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Abstract
The goal of this article is to study the algebra 𝔇𝜑 of a conditional type operators on

𝐿2(Σ) such that each of members of 𝔇𝜑 has its range contained in the kernel of a

conditional expectation 𝐸. We present characterizations of this algebra in terms of

(𝜑0)0-type sub-sigma algebras of Σ.
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1 INTRODUCTION AND PRELIMINARIES

Let (𝑋,Σ, 𝜇) be a complete probability space and let  be a complete sub-sigma algebra of Σ. The space 𝐿2(𝑋,, 𝜇|) is

abbreviated by 𝐿2() and its norm is denoted by ‖.‖2. All comparisons between two functions or two sets are to be interpreted

as holding up to a 𝜇-null set. We denote the linear space of all complex-valued Σ-measurable functions on 𝑋 by 𝐿0(Σ). When

reference is made to the support of a measurable function 𝑓 , we infer the choice of a representative 𝑓0 from the equivalence

class, 𝑓 , of almost everywhere defined functions. We then choose the support of 𝑓 to be 𝑆𝑓 =
{
𝑥 ∈ 𝑋 ∶ 𝑓0(𝑥) ≠ 0

}
. A -atom

of the measure 𝜇 is an element 𝐵 ∈  with 𝜇(𝐵) > 0 such that for each 𝐴 ∈ , if 𝐴 ⊆ 𝐵 then either 𝜇(𝐴) = 0 or 𝜇(𝐴) = 𝜇(𝐵).
For a sub-sigma algebra  ⊆ Σ, the conditional expectation operator associated with  is the mapping 𝑓 → 𝐸𝑓 , defined

for all 𝜇-measurable nonnegative 𝑓 where 𝐸𝑓 , by the Radon–Nikodym theorem, is the unique finite-valued -measurable

function satisfying

∫𝐵

𝑓𝑑𝜇 = ∫𝐵

𝐸(𝑓 ) 𝑑𝜇, for all 𝐵 ∈ .

Let 𝑢 ∈ 𝐿0(Σ) be real-valued and consider the set 𝐵𝑢 =
{
𝑥 ∈ 𝑋 ∶ 𝐸(𝑢+)(𝑥) = 𝐸(𝑢−)(𝑥) = ∞

}
, where 𝑢+ = max{𝑓, 0} and

𝑢− = max{−𝑓, 0}. The function 𝑢 is said to be conditionable with respect to  if 𝜇(𝐵𝑢) = 0. Put 𝐸(𝑢) = 𝐸(𝑢+) − 𝐸(𝑢−). If

𝑢 = 𝑢1 + 𝑖𝑢2 ∈ 𝐿0(Σ), then 𝑢 is said to be conditionable if 𝑢1 and 𝑢2 are conditionable. In this case we set 𝐸(𝑢) = 𝐸(𝑢1) + 𝑖𝐸(𝑢2).
This defines a linear operator𝐸 ∶ (𝐸) → 𝐿0() ⊆ 𝐿0(Σ), where the domain(𝐸) of𝐸 is defined by(𝐸) =

{
𝑓 ∈ 𝐿0(Σ) ∶ 𝑓

is conditionable
}

. It follows that (𝐸) contains {𝐿𝑝(Σ) ∶ 1 ≤ 𝑝 ≤ ∞} (see [12,13]). As an operator on 𝐿2(Σ), 𝐸 is an orthogo-

nal projection of 𝐿2(Σ) onto 𝐿2(). In general, the conditional expectation 𝐸 is used to relate and connect Σ-measurable func-

tions with-measurable functions. If there is no possibility of confusion we write𝐸(𝑓 ) in place of𝐸(𝑓 ). This operator will play

a major role in our work. A detailed discussion and verification of most of properties may be found in [8,10,12,13,18,22,23].

Those properties of 𝐸 used in our discussion are summarized below. In all cases we assume that 𝑓, 𝑔 ∈ (𝐸), where (𝐸)
denotes the domain of 𝐸.
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◦ If 𝑔 is -measurable, then 𝐸(𝑓𝑔) = 𝐸(𝑓 )𝑔.

◦ 𝑓 ≥ 0, then 𝐸(𝑓 ) ≥ 0; if 𝑓 > 0, then 𝐸(𝑓 ) > 0.

◦ 𝑆𝐸(|𝑓 |) is the smallest -measurable set containing 𝑆𝑓 .

◦ (Conditional variance) 𝐸
(|𝑓 − 𝐸(𝑓 )|2) = 𝐸

(|𝑓 |2) − |𝐸(𝑓 )|2, where 𝑓 ∈ 𝐿2(Σ).
◦ (Conditional Cauchy–Schwarz) |𝐸(𝑓𝑔)|2 ≤ 𝐸

(|𝑓 |2)|𝐸(|𝑔|2)|, where 𝑓, 𝑔 ∈ 𝐿2(Σ).

Let 𝜑 be a nonsingular measurable transformation from 𝑋 into 𝑋; that is, 𝜑−1(Σ) ⊆ Σ and 𝜇 ◦𝜑−1 is absolutely contin-

uous with respect to 𝜇. Let ℎ be the finite-valued Radon–Nikodym derivative 𝑑𝜇 ◦𝜑−1∕𝑑𝜇. The densely defined composi-

tion operator 𝐶𝜑 ∶ 𝐿2(Σ) ⊇ (𝐶𝜑

)
→ 𝐿2(Σ) induced by 𝜑 is given by 𝐶𝜑(𝑓 ) = 𝑓 ◦𝜑, for each 𝑓 ∈ (𝐶𝜑

)
=
{
𝑓 ∈ 𝐿2(Σ) ∶

𝑓 ◦𝜑 ∈ 𝐿2(Σ)
}

. Here, the non-singularity of 𝜑 guarantees that 𝐶𝜑 is well defined and closed (see [2,6]). A recent mono-

graph related to unbounded composition operators is [3]. Let 𝑓 ∈ 𝐿1(Σ). Then by the change of variables formula we have

∫
𝜑−1(𝐵) 𝑓 ◦𝜑𝑑𝜇 = ∫

𝐵 ℎ𝑓𝑑𝜇, for all 𝐵 ∈ Σ. Consequently, 𝐶𝜑 maps (𝐶𝜑

)
boundedly into itself, if and only if ℎ ∈ 𝐿∞(Σ), and

in this case, (𝐶𝜑

)
= 𝐿2(Σ) and ‖𝐶𝜑‖2 = ‖ℎ‖∞. Put 𝐸𝜑 = 𝐸𝜑−1(Σ). Then for each 𝑓 ∈ 𝐿1(Σ), there exists a Σ-measurable

function 𝑔 such that 𝐸𝜑(𝑓 ) = 𝑔 ◦𝜑. We can assume that 𝑆𝑔 ⊆ 𝑆ℎ. In this case 𝑔 is unique. We then write 𝑔 = 𝐸𝜑(𝑓 ) ◦𝜑−1,

though we make no assumption regarding the invertibility of 𝜑 (see [7]). A result of Hoover, Lambert and Quinn [14] shows

that the adjoint 𝐶∗
𝜑 of a bounded composition operator 𝐶𝜑 on 𝐿2(Σ) is given by 𝐶∗

𝜑(𝑓 ) = ℎ𝐸𝜑(𝑓 ) ◦𝜑−1. For information on

bounded composition operators on measurable function spaces, we refer readers to [5,14,18] and the monograph [24].

