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1. Introduction and preliminaries

Let (X, £, 1) be a sigma-finite measure space and let A be a sigma-finite subalgebra of
¥. The space L?(X, A, 11| 4) is abbreviated by L?(.A) and its norm is denoted by ||.||2. All
comparisons between two functions or two sets are to be interpreted as holding up to a
pu-null set. We denote the linear space of all complex-valued X -measurable functions on
X by L°(Z). The support of a measurable function f € L°(X) is defined by o (f) = {x €
X :f(x) # 0}.Let E: L*(£) — L*(A) be the conditional expectation operator, so that for
fe L*(D), E(f) is the unique .A-measurable function such that

AfdM=AEA(f)dM

for all A € A. As an operator on L?(X), E := E* is a positive and orthogonal projection
of L2(X) onto L?*(A). Note that D(E), the domain of E, contains L>(X) U {f € L°(%) :
f > 0}. This operator will play a major role in our work. A detailed discussion and verifi-
cation of most of the properties may be found in [1-4]. Those properties of E used in our
discussion are summarized below. In all cases, we assume that f, g, fg € D(E).

o If g is A-measurable then E(fg) = E(f)g.
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e o (E([f])) is the smallest .A-measurable set containing o (f).
e (Conditional Cauchy-Schwarz) |E(fg) > < E([flz)E(Iglz), wheref,g € L(X) are finite-
valued functions.

The products of conditional expectation and multiplication operators appear more often
in the service of the study of other operators rather than being the object of study in and
of themselves. Weighted Lambert conditional operators in L?(X)-spaces turn out to be
interesting objects of measure and operator theory. The class of these operators includes
unweighted conditional operators [5], multiplication operators, integral operators and
their adjoints. Throughout the paper, we assume that the measure spaces under consider-
ation are complete and that the corresponding Lambert conditional operators are densely
defined. This enables us to use the conditional expectation E = E* with respect to the
sigma-finite subalgebra A of ¥ and to regard a Lambert conditional operator T = T}, as
the products M,,EM,, of the operator M,, and M, of multiplications by w and u and the
conditional expectation operator E.

In Section 2, using the matrix representation, complete measure-theoretic character-
izations are given for self-adjoint, normal, quasi-normal and positive weighted Lambert
conditional operators in L?>(X) space.

2. Characterizations

Let w, u € D(E), the domain of E. Then, the mapping T : L*(Z) D D(T) — L*(%) given
by T(f) = wE(uf) for f € D(T) = {f € LX(2) : T(f) € L*(X)} is well-defined and linear.
Such an operator is called a Lambert conditional operator induced by the pair (w, u).
Let K := E(|u|?)E(|w|?) be a finite-valued function; that is 1t(Ks) = 0, where Koo =
{x € X: K(x) = 00}. Putdv = (1 + K) du and take f € L*(X, £, v). Then, by conditional
Cauchy-Schwarz inequality, we have

1T = /X IWECuf) 2 dpt = /X E(IwP)EGf) P du
< /X E(uP) E(wE(f1?) dya
= / K|f1*du < [If1l} < oo.
X

Thus, L*(X, =,v) € D(T). Now, let fe L*(X). We can assume that fike, =0. Put
F,={xe X:K() <n} for n e N. Then, F, /' F:={x € X: K(x) < o0}, ||)(F,f||2 <
1+ n)|[f||i < 00, and by Lebesgue’s dominated convergence theorem [ |f — xr,f|
dp — 0asn — oo. Therefore, L*(X, ¥, v) is dense in L>(X) and so T'is a densely defined
operator on L3 (D).

It was shown in [6] that T = M,,EM,, is bounded in L*(X) if and only if K € L®(X).
In this case, | T||*> = ||K|lso and L*>(X, X, v) = D(T) = L*>(X). For further information
on conditional type operators, see e.g. [3,5,7-12]. From now on, to avoid the repeti-
tion, we gather the following assumptions which will be used frequently throughout this

paper.
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The triplet (X, X, ) is a complete sigma-finite measure space, A C ¥ is complete
sigma-finite, w,u,uw € D(E), E = EA and T = M,,EM, € B(L*(X)), the algebra of
bounded linear operators on L2(%).

Relative to the direct sum decomposition L*(X) = R(E) & N (E), any element f of
L*(X) can be written uniquely as f = f; + f, where f; = E(f) € L>(A) and f, = f —
E(f) € N'(E). Note that R(E) = L*(A), o (fi) € Aand E(f,) = 0.In case A = {}, X} with
n(X) = 1, E(|f2|?) is called the variance of |f|. It is worth nothing that f =0 whenever
f > 0and E(f) = 0. So, there is no strictly positive element in A/ (E). However, we have
the following simple but useful fact.

