with h̄ = h and takew(z) = ū(z)h(zn). Then, by [6, Theorem 2.1(a)],
T = MwEMu is a bounded operator in L2(�). Moreover, we have

(E(w)u)(z) = ū(z)
n

∑
ζ∈cz

u(ζ )h(ζ n)

= ū(z)h(zn)
n

∑
ζ∈cz

u(ζ )

= (wE(u))(z);

(ūE(uw))(z) = ū(z)
n

∑
ζ∈cz

u(ζ )w(ζ )

= ū(z)h(zn)
n

∑
ζ∈cz

|u(ζ )|2

= (wE(|u|2))(z), z ∈ D.

Then, by Theorem 2.9, T is self-adjoint. On the other hand, direct computation shows that

(T∗f )(z) = ū(z)h(zn)
n

∑
ζ∈cz

u(ζ )f (ζ ) = (Tf )(z), f ∈ L2(�), z ∈ D.

In view of (1) and (2) we have

T∗T =
[
S1 S2
S3 S4

]
,
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where

S1 = M|w1|2|u1|2 + EM|w1|2|u1|2

= M|u1|2(|w1|2+E(|w2|2)
= M|u1|2E(|w|2);

S2 = EM|w1|2ū1u2 + EM|w2|2ū1EMu2

= EM|w1|2ū1u2+E(|w2|2)ū1u2
= EMū1u2E(|w|2);

S3 = M|w1|2ū2u1 + Mū2EM|w2|2u1
= Mū2u1M(|w1|2+E(|w2|2)
= Mū2u1E(|w|2);

S4 = Mū2EM|w1|2u2 + Mū2EM|w2|2EMu2

= Mū2E(|w|2)EMu2 .

Thus,

T∗T =
[
M|u1|2E(|w|2) EMū1u2E(|w|2)
Mū2u1E(|w|2) Mū2E(|w|2)EMu2

]
. (10)

We conclude similarly that

TT∗ =
[
M|w1|2E(|u|2) EMw̄2w1E(|u|2)
Mw̄1w2E(|u|2) Mw2E(|u|2)EMw̄2

]
. (11)

The following corollary follows directly from (10) and (11).

Corollary 2.11: T is normal if and only if the followings hold:

(a) |w1|2E(|u|2) = |u1|2E(|w|2);
(b) w̄1w2E(|u|2) = ū2u1E(|w|2);
(c) w2E(|u|2)E(w̄2f ) = ū2E(|w|2)E(u2f ), ∀f ∈ N (E).

Proposition 2.12: ū1w2 = ū2w1 if and only if the following equalities hold:

(a) |u1|2E(|w|2) = |w1|2E(|u|2);
(b) ū2u1E(|w|2) = w2w̄1E(|u|2).

Proof: Let ū1w2 = ū2w1. Then, we have

|u1|2E(|w|2) = |u1|2(|w1|2 + E(|w2|2) = |u1|2|w1|2 + E(|u1w2|2)
= |u1|2|w1|2 + E(|u2w1|2) = |w1|2(|u1|2 + E(|u2|2))
= |w1|2E(|u|2)
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and

ū1w2 = ū2w1 ⇒ (ū1w2)(w̄1E(|u|2) = ū2|w1|2E(|u|2)
⇒ ū1w2w̄1E(|u|2) = ū2|u1|2E(|w|2).

But w̄1E(|u|2)χσ(u1) = w̄1E(|u|2), by (a), because σ(w̄1E(|u|2)) = σ(|u1|2E(|w|2)) ⊆
σ(u1). Hence, w2w̄1E(|u|2) = ū2u1E(|w|2).

Conversely, let (a) and (b) hold. From (a), we have

w2ū1χσ(w1) = w2ū1. (12)

Multiplying both sides of (b) by ū1, we obtain ū2|u1|2E(|w|2) = ū1(w2w̄1E(|u|2)). Thus,
ū2|w1|2E(|u|2) = ū1(w2w̄1E(|u|2)) and so ū1w2 = ū2w1, by (12). This completes the proof.

�

Lemma 2.13: The following equalities are equivalent:

(a) wE(|u|2)E(w̄f ) = ūE(|w|2)E(uf ), ∀f ∈ L2(�);
(b) w̄E(|u|2) = uE(uw);
(c) ūE(|w|2) = wE(uw).