Let 𝐵
(
𝐿2(Σ)

)
denote the algebra of all bounded linear operators on 𝐿2(Σ). For each operator 𝑇 ∈ 𝐵

(
𝐿2(Σ)

)
, the null-space

and the range of 𝑇 are denoted by  (𝑇 ) and (𝑇 ), respectively. For {𝑢, 𝑓} ⊆ (𝐸), we define 𝐷𝑢(𝑓 ) = 𝐸(𝑢)𝑓 − 𝑢𝐸(𝑓 ). A

measurable function 𝑢 ∈ (𝐸) for which 𝐷𝑢(𝑓 ) ∈ 𝐿2(Σ) for all 𝑓 ∈ 𝐿2(Σ), is called a conditional multiplier on 𝐿2(Σ). These

multipliers on 𝐿2(Σ)were initially introduced in [21] and then extended onC∗-algebras in [9]. An easy consequence of the closed

graph theorem and the result guaranteeing a pointwise convergent subsequence for each 𝐿2(Σ) convergent sequence assures us

that 𝑢 ∈ (𝐸) is a conditional multiplier if and only if 𝐷𝑢 = 𝑀𝐸(𝑢) −𝑀𝑢𝐸 ∈ 𝐵
(
𝐿2(Σ)

)
. In [21] the relationship between a

probability space (𝑋,Σ, 𝜇) and a sub-sigma algebra  of Σ is studied by using the algebra 𝔇 =
{
𝐷𝑢 ∶ 𝑢 ∈ 𝐿2(Σ), 𝐸

(|𝑢|2) ∈
𝐿∞(Σ)

}
of bounded operators on 𝐿2(Σ). In [15–17], another type of Lambert multipliers acting between two different 𝐿𝑝(Σ)

spaces are characterized by using some properties of the conditional expectation operator.

In the next section we prove the existence of a set 𝐵𝜑
0
∈  which is maximum set with respect to

{
𝑆 ∈ Σ ∶ 𝑆 ∩ 𝜑−1(Σ) ⊆ }.

A collection of composition conditional type multipliers is defined by 𝔏𝜑 =
{
𝑢 ∈ 𝐿2(Σ) ∶ 𝐷

𝜑
𝑢 ∈ 𝐵

(
𝐿2(Σ)

)}
, where

𝐷
𝜑
𝑢 = 𝐷𝑢𝐶𝜑. We show that𝔇𝜑 =

{
𝐷

𝜑
𝑢 ∶ 𝑢 ∈ 𝔏𝜑

}
, the algebra of all composition conditional type operators on 𝐿2(Σ), restricted

to 𝐿2(𝐵𝜑
0

)
is the zero operator algebra. When 𝜑 = 𝑖𝑑, the identity map on 𝑋, set 𝐵𝑖𝑑

0
= 𝐵

0
. It was shown in [21] that there exists

a function of full support in the kernel of 𝐸 whenever 𝜇
(
𝐵

0

)
= 0. We extend this result to case where 𝜇

(
𝐵𝜑

0

)
= 0. We define

(𝜑0)0-type and (𝜑1)0-type sub-sigma algebras of Σ which are extentions of type-0 and type-1 subalgebras in [21]. These concepts

turn out to play a fundamental role in the theory to be developed. We prove that 𝔇𝜑 is closed in the weak operator topology and

then we establish criteria for normality for elements of 𝔇𝜑. In addition, we obtain the commutant of 𝔇𝜑 and then we discuss an

open problem stated in [21]. Finally, we define a suitable norm and a Lie product on 𝔏𝜑 and show that, under these structures,

𝔏𝜑 becomes a Banach–Lie algebra.

2 CHARACTERIZATIONS OF 𝕯
𝝋

Let  ⊆ Σ be a sub-sigma algebra and let 𝐶𝜑 be a non-singular measurable transformation for which the composition

operator 𝐶𝜑 ∈ 𝐵
(
𝐿2(Σ)

)
}. For each 𝑢 ∈ 𝐿2(Σ), we define the composition conditional type operator 𝐷

𝜑
𝑢 on 𝐿2(Σ) by

𝐷
𝜑
𝑢 (𝑓 ) = 𝐸(𝑢)𝑓 ◦𝜑 − 𝑢𝐸(𝑓 ◦𝜑). Note that(𝐶𝜑

)
⊆ (𝐸) and 𝐷

𝜑
𝑢 = 𝐷𝑢𝐶𝜑, where 𝐷𝑢 is a conditional type operator and 𝐶𝜑 is

a composition operator defined by 𝐷𝑢(𝑓 ) = 𝐸(𝑢)𝑓 − 𝑢𝐸(𝑓 ) and 𝐶𝜑𝑓 = 𝑓 ◦𝜑, respectively. For example, let 𝑋 = [0, 1] × [0, 1],
𝑑𝜇 = dxdy, Σ the Lebesgue subsets of 𝑋 and let  = {𝐵 × [0, 1] ∶ 𝐵 is a Lebesgue set in [0, 1]}. Then, for each 𝑓 ∈ 𝐿2(Σ),
(𝐸𝑓 )(𝑥, 𝑦) = ∫ 1

0 𝑓 (𝑥, 𝑡) 𝑑𝑡, which is independent of the second coordinate. In this case we have

𝐷𝜑
𝑢 (𝑓 ) = 𝑓 (𝜑(𝑥, 𝑦))∫

1

0
𝑢(𝑥, 𝑡) 𝑑𝑡 − 𝑢(𝑥, 𝑦)∫

1

0
𝑓 (𝜑(𝑥, 𝑡)) 𝑑𝑡.

In general, the structure of  (𝐸), the null space of 𝐸, is very complicated. For example, there are no strictly positive ele-

ments in  (𝐸) and there is not a proper sub-sigma algebra  in Σ for which  (𝐸) = 𝐿2()⊖ ℂ1 (see [20]). Since for each
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𝐷
𝜑
𝑢 ∈ 𝔇𝜑, (𝐷𝜑

𝑢

)
⊆  (𝐸), so the study of 𝔇𝜑 opens a new window through which one may observe  (𝐸). But in description

of 𝔇𝜑, we will observe that (Theorem 2.6) the representation 𝑢 → 𝐷
𝜑
𝑢 is faithful if and only if the maximum set 𝐵𝜑

0
has measure

zero. So the (𝜑0)0-type subalgebras of Σ (Definition 2.9) will play a major role in our work. On the other hand, products of

conditional expectation, multiplication and composition operators and their differences appears more often in the service of the

study of other operators such as operators generated by random measures and averaging operators on order ideals in Banach

lattices (e.g., [10,12]).

One of the interesting features of composition conditional type operator is that the conditional type operator alone may not

define a bounded operator (see Example 2.8). Let 𝔏𝜑 ∶=
{
𝑢 ∈ 𝐿2(Σ) ∶ 𝐷

𝜑
𝑢 ∈ 𝐵

(
𝐿2(Σ)

)}
and 𝔇𝜑 ∶=

{
𝐷

𝜑
𝑢 ∶ 𝑢 ∈ 𝔏𝜑

}
. Then

𝔏𝜑 and 𝔇𝜑 are vector spaces and 𝐸(𝔇𝜑) = {0}. If 𝑢 ∈ 𝐿∞(Σ), then ‖𝐷𝜑
𝑢 ‖ ≤ 2‖𝑢‖∞√‖ℎ‖∞. In this case, 𝐿∞(Σ) ⊆ 𝔏𝜑 and

𝔇𝜑 ⊆ 𝐵
(
𝐿2(Σ)

)
. Let 𝜑 ∶=

{
𝑆 ∈ Σ ∶ 𝑆 ∩ 𝜑−1(Σ) ⊆ }, in which 𝑆 ∩ 𝜑−1(Σ) =

{
𝑆 ∩ 𝜑−1(𝐴) ∶ 𝐴 ∈ Σ

}
. Then 𝜑 ⊆ .

In the following lemma we show that 𝜑 contains a maximum set in the sense of measure theory.