Lemma 2.1: Letf € L*(X). Then, E(|f|*) = |fi]*> + E(|2]?).

Proof: Knowing that for each f € L2(Y), E(fi) =fi and E(]_‘z) = @ =0 we have
E(f1®) = E(A1D) + AE(R) + AE(R) + E(A1P) = [i1* + E(fA1D). u

Corollary 2.2: The following statements hold:

(@) E(|21>) = 0ifand only if f € L*(A);
(b) oE(f2) = o (f) Uo E(LP):
(c) o(f;) Ca(E(f}), fori=12.
Let f,g € L°(X) be finite-valued functions. Then, by the conditional Cauchy-Schwarz

inequality, we have o (E(fg)) < G(E([f|2)) N U(E(|g|2)). Moreover, if A € ¥ with o (f) C
A, then f x4 = f. Then, we have the following corollary.

Corollary 2.3: Letf,g € D(E) and S = o (E(|f|?)). Then,

(@) fixs=fifori=1,2
(b) E(f9)xs = E(fg).

Relative to the direct sum decomposition L>(Z) = L?>(A) @& N (E), the matrix form of
each T = M,,EM,, € B(L*(X)) is

|:T1 Tz} | BT, ET) vy
T3 Ty (I—E) T|L2(A) (I—E) T|./\/’(E) ’
where for f € L*(A),

T1(f) = EW)Ew)(f) = MEuw)Ew (f);
T5(f) = wE(w)f — E(w)E(u)f = Mgw)w—Ew)(f)

and for f € N(E),

T>(f) = E(wW)E(uf) = Mguw)EM,(f);
T4(f) = wE(uf) — EW)E(uf) = My—pw)EM,(f).
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Replacing E(f) and f — E(f) by f; and f, in the above, respectively, we obtain

M EM
= |Mww EMww | (1)
|:MW2M1 M, EM,,,

Note that we have used the fact that the expression EM,, in T4 can be rewritten in the
following way:

EM,(f) = E(u1f + uzf) = wmE(f) + E(uaf) = EM,,(f), f € N(E).
From (1) we obtain

M EMii3
T* — wiug woug . 2
[Mwluz MazEMv‘vj @

The following corollary follows directly from (1) and (2).
Corollary 2.4: T is self-adjoint if and only if the followings hold.

(@) wiup = wiug;
(b) Wl = Wil2;

(C) WzE(uzf) = ﬁzE(sz), Vf (S N(E)
Our next aim is to replace above conditions by the minimal ones.

Lemma 2.5: E(w)u = wE(u) if and only if wiu; = wiuy and wiuy = wyu;. Moreover, in
this case Uy wy = Upywy.

Proof: Since wiu; € L*>(A) and for 1 < i #FJj =<2, wiuj € N (E) we have

EwW)u = wE(u) <= wi(u1 + up) = (w1 + wa)ug
= wiuy + Wiy = wiug + wau

S Wil = WUy, Wily = Whly. (3)
Moreover, the last equality in (3) implies that

WIUD X (uy) = W1U23 (4)

U W2 Xo (wy) = UIW2. (5)

By multiplying the sides of (3) we obtain
- o 4 .
(wiuy) (wauy) = (wyrug)(wiiiz) % uywy = upwi. m

Lemma 2.6: The following equalities are equivalent:

(@) wE(waf) = woE(uaf), Vf € N(E),
(b) W2E(|u2]?) = waE(uawy),
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(¢) wmE(wal*) = waE(uawy),

and in this case wytly = wauy and E(|wa2|?)E(|u2)?) = (E(uaw2))?.

Proof: (a) = (b) Since A is sigma-finite, there exists {A,}, € A such that X = U,A,,
A, € Ayq with u(A,) < oo for all n € N. In this case, A, /' X and so x4, /" xx. Put

f = uizy/E(Iw2|?) xa,- Then,
IfI* = / luzPE(Iwa|*) dpe < I TN (An) < 00,
Ap

so that f € L2(Z) N N (E). By hypothesis and using Corollary 2.3, we have
(2) = MmE(urV E(Iw2]?) xa,) = aE(uawav E(Iw2]?) Xa,)
= WE(u2*) xa, = w2E(aw2)xa,» ¥n € N.