Proof: For An ∈ L0(A) with μ(An) < ∞, put f = w
√
E(|u|2)χAn in (a). Then, precisely

the same calculation as that shown in the proof of Lemma 2.6 yields that f ∈ L2(�).
Therefore, (b) holds by Corollary 2.3. Now, let (b) hold. First, note that

w̄E(|u|2) = uE(uw)
×w==⇒
E

E(|w|2)E(|u|2) = |E(uw)|2

=⇒ E(|w|2)χE(|u|2) = |E(uw)|2
E(|u|2) χE(|u|2). (13)

Then, by Lemma 2.3, we have

ūE(|w|2) = ūE(|w|2)χE(|u|2)
(13)== ū|E(uw)|2

E(|u|2) χE(|u|2)

= (ūE(uw))(E(uw))

E(|u|2) χE(|u|2)

(b)== wE(uw)χE(|u|2)

= wE(uw).

This proves (b) ⇒ (c). The above argument with u replaced by w shows that (c) implies
(b). Now, let (b) holds. Then, we have

w̄E(|u|2) = uE(uw)
×f==⇒
E

E(|u|2)E(w̄f ) = E(uw)E(uf )

×w==⇒
(c)

wE(|u|2)E(w̄f ) = ūE(|w|2)E(uf ).

This completes the proof. �
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Theorem 2.14: The Lambert conditional operator T ∈ B(L2(�)) is normal if and only if
ūE(uw) = wE(|u|2). In this case, |E(uw)|2 = E(|u|2)E(|w|2).

Proof: By Lemma (2.13), it is clear. �

Corollary 2.15: Let A ∈ A. Then, the following equalities are equivalent:

(a) wE(|u|2)E(w̄f )χA = ūE(|w|2)E(uf )χA, ∀f ∈ L2(�);
(b) w̄E(|u|2)χA = uE(uw)χA;
(c) ūE(|w|2)χA = wE(uw)χA.

Put S = σ(u1) ∪ σ(w1) and Sc = X \ S. It follows that Sc ∈ A, uχSc = u2χSc and
wχSc = w2χSc . Then, by Corollary 2.15, we have the following corollary.

Corollary 2.16: Let A ∈ A. Then, the following equalities are equivalent:

(a) w2E(|u|2)E(w̄2f )χSc = ū2E(|w|2)E(u2f )χSc , ∀f ∈ L2(�);
(b) w̄2E(|u|2)χSc = u2E(u2w2)χSc ;
(c) ū2E(|w|2)χSc = w2E(u2w2)χSc .

Proposition 2.17: Let S = σ(u1) ∪ σ(w1) and ū1w2 = ū2w1. Then, we have

(a) ūE(uw)χS = wE(|u|2)χS;
(b) ū2E(|w|2)E(u2f )χS = w2E(|u|2)E(w̄2f )χS, ∀f ∈ L2(�).

Proof: (a) First, note that

E(ū)w = ūE(w) ⇐⇒ ū1(w1 + w2) = (ū1 + ū2)w1

⇐⇒ ū1w2 = ū2w1.

Also, the equality E(ū)w = ūE(w) implies that

ūχσ(w1) = E(ū)w
E(w)

χσ(w1); (14)

wχσ(u1) = ūE(w)

E(ū)
χσ(u1). (15)

From hypothesis and (14), we obtain

ūE(uw)χσ(w1) = E(ū)w
E(w)

E(uw)χσ(w1)

= w
E(w)

E(u(E(ū)w))χσ(w1)

= w
E(w)

E(u(ūE(w))χσ(w1)

= wE(|u|2)χσ(w1). (16)
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Similarly, we obtain

ūE(uw)χσ(u1) = wE(|u|2)χσ(u1). (17)

Now, from (16) and (17), we have ūE(uw)χS = wE(|u|2)χS. This proves (a).
(b) Let f ∈ L2(�). Then, we have

ū1w2 = ū2w1
×f==⇒
E

w̄1E(u2f ) = u1E(w̄2f )

w2E|u|2==⇒ w̄1w2E(|u|2)E(u2f ) = u1w2E(|u|2)E(w̄2f ).