Lemma 2.1. For each sub-sigma algebra  ⊆ Σ, the collection 𝜑 contains a maximum set 𝐵𝜑
0

; that is, there exists 𝐵𝜑
0
∈ 𝜑

such that for each non-null set 𝑆 ∈ Σ with 𝑆 ⊈ 𝐵𝜑
0

, we can find 𝐴 ∈ Σ such that 𝑆 ∩ 𝜑−1(𝐴) ∉ .
Proof. Let 𝑟 = sup{𝜇(𝑆) ∶ 𝑆 ∈ 𝜑}. If 𝑟 = 0, then each element of 𝜑 is a maximum set. Let 𝑟 > 0 and {𝑆𝑛}∞𝑛=1 ⊆ 𝜑 be a

sequence of sets with 𝜇(𝑆𝑛) > 0 such that 𝜇(𝑆𝑛) ↑ 𝑟. Put 𝐵𝜑
0
=
⋃

𝑛 𝑆𝑛. Then 𝐵𝜑
0
∈ 𝜑 and 𝜇(𝑆𝑛) ≤ 𝜇

(
𝐵𝜑

0

) ≤ 𝑟, for all 𝑛 ∈ ℕ.

It follows that 𝜇
(
𝐵𝜑

0

)
= 𝑟. Now, we show that 𝐵𝜑

0
is a maximum set. Let 𝑆 ∈ Σ be a non-null set and 𝑆 ⊈ 𝐵𝜑

0
. If 𝑆 ∈ 𝜑, then

𝑆 ∪ 𝐵𝜑
0
∈ 𝜑 and so

𝜇
(
𝑆 ∪ 𝐵𝜑

0

)
= 𝜇

(
𝐵𝜑

0

)
+ 𝜇

(
𝑆 − 𝐵𝜑

0

)
= 𝑟 + 𝜇

(
𝑆 − 𝐵𝜑

0

)
> 𝑟.

But this is a contradiction. Thus 𝑆 ∉ 𝜑 and hence 𝑆 ∩ 𝜑−1(𝐴) ∉ , for some 𝐴 ∈ Σ. □

Corollary 2.2. If 𝜇
(
𝐵𝜑

0

)
= 0, then 𝑆 ∉ 𝜑 for each 𝑆 ∈ Σ with 𝜇(𝑆) > 0.

Proposition 2.3. Let ⊆ Σ be a complete sub-𝜎-finite algebra and𝐴 ∉ with𝜇(𝐴) > 0. Then there exists𝐶 ⊆ 𝐴with𝜇(𝐶) > 0
such that 𝐶 does not contain any -measurable set of positive measure.

Proof. Let 𝑀 = {𝑆 ∈  ∶ 𝑆 ⊆ 𝐴}. Then 𝑀 is nonempty because ∅ ∈ 𝑀 . Set 𝑟 = sup{𝜇(𝐶) ∶ 𝐶 ∈ 𝑀}. Let {𝐵𝑛} ⊆ 𝑀 and

𝜇(𝐵𝑛) → 𝑟. Then 𝐵 ∶=
⋃

𝑛 𝐵𝑛 ∈ 𝑀 and 𝜇(𝐵𝑛) ≤ 𝜇(𝐵) ≤ 𝑟. Take 𝐶 = 𝐴 − 𝐵. We claim that 𝐶 is the desired set. Indeed, if

𝜇(𝐶) = 0, then 𝐴
𝑎.𝑒.
== 𝐵 ∈ . Since  is a complete subalgebra, 𝐴 ∈ . Moreover, if there is a -measurable set 𝐵1 of positive

measure such that 𝐵1 ⊆ 𝐶 , then 𝐵1 ∪ 𝐵 ∈ 𝑀 and so 𝜇(𝐵1 ∪ 𝐵) > 𝑟. But this is a contradiction. □

Corollary 2.4. Let 𝜇
(
𝐵𝜑

0

)
= 0. Then for each 𝐴 ∈ Σ with 𝜇(𝐴) > 0, there exists 𝐶 ⊆ 𝐴 with 𝜇(𝐶) > 0 such that 𝐶 does not

contain any -measurable set of positive measure.

Proof. If 𝐴 ∉ , then by Proposition 2.3 there is not any thing to prove. So we assume that 𝐴 ∈ . Then by Corollary 2.2,

𝐴 ∉ 𝜑. So 𝐴1 ∶= 𝐴 ∩ 𝜑−1(𝐷) ∉  for some 𝐷 ∈ Σ. Noting that  is a complete subalgebra, we have 𝜇(𝐴1) > 0 and 𝐴1 ∉ .

Again, the desired result follows from Proposition 2.3 with 𝐴1 replaced by 𝐴. □

In the following we show that the representation 𝑢 → 𝐷
𝜑
𝑢 is faithful if and only if the maximum set 𝐵𝜑

0
has measure zero.

Lemma 2.5. 𝐷
𝜑
𝑢 = 0 if and only if 𝑢 ∈ 𝐿0() and 𝑆𝑢 ∈ 𝜑.

Proof. Let 𝐷
𝜑
𝑢 = 0. Then for each 𝑓 ∈ 𝐿2(Σ), 𝐸(𝑢)𝑓 ◦𝜑 = 𝑢𝐸(𝑓 ◦𝜑). Put 𝑓 = 1. Then 𝐸(𝑢) = 𝑢, and so 𝑢 is a

-measurable function. Now, for 𝐴 ∈ Σ take 𝑓 = 𝜒𝐴. Then 𝑢𝜒𝜑−1(𝐴) = 𝑢𝐸
(
𝜒𝜑−1(𝐴)

)
, and thus 𝐸

(
𝜒𝜑−1(𝐴)

)
𝜒𝑆𝑢

= 𝜒𝜑−1(𝐴)𝜒𝑆𝑢
.

Hence 𝐸
(
𝜒𝜑−1(𝐴)𝜒𝑆𝑢

)
= 𝜒𝜑−1(𝐴)𝜒𝑆𝑢

, since 𝑆𝑢 ∈ . Thus, for all 𝐴 ∈ Σ, 𝑆𝑢 ∩ 𝜑−1(𝐴) ∈ . Conversely, suppose 𝑢 is a

-measurable function, 𝑆𝑢 ∈ 𝜑 and 𝑓 ∈ 𝐿2(Σ). Then we have

𝐷𝜑
𝑢 (𝑓 ) = 0 ⇐⇒ 𝐸(𝑓 ◦𝜑)𝑢 = (𝑓 ◦𝜑)𝑢 ⇐⇒ 𝐸(𝑓 ◦𝜑)𝜒𝑆𝑢

= (𝑓 ◦𝜑)𝜒𝑆𝑢
⇐⇒ 𝐸

(
𝑓 ◦𝜑𝜒𝑆𝑢

)
= (𝑓 ◦𝜑)𝜒𝑆𝑢

,

and so, 𝐷
𝜑
𝑢 (𝑓 ) = 0 if and only if (𝑓 ◦𝜑)𝜒𝑆𝑢

∈ 𝐿0(). Let 𝐺 be a Lebesgue measurable set in 𝔽 ∈ {ℝ,ℂ}. If 0 ∉ 𝐺, then(
(𝑓 ◦𝜑)𝜒𝑆𝑢

)−1(𝐺) = 𝜑−1(𝑓−1(𝐺)
)
∩ 𝑆𝑢 ∈ . Now, suppose that 0 ∈ 𝐺. Then(

(𝑓 ◦𝜑)𝜒𝑆𝑢

)−1(𝐺 − {0}) ∈ ;(
(𝑓 ◦𝜑)𝜒𝑆𝑢

)−1({0}) = (
𝜑−1(𝑓−1({0}𝑐)

)
∩ 𝑆𝑢

)𝑐 ∈ .
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Thus,
(
(𝑓 ◦𝜑)𝜒𝑆𝑢

)−1(𝐺) ∈ . This completes the proof. □

Theorem 2.6. The linear map 𝑢 ←→ 𝐷
𝜑
𝑢 is injective if and only if 𝜇

(
𝐵𝜑

0

)
= 0.