It follows that W, E(|uz|?) = uzE(uaws) as n — 00.
(b) = (c) Using Corollary 2.3, we have

(b) =2 EGwn) E(|us|?) = E(luz ) E(uaw2)

= E(uywy) = E(uawy)

and

X Wy

b) = E(Iw2))E(|ua|?) = (E(uaw2))?

s (Bwaw2)’xa B 2
= E(Im2|")x¢ = TEml) G = o (E(luz]")).
Then, we have
. n - oo - (Eiawy))?
W E(|w2|”) = waE(lw2|") xc = uz—E(|u2|2) XG> by (7)
_ 2 E(uawy)
= w2E(Juz| )E(|u2|2) xG by (b) and (6)

= W2E(M2W2).

(6)

(7)

(c) = (a) Put G = o (E(jw1|?). Multiplying both sides of (c) by u, and w;, respectively,

and then taking the conditional expectation E of both sides equation we obtain

E(wl?) = waE(uawr) =5 E(lua)E(wa ) = (EGawa))’.

W E(wal?) = waE(uawa) == E(uawn) E(1wal*) = E(|w2|*)E(uzw2)

®) T
== E(uywz) = E(uywy).
Cor. 2.3

(8)

)
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Moreover, we obtain
- 2 XUy 2 2
W E(|w2|7) = w2E(upwy) == |ua|"E(Iw2|”) = (uzw2)E(uaws)
©
— UpWy = UrW>.
These imply that
_ ) - . .
qu(Iwzlz) = wyE(upw,) —= qu(|W2|2) = wyE(uawz)  (by conjugation)
X -
=L Bl(wsP)E(uf) = Buzwn) EGf)
=25 (iE(|1w2|*)E(uaf) = i E(uawy) E(waf )

O s E(uawy)E(uaf) = i E(uawa) E(sf)

%@ i E(wyf) = waE(uaf),  Vf € N(E).

This completes the proof. |

Lemma 2.7: If uE(uw) = wE(|u|?), then E(i)w = uE(w).

Proof: Put S=o(E(|u?)). Then, éixs=u and by assumption wys = (WE(uw)/
E(Jul?)) xs. It follows that

_ _ _ uE(uw)
E()w = E(w)wxs = E(u) ———Xs
E(|ul?)
E(uE(uw)) _ E(WE(|u|*)) _ .
= UX§ = —— o UXs = uE(w).
E(lul?) E(lul*) -
Lemma 2.8: The following statements are equivalent:
(a) uE(uw) = wE(|lul*);
(b) wE(uawy) = woE(|uz)?) and tywy = i wy.
Proof: Direct computations show that #E(uw) = wE(|u|?) if and only if
(i1 + i) (w1 + E(uawz)) = w1 + wo)(Ju > + E(ua ).
By Lemma 2.7, this is equivalent to u, E(uaw;) = wrE(Ju2)?) and iywy = siawy. [ |

By Corollary 2.4 and the previous lemmas, we have the following theorem.
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Theorem 2.9: The Lambert conditional operator T € B(L*(X)) is self-adjoint if and only if
the followings hold:

(a) E(w)u = wE(u);
(b) wE(uw) = wE(|u|?).

Moreover, in this case, the conditional Cauchy-Schwarz inequality for u,w turns into
equality, i.e. |[E(uw)|? = E(Ju|>)E(|w|?).

Example 2.10: Suppose X is the sigma-algebra of Lebesgue-measurable sets in D = {z €
C : |z| < 1} and u is the area measure in ID. For fix n € N, let 4 = A(¢) be the sub-sigma
algebra of X generated by {(z")~'(U) : U C D is open} and E = EA. Putc, = {¢:¢"=
z"} for each z € ID. Then, by [9, Example 2.5(ii)], we have

1
Ef)@) =~ f©), fel*(%) zeD.

fec

Let u, h € L°°(D) with h = h and take w(z) = (z)h(z"). Then, by [6, Theorem 2.1(a)],
T = M,,EM,, is a bounded operator in L>(X). Moreover, we have

(EWuw)(2) = ) u(©)h(E")

fec,
_ u(2)h(z")
= ;Xec: u(¢)
= (WE(w))(2);

(UE(uw))(z) = u()w(t)

fec
_ u(@h") )
=— ; lu(?)|

= WE(u*)(2), zeD.
Then, by Theorem 2.9, T is self-adjoint. On the other hand, direct computation shows that

u(z)h(z")
n

(T*f)(2) = D u@f @) = (T2, fel’(%),zeD.