Now, by using Lemma 2.12(b), we obtain

ū2E(|w|2)E(u2f )χσ(u1) = w2E(|u|2)E(w̄2f )χσ(u1). (18)

The above argument with u replaced by w and using Lemma 2.12(a) show that

ū2E(|w|2)E(u2f )χσ(w1) = w2E(|u|2)E(w̄2f )χσ(w1). (19)

Now, the desired conclusion in (b) follows from (18) and (19). �

Example 2.18: LetX = {1, 2, 3, 4},� = 2X ,μ({n}) = 1/4 and letA be the σ -algebra gen-
erated by the partition {{1, 2}, {3, 4}}. The L2(�) space under consideration is C4 and
relative to the standard orthonormal basis,

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

1
2

0 0

1
2

1
2

0 0

0 0
1
2

1
2

0 0
1
2

1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
;

and forw and u corresponding to (w1,w2,w3,w4) and (u1, u2, u3, u4), respectively, we have

T =

⎡
⎢⎢⎣
w1 0 0 0
0 w2 0 0
0 0 w3 0
0 0 0 w4

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

1
2

0 0

1
2

1
2

0 0

0 0
1
2

1
2

0 0
1
2

1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
u1 0 0 0
0 u2 0 0
0 0 u3 0
0 0 0 u4

⎤
⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1u1
2

w1u2
2

0 0
w2u1
2

w2u2
2

0 0

0 0
w3u3
2

w3u4
2

0 0
w4u3
2

w4u4
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Now, put u = (1, 2, i, 2i) and w = (i, 2i, 1, 2). Then,

T =

⎡
⎢⎢⎢⎢⎢⎣

i
2

i 0 0
i 2i 0 0

0 0
i
2

i
0 0 i 2i

⎤
⎥⎥⎥⎥⎥⎦ , and so T∗ =

⎡
⎢⎢⎢⎢⎢⎣

− i
2

−i 0 0
−i −2i 0 0

0 0 − i
2

−i
0 0 −i −2i

⎤
⎥⎥⎥⎥⎥⎦ .

On the other hand,

ūE(uw) = (1, 2,−i,−2i)E(i, 4i, i, 4i)

=
(
5i
2
, 5i,

5
2
, 5

)
= wE(|u|2).

Thus, T is not self-adjoint but it is a normal operator, by Theorem 2.14. Note that if in the
above we take w = −ū, then T will be a self-adjoint operator but not a positive one.

Recall that T is said to be quasi-normal if T(T∗T) = (T∗T)T. In view of (1) and (2), we
have

T(T∗T) = (E(|w|2)E(|u|2))
[
Mw1u1 EMw1u2
Mw2u1 Mw2EMu2

]
; (20)

(T∗T)T = (E(|w|2)E(uw))

[
M|u1|2 EMū1u2
Mū2u1 Mū2EMu2

]
. (21)

The following corollary follows directly from (20) and (21).

Corollary 2.19: T is quasi-normal if and only if the followings hold:

(a) E(|w|2)E(|u|2)w1u1 = E(|w|2)E(uw)|u1|2;
(b) E(|w|2)E(|u|2)w1u2 = E(|w|2)E(uw)ū1u2;
(c) E(|w|2)E(|u|2)w2u1 = E(|w|2)E(uw)ū2u1;
(d) E(|w|2)E(|u|2)w2E(u2f ) = E(|w|2)E(uw)ū2E(u2f ), ∀f ∈ N (E).

In the following, we discuss some simple consequences of items in Corollary 2.19 and
suppose that T is quasi-normal.

(a) ⇐⇒ E(|u|2)w1u1 = E(uw)|u1|2 ⇐⇒ E(|u|2)w1χσ(u1) = E(uw)ū1χσ(u1);

(b) ⇐⇒ E(|u|2)w1u2 = E(uw)ū1u2 ⇐⇒ E(|u|2)w1χσ(u2) = E(uw)ū1χσ(u2);

(c) ⇐⇒ E(|u|2)w2u1 = E(uw)ū2u1 ⇐⇒ E(|u|2)w2χσ(u1) = E(uw)ū2χσ(u1).

Now, set f = ū2
√
E|w|2χAn in (d) in which μ(An) < ∞. Using the same method as in the

proof of Lemma 2.6, we have

(d) ⇐⇒ E(|u|2)w2E(u2f ) = E(uw)ū2E(u2f )

⇐⇒ E(|u|2)w2χσ(E(|u2|2)) = E(uw)ū2χσ(E(|u2|2)).
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Theorem 2.20: Let T ∈ B(L2(�)). Then, T is quasi-normal if and only if wE(|u|2) =
ūE(uw).