Proof. Let 𝐷
𝜑
𝑢 = 0. Then by Lemma 2.5, 𝑆𝑢 ∈ 𝜑. Thus if 𝜇

(
𝐵𝜑

0

)
= 0, then we have 𝜇(𝑆𝑢) = 0 and hence 𝑢 = 0. Conversely,

suppose that 𝜇
(
𝐵𝜑

0

) ≠ 0. Put 𝑢 = 𝜒𝐵
𝜑

0
. Then 𝑆𝑢 = 𝐵𝜑

0
∈ 𝜑 ⊆ . Consequently, by Lemma 2.5 we have again 𝐷

𝜑
𝑢 = 0. □

Motivated by the above fact, in the following definition we shall be concerned principally with sub-sigma algebras which are

of (𝜑0)0-type and (𝜑1)0-type.

Definition 2.7. Let  ⊆ Σ, 𝐸𝜑 = 𝐸𝜑−1(Σ), ℎ = 𝜇 ◦𝜑−1

𝑑𝜇
and let 𝐶𝜑 be a composition operator on 𝐿2(Σ). Put

𝔐
( (

𝐸𝐶𝜑

))
=
{
𝑢 ∈ 𝐿2(Σ) ∶ 𝑢

( (
𝐸𝐶𝜑

))
⊆ 𝐿2(Σ)

}
.

(a)  is a (𝜑0)0-type sub-sigma algebra of Σ if 𝜇
(
𝐵𝜑

0

)
= 0 and  (𝐸) ⊆  (

𝐸𝐶𝜑

)
.

(b)  is a (𝜑1)0-type sub-sigma algebra of Σ if for each 𝑢 ∈ 𝐿0(), ℎ𝐸𝜑

(|𝑢|2) ◦𝜑−1 ∈ 𝐿∞(), whenever

ℎ𝐸𝜑

(|𝑢|2) ◦𝜑−1 ∈ 𝔐
( (

𝐸𝐶𝜑

))
.

In particular, when 𝜑 is the identity map, then the (𝜑0)0-type and (𝜑1)0-type subalgebras are called type-0 and type-1 subal-

gebras, respectively. The terminology follows that of Lambert and Weinstock [21]. Note that if 𝜇
(
𝐵𝜑

0

)
= 0, then 𝜇(𝑆) = 0 for

every 𝑆 ∈ 𝜑. But 𝐵
0
, the maximum set of  = {𝑆 ∈ Σ ∶ 𝑆 ∩ Σ ⊆ }, is in 𝜑. Therefore, if  is (𝜑0)0-type then  is

type-0 sub-sigma algebra of Σ. However, the converse of this fact is not true in general.

Example 2.8. (i) Consider the space 𝓁2 = 𝐿2(ℕ, 2ℕ, 𝜇
)
, where 2ℕ is the power set of natural numbers and 𝜇 is a measure on

2ℕ defined by 𝜇({𝑛}) =
{

𝑛−4

𝐾

}
, where 𝐾 =

∑∞
𝑛=1

1
𝑛4

. Suppose that  is generated by {𝐵1, 𝐵2,…}, where 𝐵𝑛 = {2𝑛 − 1, 2𝑛}
for all 𝑛 ∈ ℕ. For each 𝑛, 𝐵𝑛 is a -atom and {𝑛} ∉ . Hence,  = {∅} and so 0 = ∅. Let 𝜑 ∶ ℕ → ℕ be any self-map with

𝜑(𝑛) = 1. Since Σ contains no nonempty null-set, so the self-map 𝜑 is non-singular. for each 𝑓 = (𝑓1, 𝑓2,…) ∈ 𝓁2, we have

‖𝐶𝜑(𝑓 )‖22 = |𝑓1|2 ≤ |𝑓1|2 + ∞∑
𝑛=1

|𝑓𝑛|2
𝑛4

= 𝐾‖𝑓‖22,
that is, 𝐶𝜑 is bounded on 𝓁2. Also 𝜑−1(Σ) = {∅,ℕ} and hence 𝐵𝜑

0
= ℕ. Consequently, 𝜇

(
𝐵𝜑

0

) ≠ 0 but 𝜇
(
𝐵

0

)
= 0. Therefore 

is (𝜑0)0-type but not type-0. Now, we show that 𝐷
𝜑
𝑢 is bounded on 𝓁2 but 𝐷𝑢 is not. For this, let 𝑓 = (𝑓1, 𝑓2,…) ∈ 𝓁2. Then

𝐸(𝑓 ) =
∞∑
𝑛=1

(
1

𝜇(𝐵𝑛)∫𝐵𝑛

𝑓 𝑑𝜇

)
𝜒𝐵𝑛

= 1
𝐾

∞∑
𝑛=1

(
16𝑛4(2𝑛 − 1)4

16𝑛4 + (2𝑛 − 1)4

(
𝑓2𝑛−1

(2𝑛 − 1)4
+

𝑓2𝑛
16𝑛4

))
𝜒{2𝑛−1,2𝑛}.

Define 𝑢 ∶ ℕ → ℝ by 𝑢(𝑛) = 𝑛. Then 𝑢 ∈ 𝓁2 and

𝐸
(|𝑢|2) = 1

𝐾

∞∑
𝑛=1

(
16𝑛4(2𝑛 − 1)2 + 4𝑛2(2𝑛 − 1)4

16𝑛4 + (2𝑛 − 1)4

)
𝜒{2𝑛−1,2𝑛}.

Clearly, 𝐸
(|𝑢|2) ∉ 𝐿2(ℕ,, 𝜇). Hence 𝐷𝑢 is not bounded on 𝓁2, see [11, Lemma 5] and also Theorem 2.10 below. On the other

hand, by hypothesis, 𝐶𝜑(𝑓 ) = (𝑓1, 𝑓1,…). Then, since 𝐸 is contraction, we have

‖𝐷𝜑
𝑢 (𝑓 )‖2 ≤ ‖𝐸(𝑢) − 𝑢‖2|𝑓1| ≤ 2‖𝑢‖2{|𝑓1|2 + ∞∑

𝑛=2

|𝑓𝑛|2
𝑛4

} 1
2

= 2
√

𝐾‖𝑢‖2‖𝑓‖2.
Hence, 𝐷

𝜑
𝑢 is bounded on 𝓁2 but 𝐷𝑢 is not.

(ii) Let 𝑋 = {1, 2, 3, 4}, Σ = 2𝑋 , 𝜇({𝑛}) = 1∕4 and let  be the 𝜎-algebra generated by the partition {{1, 2}, {3, 4}}. Then

 is a type-0 subalgebra of Σ, 𝐿2(Σ) = ℂ4 and

𝐸(𝑓 ) =
(
𝑓1 + 𝑓2

2

)
𝜒{1,2} +

(
𝑓3 + 𝑓4

2

)
𝜒{3,4},
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where 𝑓 = (𝑓1, 𝑓2, 𝑓3, 𝑓4) ∈ ℂ4. With respect to the standard orthonormal basis,

𝐸 =
[
𝐵 0
0 𝐵

]
, where 𝐵 =

⎡⎢⎢⎢⎣
1
2

1
2

1
2

1
2

⎤⎥⎥⎥⎦
For 𝑢 = (𝑢1, 𝑢2, 𝑢3, 𝑢4) ∈ ℂ4, 𝑀𝑢 = diag{𝑢1, 𝑢2, 𝑢3, 𝑢4} and and

𝑀𝐸(𝑢) = diag

{
𝑢1 + 𝑢2

2
,
𝑢1 + 𝑢2

2
,
𝑢3 + 𝑢4

2
,
𝑢3 + 𝑢4

2

}
.