fec;

In view of (1) and (2) we have

* _Sl S2
TT_[S3 Ssf’
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where

S1.= My, 2juy 2+ EMjy 21y 2
= My (w12 +E(wa )
= My E(wpys

8> = EMyy, 2y, + EM 2 EMu,
= EMyw, it up+ E(jwa )iy
= EMyu,B(wi2)

83 = My, iy + My EMjyy,
= Mty My 24 E (w2 ?)
= M, E(wi?)s

84 = My, EM,,, py, + Mi,EM,,,, 2EM,,,
= M E(wi2) EMus

Thus,

M, EM;
T*T — |:M|u1|2E(IWI2) Iy ulqu(IIEMI/\I/ZI) :| ) (10)
pu1 E(|w|2) U E(jw|2) LtV uy

We conclude similarly that

TT — [M|W1|ZE(|u|Z> EM35 0, B(uf?) } (11)
MzwsB(u) M E(up) EM,

The following corollary follows directly from (10) and (11).
Corollary 2.11: T is normal if and only if the followings hold:

(@) [wil2E(|ul*) = |u1|*E(Iwl?);
(b) Wwiw2E(|ul?) =t E(lw]?);

(©) w2E(|ul)E(W2f) = i E(w|*)E(uaf), Vf € N(E).
Proposition 2.12: uyw, = uyw; if and only if the following equalities hold:

(@) |u)PE(Iwl?) = |w1|2E(|ul®);
(b) i E(|w|?) = wawi E(|ul?).

Proof: Let 3w, = uywi. Then, we have

lurPE(Iwl?) = u1[*(Iw1|* + E(w2|?) = w1 [* w1 [* + E(uiw2]?)
= [ *Iw11* + E(uawi ) = [w1*(lus|* + E(luz]?))

= w1 *E(Jul?)
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and
Uywy = tiawy = (I w2) (W E(|u|?) = tia|w1|*E(Jul?)
= wwawi E(Jul?) = iia|uy [PE(Iw]?).

But w1 E([ul®) Xo (u) = W1E([ul?), by (a), because o(wiE(|ul*) = o (ju1|*E(|w|*)) <
o (u1). Hence, waw1 E(|ul?) = iau1 E(|w|?).
Conversely, let (a) and (b) hold. From (a), we have

Woll] Xo (wy) = W2ll]. (12)

Multiplying both sides of (b) by #;, we obtain it |u1|*E(|w|?) = 1 (wow1E(|u|?)). Thus,
o |w1PE(|u)?) = i1 (waw1 E(Jul?)) and so iy wy = w1, by (12). This completes the proof.
[ |

Lemma 2.13: The following equalities are equivalent:

(a) wE(|ul>)E(wf) = uE(\w|*)E(uf), Vf € L*(2);
(b) WE(|ul*) = uE(uw);
(c) HE(|w|?) = wE(uw).

Proof: For A, € L°(A) with uu(A,) < oo, put f = wy/E(|u|?) xa, in (a). Then, precisely
the same calculation as that shown in the proof of Lemma 2.6 yields that f € L*(Z).
Therefore, (b) holds by Corollary 2.3. Now, let (b) hold. First, note that

WE(|ul*) = uE(@w) == E(Jw|)E(|lul*) = [E(uw)|?

|E(uw)|?

WXE(MZ)- (13)

= E(WI*) xg(up) =

Then, by Lemma 2.3, we have

) . (13) #E(uw)|?
2E(1w|?) = uE(|w|? —_
(Iwl?) (W) XEqup) E(Qul?) XE(ul?)

_ (ﬁE(uw))(E(W))X ,
E(Jul?) E(|ul*)

(b) —
— WE(MW)XE(WlZ)
= wE(uw).

This proves (b) = (c). The above argument with u replaced by w shows that (c) implies
(b). Now, let (b) holds. Then, we have

WE(ul?) = uEGam) =5 E(u)EGf) = EGw)Ef)
% wE(|u|)E(f) = GE(|w|*) E(uf).

This completes the proof. |
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Theorem 2.14: The Lambert conditional operator T e B(LZ(E)) is normal if and only if
uE(uw) = wE(|u|?). In this case, |[E(uw)|?> = E(|u|®)E(|w|?).

Proof: By Lemma (2.13), it is clear. |

Corollary 2.15: Let A € A. Then, the following equalities are equivalent:

(@) WE(uH)EWf)xa = uE(w|*)E(uf) xa, Vf € L*(2);
(b) WE(|u|®)xa = uE(uw)xa;
(c) UE(|w|*)xa = wE(uw)xa.