Proof: If wE(|u|2) = ūE(uw) holds, then T is normal so T is quasi-normal.
Conversely, suppose (a), (b), (c) and (d) in Corollary 2.19 hold. Then, we have

(b) =⇒ E(|u|2)w1χσ(u2)|u2|2 = E(uw)ū1χσ(u2)|u2|2

=⇒ E(|u|2)w1|u2|2 = E(uw)ū1|u2|2

=⇒ E(|u|2)w1E(|u2|2) = E(uw)ū1E(|u2|2)
=⇒ E(|u|2)w1χσ(E(|u2|2)) = E(uw)ū1χσ(E(|u2|2))

(a)==⇒ E(|u|2)w1χσ(u1)∪σ(E(|u2|2)) = E(uw)ū1χσ(u1)∪σ(E(|u2|2))

=⇒ E(|u|2)w1 = E(uw)ū1.

In the same manner, from (c) and (d) we obtain E(|u|2)w2 = E(uw)ū2. Thus, wE(|u|2) =
ūE(uw). �

We say that λ ∈ C belongs to the essential range of a measurable function f if for each
neighbourhood G of λ, μ(f−1(G)) > 0. Our next task is about the spectra. For a bounded
linear operator T, spec(T) denote its spectrum. Let Mu be a bounded multiplication
operator on L2(�). It is well-known fact that

spec(Mu) = {λ ∈ C : �c > 0, s.t. |u(x) − λ| ≥ c a.e.}

Herron [2] proved that the spectrum of an unweighted bounded conditional operator
EMu is the essential range of E(u). In the following, we determine the spectrum of bounded
weighted conditional operators on L2(�).

Theorem 2.21: LetA �= � and T = MwEMu ∈ B(L2(�)). Then,

spec(T) \ {0} = ess range(E(uw)) \ {0}.

Proof: First, assume that λ /∈ ess range(E(uw)) and λ �= 0. We show that T − λI is invert-
ible. Let f ∈ N (T − λI). Then, wE(uf ) = λf . Multiplying both sides of this equation by u
and then taking E we obtain E(uw)E(uf ) = λE(uf ). Then, E(uf )(E(uw) − λ) = 0. But, by
hypothesis, E(uw) �= λ. Thus, E(uf ) = 0, and so f =0. To show that T − λI is surjective,
let g = g1 + g2 ∈ L2(�) be given. We show that there exists an L2(�) function f such that
(T − λI)f = g. For this, define

f1 = w1E(ug) − g1E(uw) + λg1
λ(E(uw) − λ)

,

f2 = w2E(ug)
λ(E(uw) − λ)

− g2
λ
.
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Since T is bounded, ‖gi‖2 ≤ ‖g‖2 and ‖(E(uw) − λ)−1‖∞ ≤ c, then fi ∈ L2(�) for i=1,2.
Moreover, f1 isA-measurable, f2 ∈ N (E) and

wE(uf1) = wE(uw1)E(ug) − wE(ug1)E(uw) + λwE(ug1)
λ(E(uw) − λ)

;

wE(uf2) = wE(uw2)E(ug) − wE(ug2)E(uw) + λwE(ug2)
λ(E(uw) − λ)

;

λf = λ(f1 + f2) = wE(ug) − gE(uw) + λg
E(uw) − λ

.

It follows that T(f ) = wE(uf ) = wE(ug)/(E(uw) − λ), and hence (T − λ)f = g.
Conversely, suppose λ /∈ spec(T). PutW=w and U = u/(λ(E(uw) − λ)) and define a

linear operator S on L2(�) as S = MWEMU − 1/λI. We claim that λ /∈ ess range(E(uw)) if
and only if S is bounded. Suppose λ /∈ ess range(E(uw)). Then, for all f ∈ L2(�), we have

‖S(f )‖2 ≤ ‖wE
(

uf
λ(E(uw) − λ)

)
‖2 + 1

|λ|‖f ‖2

≤ 1
|λ|

(
1
c
‖E(|u|2)E(|w|2)‖1/2∞ + 1

)
‖f ‖2.

Now, let S be bounded. Then, ‖ES(f )‖2 ≤ ‖S‖ ‖f ‖2 for all f ∈ L2(�). In particular, for any
f ∈ L2(A), we have

ES(f ) = E(w)E(u) − E(uw) + λ

λ(E(uw) − λ)
f .