It follows that

𝐷𝑢 = 𝑀𝐸(𝑢) −𝑀𝑢𝐸 =
[
𝐵1 0
0 𝐵2

]
,

where

𝐵1 =
⎡⎢⎢⎢⎣

𝑢2
2

−
𝑢1
2

−
𝑢2
2

𝑢1
2

⎤⎥⎥⎥⎦ and 𝐵2 =
⎡⎢⎢⎢⎣

𝑢4
2

−
𝑢3
2

−
𝑢4
2

𝑢3
2

⎤⎥⎥⎥⎦.
Define 𝜑 ∶ 𝑋 → 𝑋 as 𝜑 = 𝜒{1,3} + 2𝜒{2,4}. Then 𝜑−1(Σ) is generated by the partition {{1, 3}, {2, 4}}, 𝜑−1() = {∅, 𝑋},

𝐸𝜑 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

0 1
2

0

0 1
2

0 1
2

1
2

0 1
2

0

0 1
2

0 1
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and 𝐶𝜑 =

⎡⎢⎢⎢⎢⎣
1 0 0 0
0 1 0 0
1 0 0 0
0 1 0 0

⎤⎥⎥⎥⎥⎦
.

Then we obtain

𝐷𝜑
𝑢 = 𝐷𝑢𝐶𝜑 =

[
𝐵1 0
𝐵2 0

]
.

Note that ℎ(1) = ℎ(2) = 2, ℎ(3) = ℎ(4) = 0 and ℎ ◦𝜑 = 2. Also,

 (𝐸) = ⟨(𝑎,−𝑎, 𝑏,−𝑏) ∶ 𝑎, 𝑏 ∈ ℂ⟩,
 (

𝐸𝜑

)
= ⟨(𝑎, 𝑏,−𝑎,−𝑏) ∶ 𝑎, 𝑏 ∈ ℂ⟩.

Moreover, since 𝜑 = ∅, then  is a (𝜑0)0-type subalgebra of Σ and 𝔏𝜑 = 𝐿2(Σ).

Proposition 2.9. If  is (𝜑0)0-type, then  is (𝜑1)0-type.

Proof. Let 𝑢 ∈ 𝐿2() and 𝑓 ∶= ℎ𝐸𝜑

(|𝑢|2) ◦𝜑−1 ∈ 𝔐
( (

𝐸𝐶𝜑

))
. Define 𝐿𝑓 ∶  (

𝐸𝐶𝜑

)
→ 𝐿2(Σ) by 𝐿𝑓 (𝑔) = 𝑓𝑔. Then by

the closed graph theorem 𝐿𝑓 is bounded. Let 𝑀 = ‖𝐿𝑓‖. We show that ‖𝑓‖∞ ≤ 𝑀 . For fixed 𝜀 > 0, put 𝐶 = {|𝑓 | ≥ 𝑀 + 𝜀}.

If 𝜇(𝐶) > 0, then by Lemma 2.5, 𝐷
𝜑
𝜒𝑐

≠ 0. So 𝐺 ∶= 𝐷
𝜑
𝜒𝑐
(𝑔) ≠ 0 for some 𝑔 ∈ 𝐿2(Σ). Since 𝐸(𝐺) = 0 and  (𝐸) ⊆  (

𝐸𝐶𝜑

)
,

then 𝐺 ∈  (
𝐸𝐶𝜑

)
⊆ 𝐿2(Σ). In addition, -measurability of 𝐶 implies that 𝐺 = 𝜒𝐶 (𝑔 ◦𝜑 − 𝐸(𝑔 ◦𝜑)) and hence 𝑆𝐺 ⊆ 𝐶 .

Therefore,

(𝑀 + 𝜀)2‖𝐺‖2 ≤ ∫𝑆𝐺

|𝑓 |2|𝐺|2𝑑𝜇 = ‖𝐿𝑓 (𝐺)‖2 ≤ 𝑀2‖𝐺‖2,
which is impossible. Hence 𝐶 has measure zero. □
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Theorem 2.10. Let  be a (𝜑0)0-type sub-sigma algebra of Σ, 𝜑−1() ⊆  and 𝑢 ∈ 𝐿2(Σ). Then 𝐷
𝜑
𝑢 ∈ 𝐵

(
𝐿2(Σ)

)
if and only

if 𝐽1 ∶= ℎ𝐸𝜑

(
𝐸
(|𝑢|2)) ◦𝜑−1 ∈ 𝐿∞(Σ).

Proof. Let 𝐽1 ∈ 𝐿∞(Σ). Since |𝐸(𝑢)|2 ≤ 𝐸
(|𝑢|2), it follows that ℎ𝐸𝜑

(|𝐸(𝑢)|2) ◦𝜑−1 ∈ 𝐿∞(Σ). Then by [11, Theorem 2.1(i)],

the operators 𝑀𝑢𝐸𝐶𝜑 and 𝑀𝐸(𝑢)𝐶𝜑 are bounded. But 𝐷
𝜑
𝑢 = 𝑀𝐸(𝑢)𝐶𝜑 −𝑀𝑢𝐸𝐶𝜑, and so 𝐷

𝜑
𝑢 is bounded.

Conversely, suppose 𝐷
𝜑
𝑢 is bounded on 𝐿2(Σ). If 𝑓 ∈  (

𝐸𝐶𝜑

)
, then 𝐷

𝜑
𝑢 (𝑓 ) = 𝑀𝐸(𝑢)𝐶𝜑(𝑓 ) ∈ 𝐿2(Σ). It follows that

∫𝑋

ℎ𝐸𝜑

(|𝐸(𝑢)|2) ◦𝜑−1|𝑓 |2𝑑𝜇 = ∫𝑋

|𝐸(𝑢)|2|𝑓 |2 ◦𝜑𝑑𝜇 < ∞,

and so ℎ𝐸𝜑

(|𝐸(𝑢)|2) ◦𝜑−1 ∈ 𝔐
((

𝐸𝐶𝜑

))
. As  is (𝜑0)0-type we have ℎ𝐸𝜑

(|𝐸(𝑢)|2) ◦𝜑−1 ∈ 𝐿∞() by Proposition 2.9.

Now, we claim that 𝐽2 ∶= ℎ𝐸𝜑

(
𝐸
(|𝐸(𝑢) − 𝑢|2)) ◦𝜑−1 is also in 𝐿∞(). To do this, let 𝑓 ∈ 𝐿2(). Since {𝐽2, 𝑓 ◦𝜑} ⊂ 𝐿0(),

which follows from hypotheses, then 𝐷
𝜑
𝑢 (𝑓 ) = (𝐸(𝑢) − 𝑢)𝑓 ◦𝜑 ∈ 𝐿2(Σ) and so we have

∫𝑋

𝐽2|𝑓 |2 𝑑𝜇 = ∫𝑋

𝐸
(|𝐸(𝑢) − 𝑢|2)(|𝑓 |2 ◦𝜑

)
𝑑𝜇 = ∫𝑋

|𝐸(𝑢) − 𝑢|2(|𝑓 |2 ◦𝜑
)
𝑑𝜇 < ∞.

Consequently,
√

𝐽2 ∈ 𝔐
(
𝐿2()) and hence 𝐽2 ∈ 𝐿∞(). On the other hand, by the conditional variance formula

𝐸
(|𝐸(𝑢) − 𝑢|2) = 𝐸

(|𝑢|2) − |𝐸(𝑢)|2, it is easy to check that 𝐽2 = 𝐽1 − ℎ𝐸𝜑

(|𝐸(𝑢)|2) ◦𝜑−1. We then obtain that

𝐽1 ∈ 𝐿∞(Σ). □

In the first part of the proof of Theorem 2.10, we did not require that  be a (𝜑0)0-type sub-sigma algebra of Σ.