Put S=o(u;)Uo(wy) and S = X\ S. It follows that S € A, uyxs = upxs and
wxse = wa xse. Then, by Corollary 2.15, we have the following corollary.

Corollary 2.16: Let A € A. Then, the following equalities are equivalent:

(@) WE(ul)E(waf ) xsc = thh E(IW[*)E(uaf) xse, Yf € L2(Z);
(b) W2E(|ul®) xsc = u2E(uaw3) xse;
(¢) wE(Iw|*) xsc = w2E(uaw2) xse.

Proposition 2.17: Let S = o (u;) U o (wy) and uywy = upw. Then, we have

(a) uE(uw)xs = wE(|ul*) xs;
(b) WE(|w*)E(usf) xs = w2E(|ul*) E(waf) x5, ¥f € L*(%).

Proof: (a) First, note that

E(u)w = uE(w) <= u1 (w1 + wz) = (u1 + uz)w;
= uwy = Urwy.

Also, the equality E(i)w = uE(w) implies that

_ E(u)w
UXo(wy) = Wxa(wl); (14)
uE(w)
WXo (u) = 5) ——— Xo(uy)- (15)
From hypothesis and (14), we obtain
_ E(uw)w
UE(UW) Xo (w) = E( )E(UW)XU(wl)
E ow
E( ) E(u(Em)W)) Xo (w1)
E ow
E( Ew) Eu(UE(W)) Xo (wy)

= WE([ul*) Xo (wy)- (16)
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Similarly, we obtain
UEUwW) Xo (uy) = WE(Ul*) Xo (uy)- (17)

Now, from (16) and (17), we have #E(uw) xs = wE(|u|?) xs. This proves (a).
(b) Let f € L*(2). Then, we have

Uiwy = Upwi % w1E(uaf) = ui E(waf)

wrE|u|? ﬁ/IWZE(|M|2)E(u2f) — uIWZE(|U|2)E(1'_V2f)'

Now, by using Lemma 2.12(b), we obtain

wE(WI)EWaf) Yo ) = WaE(uP)E(W2f) Xo ) (18)
The above argument with u replaced by w and using Lemma 2.12(a) show that

wE(w)Ef) Xo ) = W2E(ul) E@af) Ao () (19)
Now, the desired conclusion in (b) follows from (18) and (19). [ |

Example 2.18: LetX = {1,2,3,4}, ¥ = 2%, u({n}) = 1/4and let A be the o -algebra gen-
erated by the partition {{1,2},{3,4}}. The L?(X) space under consideration is C* and
relative to the standard orthonormal basis,

rl

1
- 0 0
2 2
1 1
3 3 0 0
E= 1 1|’
o 0 - =
2 2
1 1
o 0 - =
L 2 2
and for w and u corresponding to (wy, w2, w3, wy) and (u1, Uz, u3, us), respectively, we have
- = 0 0
2 2
wr 0 0 0 1 1 0 0 uy 0 0 0
T 0 wp, 0 0 2 2 0 u 0 0
10 0 w3 O 0 0 1 1 0 0 us O
0 0 0 wy 2 2 0 0 0 wuy
1 1
0o 0 - =
L 2 2
-Wilp Wil -
1U1 1U 0 0
2 2
Wau1  Wau
QU] 2U2 0 0
_ | 2 2
0 0 w3us wW3Ug
2 2
wau
0 0 4U3 W4llg
L 2 2
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Now, put u = (1,2,4,2i) and w = (4,24, 1, 2). Then,

L i o0 o L0 o
2. 2
T — i 2 (1) andso T* = —i =2 Oi 0
0 — i 0 0 ——= =i
2 2
0 i 2 0 0 —i =21
On the other hand,

uE(uw) = (1,2, —i, —2i)E(i, 4i, i, 41)
5i 5

=|—,5,-,5)| =wE ul?).

(53.5) = wiur

Thus, T is not self-adjoint but it is a normal operator, by Theorem 2.14. Note that if in the
above we take w = —ui, then T will be a self-adjoint operator but not a positive one.

Recall that T is said to be quasi-normal if T(T*T) = (T*T)T. In view of (1) and (2), we
have

MW1M1 EMWIMZ
T(T*T) = (E(Iw)E(jul*)) [MM M, EMM]; (20)
(T*T)T = (E(wP)EGuw)) [ﬁu M ] (1)

The following corollary follows directly from (20) and (21).