Put g = wE(u) − E(uw) + λ. Then, g �= 0 and ES = Mϕ is a boundedmultiplication oper-
ator on L2(A) with multiplier ϕ = E(g)/(λ(E(uw) − λ)). Hence, ϕ ∈ L∞(A). On the
other hand, since T is bounded, then 0 �= E(g) ∈ L∞(A). Therefore, 1/(E(uw) − λ) ∈
L∞(A). This implies that λ /∈ ess range(E(uw)). Now it is easy to check that S(T − λ) =
(T − λ)S = I. Consequently, S = (T − λ)−1. This completes the proof. �

Corollary 2.22: Let T = MwEMu ∈ B(L2(�)) and let λ /∈ spec(T). Then,

(MwEMu − λI)−1 = MWEMU − 1
λ
I,

where W=w and U = u/(λ(E(uw) − λ)).

In the following, we characterize the positivity of the weighted conditional operators on
L2(�). Recall that T is said to be positive if 〈Tf , f 〉 ≥ 0 for all f ∈ L2(�).

Lemma 2.23: Let 0 ≤ g ∈ L0(A) and T = MgūEMu ∈ B(L2(�)). Then, T ≥ 0.

Proof: Put S = σ(E(|u|2)),w = √
g/E(|u|2) ūχS and defineT1 = MwEMu. Then, it is easy

to check that T = T∗
1T1, and so T ≥ 0. �



2044 M. R. JABBARZADEH ANDM. H. SHARIFI

Theorem 2.24: The bounded weighted conditional operator T on L2(�) is positive if and
only if the followings hold:

(a) E(uw) ≥ 0;
(b) ūE(uw) = wE(|u|2).

Proof: Let T ≥ 0. Then, by definition, T is self-adjoint and spec(T) ⊆ [0,∞). Using The-
orems 2.9 and 2.21, (a) and (b) hold. Conversely, let (a) and (b) hold. Put S = σ(E(|u|2))
and g = (E(uw)/E(|u|2))χS. From (b), gū = wχS. Moreover, for all f ∈ L2(�), we have
MgūEMu(f ) = wχSE(uf ) = wE(uf ) = T(f ). Now, the desired conclusion follows from
Lemma 2.23. �

In particular, when w=1, we have the following corollary:

Corollary 2.25: Let T = EMu ∈ B(L2(�)). Then, the followings hold:

(a) T is self-adjoint if and only if ū = u ∈ L∞(A);
(b) T is normal if and only if u ∈ L∞(A);
(c) T is positive if and only if 0 ≤ u ∈ L∞(A).

Example 2.26: (a) Let X = [−1, 1], dμ = (1/2)dx, � the Lebesgue sets, and A the
sigma subalgebra of � consisting of sets symmetric about the origin. It is easy to
check that E(f )(x) = (f (x) + f (−x))/2. Put u = x2 + x3 and w = x4 + x5. Then,
‖T‖ = 2, E(uw) = x6 + x8 and uE(uw) = x8(x2 + 1)(x + 1) = wE(|u|2). Then, by
Theorem 2.24, T = MwEMu is a bounded positive on L2(�). Note that, if we take
W = (x2 + x)(x2 + 1)−1/2, U = x2 + x3 and T1 = MWEMU . Then, ‖T1‖ = √

2 and
T∗
1T1 = Mx4+x5EMx2+x3 = T.

(b) LetX = [0, 1], dμ = dx and� be the Lebesgue sets. Let P = {An : n ∈ N} be a count-
able partition of X into disjoint sets with 0 < μ(An) < ∞. Let A be the sigma sub-
algebra generated by P. Then, E(f ) = ∑

n(1/μ(An)
∫
An

f dμ)χAn (see [4]). Especially,
let A = {∅,X}. Then, E(f ) = ∫ 1

0 f (x)dx. Put u = 4x3 and w = 7x3. Then, ‖T‖ = 4,
E(uw) = 4 and uE(uw) = 16x2 = wE(|u|2). Then, by Theorem 2.24, T is a bounded
positive operator on L2(�). On the other hand, by a direct computation, we have
T(f ) = 28x3

∫ 1
0 x3f (x) dx and

〈T(f ), f 〉 = 28
(∫ 1

0
x3f (x)dx

)2

≥ 0, f ∈ L2(�).

Recall that for T ∈ B(H), there is a unique factorization T = U|T|, where N (T) =
N (U) = N (|T|),U is a partial isometry, i.e.UU∗U = U and |T| = (T∗T)1/2 is a positive
operator. This factorization is called the polar decomposition of T. The Aluthge transform
of T is the operator T̃ given by T̃ = |T|1/2U|T|1/2.