Recall that a closed subspace 𝑀 ⊆  is said to be invariant for an operator 𝑇 ∈ 𝐵() whenever 𝑇 (𝑀) ⊆ 𝑀 . If 𝑀 and its

orthogonal complement 𝑀⟂ are both invariant for 𝑇 , then we say that 𝑀 reduces 𝑇 . The proof of the next lemma is left to the

reader

Lemma 2.11. Let 𝐶𝜑 ∈ 𝐵
(
𝐿2(Σ)

)
. Then the following are equivalent.

(a) 𝐿2() reduces 𝐶𝜑, i.e., 𝐸𝐶𝜑 = 𝐶𝜑𝐸.
(b)  (𝐸) ⊆  (

𝐸𝐶𝜑

)
and 𝜑−1() ⊆ .

(c) ℎ ∈ 𝐿2() and 𝐸𝐸𝜑 = 𝐸𝜑𝐸 = 𝐸𝜑−1().

Proof. The equivalence of (a) and (c) can be found in [4, Theorem 5(b)]. For (𝑎) ⇔ (𝑏), we notice that 𝐶𝜑( (𝐸)) ⊆  (𝐸) if

and only if  (𝐸) ⊆  (
𝐸𝐶𝜑

)
, and 𝐶𝜑

(
𝐿2()) ⊆ 𝐿2() if and only if 𝜑−1() ⊆ . □

Corollary 2.12. Let 𝐿2() be a reducing subspace of 𝐶𝜑 ∈ 𝐵
(
𝐿2(Σ)

)
. Then  is a (𝜑0)0-type sub-sigma algebra of Σ if and

only if 𝜇
(
𝐵𝜑

0

)
= 0.

From now on, we will make the following assumptions on  and 𝜑.

◦  is a (𝜑0)0-type sub-sigma algebra of Σ.

◦ 𝜑−1() ⊆ .

In this setting,  (𝐸) and so (𝐸) = 𝐿2() are reducing subspaces of 𝐶𝜑. Relative to the direct sum decomposition

𝐿2(Σ) = 𝐿2()⊕ (𝐸), the matrix form of each 𝐷
𝜑
𝑢 in 𝔇𝜑 is

[
𝐸𝐷

𝜑
𝑢 𝐸 𝐸𝐷

𝜑
𝑢 (𝐼 − 𝐸)

(𝐼 − 𝐸)𝐷𝜑
𝑢 𝐸 (𝐼 − 𝐸)𝐷𝜑

𝑢 (𝐼 − 𝐸)

]
=
[

0 0
𝑀𝐸(𝑢)−𝑢𝐶𝜑 𝑀𝐸(𝑢)𝐶𝜑

]
.

Lemma 2.13. There exists 𝜓 ∈  (𝐸) with 0 < |𝜓 ◦𝜑| ≤ 1.

Proof. Since every (𝜑0)0-type sub-sigma algebra of Σ is type-0, then the desired result follows from the Lambert–Weinstock

lemma (see [21]). □
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Example 2.14. Let 𝑋 = [−1, 1], 𝑑𝜇 = 1
2dx, Σ be the Lebesgue sets and let  the sub-sigma algebra of Σ generated by the

sets symmetric about the origin. Then for each 𝑓 ∈ 𝐿2(Σ) we have (𝐸𝑓 )(𝑥) = (𝑓 (𝑥) + 𝑓 (−𝑥))∕2. This example is due to Alan

Lambert. Let 𝜑 ∶ 𝑋 → 𝑋 defined by 𝜑(𝑥) = 3
√

𝑥. Then ℎ(𝑥) = 3𝑥2 ∈ 𝐿∞(Σ), 𝜑−1(Σ) = Σ (i.e., 𝐸𝜑 = 𝐼) and

𝐸𝐶𝜑(𝑓 )(𝑥) =
𝑓
(

3
√

𝑥
)
+ 𝑓

(
− 3
√

𝑥
)

2
= 𝐶𝜑𝐸(𝑓 )(𝑥), 𝑓 ∈ 𝐿2(Σ).

Thus, 𝐿2() is a reducing subspace for 𝐶𝜑. Note that 𝜑 =  = {∅} and so 𝜇
(
𝐵𝜑

0

)
= 𝜇

(
𝐵

0

)
= 0. It follows that  is a (𝜑0)0-

type sub-sigma algebra of Σ. Let 𝑢(𝑥) = 1∕ 4
√|𝑥|. Then ∫ 1

−1 𝑢
2(𝑥) dx = 2. Hence, 𝑢 ∈ 𝐿2(Σ) but 𝐸

(
𝑢2
)
= 𝑢2 ∉ 𝐿∞(Σ). It follows

that 𝐷𝑢 ∉ 𝐵
(
𝐿2(Σ)

)
. However, it is easy to check that

ℎ(𝑥)𝐸𝜑

(
𝐸
(|𝑢|2)) ◦𝜑−1(𝑥) = 3𝑥2√|𝑥|3 ∈ 𝐿∞(Σ),

and hence 𝐷
𝜑
𝑢 ∈ 𝐵

(
𝐿2(Σ)

)
.

Theorem 2.15. 𝔇𝜑 =
{
𝐷

𝜑
𝑢 ∶ 𝑢 ∈ 𝔏𝜑

}
is closed in the weak operator topology.

Proof. Let {𝑢𝛼} ⊆ 𝔏𝜑 such that 𝐷
𝜑
𝑢𝛼

𝑤
←→ 𝐷 for some 𝐷 ∈ 𝐵

(
𝐿2(Σ)

)
. We show that 𝐷 = 𝐷

𝜑
𝑢0

for some 𝑢0 ∈ 𝔏𝜑. Recall that since

ℎ ∈ 𝐿∞(Σ), 𝐿∞(Σ) ⊆ 𝔏𝜑 ⊆ 𝐿2(Σ) ⊆ 𝐿1(Σ). If 𝑓 ∈  (𝐸𝐶𝜑), then 𝐸(𝑢𝛼)𝑓 ◦𝜑
𝑤
←→ 𝐷(𝑓 ). Choose 𝜓 as in Lemma 2.13. Since

𝜓 ◦𝜑 is essentially bounded, we get that (𝜓 ◦𝜑)𝐸(𝑢𝛼)(𝑓 ◦𝜑)
𝑤
←→ (𝜓 ◦𝜑)𝐷(𝑓 ); hence (𝑓 ◦𝜑)𝐸(𝑢𝛼)(𝜓 ◦𝜑)

𝑤
←→ (𝑓 ◦𝜑)𝐷(𝜓).