Corollary 2.19: T is quasi-normal if and only if the followings hold:

(@) E(w)E(ulywiu = E(w*)E(uw)|u1|*;
(b) E(wE(lul*)wiuz = E(Jw|*) E(uw)ii s
(© E(wP)E(ulywour = E(w*)E(uw)itaur;
(d) E(wI»)E(|ul*)w2E(usf) = E(IwI*) E(uw) i E(uaf ), Vf € N(E).

In the following, we discuss some simple consequences of items in Corollary 2.19 and
suppose that T is quasi-normal.

(a) <= E(ul>)wius = Euw)|u1|* <= E(ul)W1 X0 ) = E@wW)ii1 Xo (uy)3
(b) <= E(|ul)wiuy = E(uw)iiyuy <= E(ul>)W1 Xo () = EUW)ii1 Xo (u)3

(©) <= E(luHwauy = E(uw)iiau; <= E(|ul>)Waxowy) = E@W) i Xo (uy)-

Now, set f = 51/ E|w|?>xa, in (d) in which 11(A,) < oco. Using the same method as in the
proof of Lemma 2.6, we have

(d) <= E(lul*)w2E(usf) = E(uw)i E(usf)

< E(ul)W2 o k(lusj2y) = E@W) 2 Xo (B 2))-
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Theorem 2.20: Let T € B(L*(X)). Then, T is quasi-normal if and only if wE(|ul?) =
uE(uw).

Proof: 1f wE(|u|?) = #E(uw) holds, then T is normal so T is quasi-normal.
Conversely, suppose (a), (b), (c) and (d) in Corollary 2.19 hold. Then, we have

(b) = E([ul®) W1 Xo (un)lt2|* = E@w)it1 Xor uy) |42
= E(lul*)wi|uz|* = E(uw)ity |uz|*
= E(lul*)w1E(|lu2|*) = E(uw)i E(|lu2|?)

= E([ulP)W1 Xo (5,12 = E@W)I1 X (B )
(a) 2 _
= E([ul)W1 Xo (u))Uo (E(|ua2)) = EWW) U1 X () Uor (B (|2 2))

= E(JulH) w1 = E(uw)ii.

In the same manner, from (c) and (d) we obtain E(|u|*)wy = E(uw)ii,. Thus, wE(|u|?) =
uE(uw). [ |

We say that A € C belongs to the essential range of a measurable function f if for each
neighbourhood G of A, 1 (f 1 (G)) > 0. Our next task is about the spectra. For a bounded
linear operator T, spec(T) denote its spectrum. Let M, be a bounded multiplication
operator on L?(X). It is well-known fact that

spec(M,) = (A € C: Pc > 0, s.t. |u(x) — A| > ¢ ae)

Herron [2] proved that the spectrum of an unweighted bounded conditional operator
EM,, is the essential range of E(u). In the following, we determine the spectrum of bounded
weighted conditional operators on L2 (%).

Theorem 2.21: Let A # ¥ and T = M,,EM,, € B(L*(%)). Then,
spec(T) \ {0} = ess range(E(uw)) \ {0}.

Proof: First, assume that A ¢ ess range(E(uw)) and A # 0. We show that T — AI is invert-
ible. Let f € N'(T — AI). Then, wE(uf) = Af. Multiplying both sides of this equation by u
and then taking E we obtain E(uw)E(uf) = AE(uf). Then, E(uf)(E(uw) — 1) = 0. But, by
hypothesis, E(uw) # . Thus, E(uf) = 0, and so f =0. To show that T — AI is surjective,
letg = g1 + g € L*(X) be given. We show that there exists an L?(X) function f such that
(T — AI)f = g. For this, define

wi1E(ug) — @1E(uw) + Ag
ME(uw) — L)

f= wE(ug) &
2T AEww) —n A

fh=

>
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Since T'is bounded, [|gi[l2 < llgll2 and [|(E(uw) — A) "'l < ¢, thenf; € L*(X) fori=1,2.
Moreover, f; is A-measurable, f, € N'(E) and

wE(uw1)E(ug) — wE(ug1)E(uw) + )»wE(ugl)'

wE(uf1) = s |
E(ufy) = wE(uw2)E(ug) — wE(ug2) E(uw) + AwE(ugy)
wE(ufy) = A(E(uw) — 1) ;
E _ oFE 2
M =i+ f) = (ugz)s(mgv) (_W;H .