Proposition 2.27: Let 0 ≤ g ∈ L0(A) and T = MgūEMu ∈ B(L2(�)). Then,
√
T =

MkūEMu, where S = σ(E(|u|2) and k = √
(g/E(|u|2))χS.
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Proof: First, note that T is positive by Theorem 2.24. Since kūE(|u|2k) = gū and ūχS = ū,
we have

(MkūEMu)
2 = MkūE(|u|2k)EMu = T.

This completes the proof. �

Corollary 2.28: Let T = MwEMu ∈ B(L2(�)) and let U|T| be its polar decomposition and
S = σ(E(|u|2) and G = σ(E(|w|2). Then, the followings hold:

(a) |T| = MgūEMu, where g =
√

(E(|w|2)/E(|u|2))χS;
(b)

√|T| = MpūEMu, where p = 4
√

(E(|w|2)/(E(|u|2))3)χS;
(c) T = U|T|, where U = Mg′EMu and g′ = wχS∩G/

√
E(|u|2)E(|w|2);

(d) T̃ = Mg′′ūEMu, where g′′ = (E(uw)/E(|u|2))χS.

Corollary 2.29: Let T = MwEMu ∈ B(L2(�)). Then, the following statements hold:

(a) T̃ is self-adjoint if and only if E(uw) = E(uw);
(b) T̃ is normal;
(c) T̃ is positive if and only if E(uw) ≥ 0.

Recall that a closed subspaceM ofH is said to be invariant for an operator T ∈ B(H)

whenever TM ⊆ M. If M and its orthogonal complement M⊥ are both invariant for
T, then we say that M reduces T. Now using (1), the closed subspace L2(A) of L2(�)

is an invariant subspace of T if and only if the lower left corner’s entry of the matrix
representation of T is the zero operator on its domain. But, in this case, we have

Mw2u1 = 0 ⇐⇒ w2u1f = 0, ∀f ∈ L2(A)

⇐⇒ w2u1 = (w − E(w))E(u) = 0

⇐⇒ wE(u) ∈ L0(A)

⇐⇒ wχS ∈ L0(A), S = σ(E(u)).

By the same argument on the lower left corner’s entry of matrix representation (2) of T∗,
we have the following result.

Proposition 2.30: Let T = MwEMu ∈ B(L2(�)). Then, the following statements hold:

(a) L2(A) is an invariant subspace of T if and only if wχσ(E(u)) ∈ L0(A).
(b) L2(A) is an invariant subspace of T∗ if and only if uχσ(E(w)) ∈ L0(A).
(c) uχσ(E(w)) ∈ L0(A) if and only if EMw1u2 |N (E)= 0.
(d) L2(A) is a reducing subspace of T if and only if wχσ(E(u)) and uχσ(E(w)) are A-

measurable functions.

Corollary 2.31: Let T = MwEMu ∈ B(L2(�)). Then, L2(A) is a reducing subspace of T̃ if
and only if uχσ(E(uw)) is anA-measurable function.
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PutK = {MwEMu : u,w, uw ∈ D(E), E(|u|2)E(|w|2) ∈ L∞(�)}.
In the following, we describe the general form of self-adjoint, normal, quasi-normal and

positive elements ofK.

Theorem 2.32: Let T = MwEMu ∈ K. Then, the following statements hold:

(a) T is self-adjoint if and only if T = MgūEMu for some ḡ = g ∈ L0(A).
(b) T is normal if and only if T = MgūEMu for some g ∈ L0(A).
(c) T is normal if and only if T is quasi-normal.
(d) T is positive if and only if T = MgūEMu for some 0 ≤ g ∈ L0(A).

Proof: We only give proof of (b). Repeating the same argument and using the previous
results give the other parts.

First, let T = MgūEMu for some g ∈ L0(A). Then,

ūE(uw) = ūE(ugū) = gūE(|u|2) = wE(|u|2).
Thus, by 2.14, T is normal. Conversely, let T = MwEMu ∈ K be normal. Then, ūE(uw) =
wE(|u|2), and so

wχS = E(uw)

E(|u|2) ūχS, S = σ(E(|u|2)).

Put g = (E(uw)/E(|u|2))χS ∈ L0(A). Since E(uf )χS = E(uf ), then we have

MwEMu(f ) = wχSE(uf ) = E(uw)

E(|u|2) ūχsE(uf )

= gūE(uf ) = MgūEMu.

This completes the proof. �
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