Thus, (𝑓 ◦𝜑)𝐷(𝜓) = (𝜓 ◦𝜑)𝐷(𝑓 ). Consequently, for each 𝑓 ∈  (𝐸) ⊆  (
𝐸𝐶𝜑

)
, 𝐷(𝑓 ) = 𝑢(𝑓 ◦𝜑), where 𝑢 = 𝐷(𝜓)

𝜓 ◦𝜑
. Since

(𝐷) ⊆  (𝐸), then 𝐷(−1) ∈  (𝐸) and 𝑢 (𝐸) ⊆  (𝐸). Then, by [21, Theorem 2], 𝑢 ∈ 𝐿∞(Σ). We claim that 𝑢 is

-measurable. To prove this, we take 𝑎 = 𝑅𝑒(𝑎) and 𝑏 = Im(𝑢). Since 𝑢 (𝐸) ⊆  (𝐸), then

𝑎 (𝐸) = 𝑢 + 𝑢̄

2
 (𝐸) ⊆  (𝐸). (2.1)

Fix any 𝜀 > 0. Set 𝐴 = {𝑥 ∈ 𝑋 ∶ 𝐸(𝑎)(𝑥) ≥ 𝑎(𝑥) + 𝜀}. Since 𝜒𝐴 − 𝐸(𝜒𝐴) ∈  (𝐸), then by (2.1), 𝑎
(
𝜒𝐴 − 𝐸(𝜒𝐴)

)
∈  (𝐸)

and hence

𝐸(𝑎𝜒𝐴) = 𝐸(𝑎)𝐸(𝜒𝐴). (2.2)

But 𝑎𝜒𝐴 ≤ (𝐸(𝑎) − 𝜀)𝜒𝐴. After taking 𝐸 and using (2.2) we obtain 𝐸(𝜒𝐴) ≤ 0. It follows that 𝐸(𝜒𝐴) = 0 and so 𝜒𝐴 = 0. Thus,

𝜇(𝐴) = 0. Since 𝜀 was chosen arbitrarily, 𝐸(𝑎) ≤ 𝑎. Now, put 𝐵 = {𝑥 ∈ 𝑋 ∶ 𝐸(𝑎)(𝑥) ≤ 𝑎(𝑥) + 𝜀}. A similar argument shows

that 𝜇(𝐵) = 0, and so 𝐸(𝑎) ≥ 𝑎. Consequently, 𝐸(𝑎) = 𝑎. The same reasoning applies to 𝑏, so that 𝐸(𝑢) = 𝑢. Now let 𝑢0 = 𝑢 + 𝑓1,

where 𝑓1 = 𝐷(−1). We claim that 𝐷 = 𝐷
𝜑
𝑢0

. Indeed, suppose 𝑇 ∶ 𝑇 =
{
𝑓 ∈ 𝐿2(Σ) ∶ 𝐷

𝜑
𝑢0
(𝑓 ) ∈ 𝐿2(Σ)

}
→ 𝐿2(Σ) is a linear

transformation defined by 𝑇 (𝑓 ) = 𝐷
𝜑
𝑢0
(𝑓 ). Since 𝐸(𝑢) = 𝑢 and 𝐸(𝑓1) = 0, then

𝑇 (𝑓 ) = 𝑢(𝑓 ◦𝜑 − 𝐸(𝑓 ◦𝜑)) − 𝐸(𝑓 ◦𝜑)𝑓1, 𝑓 ∈ 𝑇 . (2.3)

Note that 𝑇 (𝐿∞(Σ)) ⊆ 𝐿2(Σ). We show then 𝑇 is closed. Let 𝑓𝑛 → 𝑓 and 𝑇 (𝑓𝑛) → 𝐾 in 𝐿2-norm. Since 𝐶𝜑 is bounded and 𝐸 is

a contraction, then 𝑓𝑛 ◦𝜑 → 𝑓 ◦𝜑 and 𝐸(𝑓𝑛 ◦𝜑) → 𝐸(𝑓 ◦𝜑) in 𝐿2-norm. So we can choose a subsequence
{
𝑓𝑛𝑘

}
⊆ {𝑓𝑛} such

that 𝑓𝑛𝑘
◦𝜑

𝑎.𝑒.
←→ 𝑓 ◦𝜑, 𝐸

(
𝑓𝑛𝑘

◦𝜑
) 𝑎.𝑒.
←→ 𝐸

(
𝑓 ◦𝜑

)
and 𝑇

(
𝑓𝑛𝑘

) 𝑎.𝑒.
←→ 𝐾 . By the first two convergence we obtain 𝑇

(
𝑓𝑛𝑘

) 𝑎.𝑒.
←→ 𝑇 (𝑓 ), and

consequently 𝑇 (𝑓 ) = 𝐾 .

Now, we show that 𝑇 agrees with 𝐷 on the dense set 𝐿∞(Σ), and consequently 𝑇 = 𝐷. Since 𝐿2(Σ) =  (𝐸)⊕(𝐸), it

suffices to show that 𝑇 = 𝐷 on 𝐿∞(Σ) ∩ (𝐸) and 𝐿∞(Σ) ∩(𝐸), respectively. To get these, we first let 𝑓 ∈ 𝐿∞(Σ) ∩ (𝐸).
Then by (2.3) we have 𝑇 (𝑓 ) = 𝑢(𝑓 ◦𝜑) = 𝐷(𝑓 ). Now let 𝑓 ∈ 𝐿∞(Σ) ∩(𝐸). Since 𝜑−1() ⊆ , then 𝐸(𝑓 ◦𝜑) = 𝑓 ◦𝜑, and

𝑇 (𝑓 ) = −𝐸(𝑓 ◦𝜑)𝑓1 = −(𝑓 ◦𝜑)𝐷(−1) = −
(
lim
𝑤

𝐷𝜑
𝑢𝛼
(−1)

)
(𝑓 ◦𝜑)

= lim
𝑤
(𝐸(𝑢𝛼) − 𝑢𝛼)(𝑓 ◦𝜑) = lim

𝑤
𝐷𝜑

𝑢𝛼
(𝑓 ) = 𝐷(𝑓 ).

This completes the proof. □
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Take 𝜑 = 𝑖𝑑, be the identity map. For 𝑢 ∈ (𝐸), set 𝑢 = 𝑢1 + 𝑢2, where 𝑢1 = 𝐸(𝑢) and 𝑢2 = 𝑢 − 𝐸(𝑢). If 𝑢 ∈ 𝔏, we have the

following matrix representation of 𝐷𝑢 and 𝐷∗
𝑢 with respect to decomposition 𝐿2(Σ) = 𝐿2()⊕ (𝐸):

𝐷𝑢 =
[

0 0
−𝑀𝑢2

𝑀𝑢1

]
and 𝐷∗

𝑢 =
[
0 −𝑀𝑢2
0 𝑀𝑢1

]
.

Then, 𝐷𝑢 = 𝐷∗
𝑢 if and only if 𝑢1 = 𝑢1 and 𝑢2 = 0. Thus, 𝐷𝑢 is self-adjoint if and only if 𝑢 is a real-valued member of 𝐿∞().

Also, since

𝐷𝑢𝐷
∗
𝑢 =

[
0 0
0 𝑀|𝑢1|2+|𝑢2|2

]
and 𝐷∗

𝑢𝐷𝑢 =
[
𝑀|𝑢2|2 𝑀−𝑢1𝑢2
𝑀−𝑢1𝑢2

𝑀|𝑢1|2
]
,

so 𝐷𝑢𝐷
∗
𝑢 = 𝐷∗

𝑢𝐷𝑢 if and only if 𝑢2 = 0. Thus, 𝐷𝑢 is normal if and only if 𝑢 ∈ 𝐿∞(). Moreover, 𝐷𝑢𝐷
∗
𝑢 = 𝐷𝑢 if and only if

𝑢2 = 0 and 0 ≤ 𝑢1 = 𝑢21. It follows that 𝐷𝑢 is an orthogonal projection if and only if 𝑢 = 𝜒𝐵 for some 𝐵 ∈ . These results were

obtained in [21] by another way.

In the following, Theorem 2.20, we give and prove a criterion for the normality of 𝐷
𝜑
𝑢 on 𝐿2(Σ). Here the matrix representation

method seems to be a bit complicated. To prove this result, we need the following proposition.

Proposition 2.16. Let 𝐷𝜑
𝑢 ∈ 𝐵

(
𝐿2(Σ)

)
and 𝑓 ∈ 𝐿2(Σ). Then the following assertions hold.

(a)
(
𝐷

𝜑
𝑢

)∗(𝑓 ) = ℎ𝐸𝜑

(
𝐸(𝑢)𝑓

)
◦𝜑−1 − ℎ𝐸𝜑

(
𝐸(𝑢̄𝑓 )

)
◦𝜑−1.