It follows that T(f) = wE(uf) = wE(ug)/(E(uw) — A), and hence (T — L)f = g.
Conversely, suppose A ¢ spec(T). Put W=wand U = u/(A(E(uw) — 1)) and define a

linear operator S on L?(X) as S = My EMy — 1/AI. We claim that A ¢ ess range(E(uw)) if

and only if S is bounded. Suppose A ¢ ess range(E(uw)). Then, for all f € L*(X), we have

uf

1
TEGw) — ) A)> ll2 + ml[fllz

SOOIz = Ile(

1 1
< (—||E<|u|2>E<|w|2>||3>é2 + 1) I 12

c
Now, let S be bounded. Then, [|[ES(f)||2 < ||S]| [|f]l2 forall f € L>(X). In particular, for any
f € L*(A), we have

E(W)E(u) — E(uw) + A
ME(uw) — X)

ES(f) = f.

Putg = wE(u) — E(uw) + A. Then, g # 0and ES = M,, is a bounded multiplication oper-
ator on L*(A) with multiplier ¢ = E(g)/(A(E(uw) — 1)). Hence, ¢ € L°°(A). On the
other hand, since T is bounded, then 0 # E(g) € L°°(.A). Therefore, 1/(E(uw) — 1) €
L>®(A). This implies that A ¢ ess range(E(uw)). Now it is easy to check that S(T — A) =
(T — A)S = I. Consequently, S = (T — A)~!. This completes the proof. [ |

Corollary 2.22: Let T = M,,EM,, € B(L*(X)) and let 1 ¢ spec(T). Then,
1
(M EM,, — A~ = MywEMy — XI,
where W=w and U = u/(A(E(uw) — A)).

In the following, we characterize the positivity of the weighted conditional operators on
L%(2). Recall that T is said to be positive if (Tf,f) = Oforallf € L*(2).

Lemma2.23: Let0 < g e L%(A) and T = MgzEM, € B(L*(X)). Then, T > 0.

Proof: PutS = o (E(|ul®)),w = Vg/E(|u|?) ixs and define Ty = M,,EM,,. Then, it is easy
to check that T = T} Ty, and so T > 0. [ |
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Theorem 2.24: The bounded weighted conditional operator T on L*(X) is positive if and
only if the followings hold:

(a) E(uw) > 0;
(b) uE(uw) = wE(|u|?).

Proof: Let T > 0. Then, by definition, T is self-adjoint and spec(T) < [0, 00). Using The-
orems 2.9 and 2.21, (a) and (b) hold. Conversely, let (a) and (b) hold. Put S = o (E(|u|?))
and ¢ = (E(uw)/E(|u|?)) xs. From (b), git = wys. Moreover, for all f € L*(X), we have
Mgz EM,(f) = wxsE(uf) = wE(uf) = T(f). Now, the desired conclusion follows from
Lemma 2.23. |

In particular, when w = 1, we have the following corollary:
Corollary 2.25: Let T = EM,, € B(L*(X)). Then, the followings hold:

(a) Tis self-adjoint if and only if u = u € L (A);
(b) T is normal if and only ifu € L (A);
(c) Tis positive if and only if 0 < u € L (A).

Example 2.26: (a) Let X = [—1,1], du = (1/2)dx, £ the Lebesgue sets, and A the
sigma subalgebra of ¥ consisting of sets symmetric about the origin. It is easy to
check that E(f)(x) = (f(x) + f(—x))/2. Put u = x> + x> and w = x* + x°. Then,
T =2, E(uw) = x% + x3 and uE(uw) = x®(x* + 1)(x + 1) = wE(|u|?). Then, by
Theorem 2.24, T = M,,EM,, is a bounded positive on L?>(X). Note that, if we take
W=(u*+x)0%+1)"Y2,U=x*+x>and T) = MwEMy. Then, ||T;|| = +/2 and
TTTl = Mx4+x5EMx2+x3 =T.

(b) LetX =[0,1],d = dxand X be the Lebesgue sets. Let P = {A,, : n € N} be a count-
able partition of X into disjoint sets with 0 < (A,) < oco. Let A be the sigma sub-
algebra generated by P. Then, E(f) = >, (1/1(A,) f A, fduw) xa, (see [4]). Especially,
let A = {#, X}. Then, E(f) = folf(x)dx. Put u = 4x> and w = 7x>. Then, ||T| = 4,
E(uw) = 4 and uE(uw) = 16x> = wE(|u|?). Then, by Theorem 2.24, T is a bounded
positive operator on L?>(¥). On the other hand, by a direct computation, we have

T(f) = 28x° fol x*f(x) dx and

1 2
(T().f) =28 (/ x3f(x)dx> >0, felLl*).
0

Recall that for T € B(H), there is a unique factorization T = U|T|, where N (T) =
N (U) = N(|T|), U is a partial isometry, i.e. UU*U = U and | T| = (T*T)"/? is a positive
operator. This factorization is called the polar decomposition of T. The Aluthge transform
of T is the operator T given by T = |T|V2U|T|V/2.

Proposition 2.27: Let 0 <ge L%(A) and T = MgzEM, € B(LA(X)). Then, T =
MyEM,, where S = o (E(|u|?) and k = \/(g/E(|u|?)) xs.
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Proof: First, note that T is positive by Theorem 2.24. Since kuE(|u*k) = guanduys = u,
we have

(MiEM,)? = MigigqupeinEMy = T.
This completes the proof. u

Corollary 2.28: Let T = M,,EM,, € B(L*(X)) and let U|T| be its polar decomposition and
S = o (E(|u|?) and G = o (E(|w|?). Then, the followings hold:

(@) |T| = MgaEM,, where g = \/(E(Iw|2)/E(|ul®) xs;

(b) IT] = MpzEM,, where p =/ (E(|w|2)/(E(|ul*))?) xs;

(c) T = U|T|, where U = Mg EM,, and g’ = wxsnc/ E(|ul)E(|w|?);
(d) T= MgrzEM,, where g = (E(uw)/E(|u|?)) xs.

Corollary 2.29: Let T = M,,EM, € B(L*(X)). Then, the following statements hold:

(a) 7:" is self-adjoint if and only if E(uw) = E(uw);
(b) T is normal;
(c) T is positive if and only if E(uw) > 0.

Recall that a closed subspace M of H is said to be invariant for an operator T' € B(H)
whenever TM € M. If M and its orthogonal complement M+ are both invariant for
T, then we say that M reduces T. Now using (1), the closed subspace L?(A) of L*(X)
is an invariant subspace of T if and only if the lower left corner’s entry of the matrix
representation of T is the zero operator on its domain. But, in this case, we have

My, = 0 <= wouif =0, Vf € L*(A)
< wou; = (w—E(w))E(u) =0
= wE(u) € L°(A)
> wys € L°(A), S = o (E(u)).

By the same argument on the lower left corner’s entry of matrix representation (2) of T%,
we have the following result.

Proposition 2.30: Let T = M, EM, € B(L*(X)). Then, the following statements hold:

(a) L2(A) is an invariant subspace of T if and only if wxs (Ew)) € LO(A).

(b) L2(A) is an invariant subspace of T* if and only if uxo Ew)) € LO(A).

(C) UXo(E(w) € LO(A) ifand only ifEMWluz |N(E)= 0.

(d) L2(A) is a reducing subspace of T if and only if Wxo(Ew)) and uxeEw)) are A-
measurable functions.

Corollary 2.31: Let T = M,,EM,, € B(L*(X)). Then, L*(A) is a reducing subspace ofT if
and only if U (E(uwy) is an A-measurable function.
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Put KC = {M,,EM,, : u,w,uw € D(E), E([ul))E(jw|*) € L®(2)}.
In the following, we describe the general form of self-adjoint, normal, quasi-normal and
positive elements of /C.

Theorem 2.32: Let T = M, EM,, € K. Then, the following statements hold:

(a) Tis self-adjoint if and only if T = Mgz EM,, for some § = g € LO(A).
(b) Tis normal if and only if T = MgzEM, for some g € LO(A).

(¢) Tisnormal if and only if T is quasi-normal.

(d) Tis positive if and only if T = MgzEM, for some 0 < g € L°(A).

Proof: We only give proof of (b). Repeating the same argument and using the previous
results give the other parts.
First, let T = Mgz EM,, for some g € LO(A). Then,

UE(uw) = uE(ugit) = guE(|u|?) = wE(|u|?).

Thus, by 2.14, T is normal. Conversely, let T = M,,EM,, € K be normal. Then, uE(uw) =
wE(|u|?), and so

_ E(uw) _ _ )
WIS = Gy S = 0 (B,
Putg = (E(uw) /E(Ju)*»)) xs € L°(A). Since E(uf)xs = E(uf), then we have
E
My EM () = wxsE(uf) = %ﬁxﬁ(uf)
= gUE(uf) = MgzEM,.
This completes the proof. u
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