(b)
(
𝐷

𝜑
𝑢

)∗(
𝐿2()) = {0}.

(c) 𝑢 ∈ 𝐿2() if and only if 𝐷𝜑
𝑢 (1) = 0.

(d) If 𝐷𝜑
𝑢 is normal, then 𝑢 ∈ 𝐿2().

(e) 𝐷
𝜑
𝑢

(
𝐷

𝜑
𝑢

)∗(𝑓 ) = 𝐸(𝑢)(ℎ ◦𝜑)𝐸𝜑

(
𝐸(𝑢)𝑓 − 𝐸(𝑢̄𝑓 )

)
− 𝑢𝐸

(
ℎ ◦𝜑𝐸𝜑

(
𝐸(𝑢)𝑓 − 𝐸(𝑢̄𝑓 )

))
.

(f)
(
𝐷

𝜑
𝑢

)∗
𝐷

𝜑
𝑢 (𝑓 ) = ℎ𝐸𝜑

(|𝐸(𝑢)|2(𝑓 ◦𝜑) − 𝑢𝐸(𝑢̄)𝐸(𝑓 ◦𝜑) − 𝐸(𝑢̄𝑓 ◦𝜑)𝐸(𝑢) + 𝐸
(|𝑢|2)𝐸(𝑓 ◦𝜑)

)
◦𝜑−1.

Proof. We recall that 𝐶∗
𝜑(𝑓 ) = ℎ𝐸𝜑(𝑓 ) ◦𝜑−1, for all 𝑓 ∈ 𝐿2(Σ). To prove (d), let

(
𝐷

𝜑
𝑢

)∗
𝐷

𝜑
𝑢 = 𝐷

𝜑
𝑢

(
𝐷

𝜑
𝑢

)∗
. Since 1 ∈

 ((
𝐷

𝜑
𝑢

)∗)
, then 1 ∈  ((

𝐷
𝜑
𝑢

)∗
𝐷

𝜑
𝑢

)
and so 1 ∈  (

𝐷
𝜑
𝑢

)
. Consequently, by (c), 𝑢 ∈ 𝐿2(). The remainder of the proof is

left to the reader. □

Corollary 2.17. Let 𝑢 ∈ 𝐿2(). Then for each 𝑓 ∈ 𝐿2(Σ) we have

(a) 𝐷
𝜑
𝑢

(
𝐷

𝜑
𝑢

)∗(𝑓 ) = 𝑢(ℎ ◦𝜑)𝐸𝜑(𝑢̄𝑓 − 𝑢̄𝐸(𝑓 )).

(b)
(
𝐷

𝜑
𝑢

)∗
𝐷

𝜑
𝑢 (𝑓 ) = ℎ𝑓𝐸𝜑

(|𝑢|2) ◦𝜑−1 − ℎ𝐸𝜑

(|𝑢|2𝐸(𝑓 ◦𝜑)
)
◦𝜑−1.

(c) If 𝑓 ∈ 𝐿2(), then 𝐷
𝜑
𝑢

(
𝐷

𝜑
𝑢

)∗(𝑓 ) = (
𝐷

𝜑
𝑢

)∗
𝐷

𝜑
𝑢 (𝑓 ) = 0.

Theorem 2.18. Let  be a (𝜑0)0-type sub-sigma algebra of Σ. Then 𝐷
𝜑
𝑢 is normal on 𝐿2(Σ) if and only if the following three

conditions hold.

(i) 𝑢 ∈ 𝐿2(),
(ii) ℎ𝐸𝜑

(|𝑢|2) ◦𝜑−1 = 𝑢(ℎ ◦𝜑)𝐸𝜑(𝑢̄) ∈ 𝐿∞(),
(iii) 𝑀𝑢𝐸𝜑(𝑢̄) = 𝑀𝑢𝐸𝜑𝑀𝑢̄ on  (𝐸).

Proof. Let 𝐷
𝜑
𝑢 be normal. Then by Proposition 2.16(d), 𝑢 ∈ 𝐿2(). Also by Corollary 2.17(c), 𝐷

𝜑
𝑢

(
𝐷

𝜑
𝑢

)∗
agree with

(
𝐷

𝜑
𝑢

)∗
𝐷

𝜑
𝑢

on 𝐿2(). But for every 𝑓 ∈  (𝐸) we have(
𝐷𝜑

𝑢

)∗
𝐷𝜑

𝑢 (𝑓 ) = ℎ𝐸𝜑

(|𝑢|2) ◦𝜑−1𝑓 = 𝑢(ℎ ◦𝜑)𝐸𝜑(𝑢̄𝑓 ) = 𝐷𝜑
𝑢

(
𝐷𝜑

𝑢

)∗(𝑓 ). (2.4)

Invoking Lemma 2.13, we choose the function 𝜓 ∈  (𝐸) with 0 < |𝜓 ◦𝜑| ≤ 1. Then we have

ℎ(𝜓 ◦𝜑)𝐸𝜑

(|𝑢|2) ◦𝜑−1 = 𝑢(ℎ ◦𝜑)𝐸𝜑(𝑢̄(𝜓 ◦𝜑)),
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and so, ℎ𝐸𝜑

(|𝑢|2) ◦𝜑−1 = 𝑢(ℎ ◦𝜑)𝐸𝜑(𝑢̄). Note that ℎ𝐸𝜑

(|𝑢|2) ◦𝜑−1 ∈ 𝐿∞(). So condition (ii) holds. Now, by condition

(ii) and (2.4) we obtain 𝑢(ℎ ◦𝜑)𝑓𝐸𝜑(𝑢̄) = 𝑢(ℎ ◦𝜑)𝐸𝜑(𝑢̄𝑓 ) for all 𝑓 ∈  (𝐸). Since 𝑆ℎ ◦𝜑 = 𝑋, then 𝑢𝑓𝐸𝜑(𝑢̄) = 𝑢𝐸𝜑(𝑢̄𝑓 ) and

therefore condition (iii) is also holds.

Conversely, let the conditions (i), (ii) and (iii) hold. Then by (2.4) we have(
𝐷𝜑

𝑢

)∗
𝐷𝜑

𝑢 (𝑓 ) == ℎ𝐸𝜑

(|𝑢|2) ◦𝜑−1𝑓
(𝑖𝑖)
== 𝑢(ℎ ◦𝜑)𝐸𝜑(𝑢̄)𝑓

(𝑖𝑖𝑖)
== 𝑢(ℎ ◦𝜑)𝐸𝜑(𝑢̄𝑓 ) = 𝐷𝜑

𝑢

(
𝐷𝜑

𝑢

)∗(𝑓 )
for all 𝑓 ∈  (𝐸). Thus

(
𝐷

𝜑
𝑢

)∗
𝐷

𝜑
𝑢 agree with 𝐷

𝜑
𝑢

(
𝐷

𝜑
𝑢

)∗
on  (𝐸). Now, the desired conclusion follows from

Corollary 2.17(c). □

Put 2 =
{
𝑢 ∈ 𝐿2(Σ) ∶ 𝑢𝐿2() ⊆ 𝐿2(Σ)

}
. Then 2 is a vector space which contains 𝐿∞(Σ). Indeed, if  = Σ, then

2 = 𝐿∞(Σ). For 𝑢 ∈ 2, let 𝑀𝑢 ∶ 𝐿2() → 𝐿2(Σ) be the corresponding multiplication operator. Lembert [19] proved that

𝐸𝑀𝑢 is bounded if and only if 𝐸
(|𝑢|2) ∈ 𝐿∞() and in this case ‖𝑀𝑢‖ =

√‖𝐸(|𝑢|2)‖∞. In general, for 𝑢 ∈ 𝐿0(Σ), 𝑀𝑢

is closed and densely defined on its natural domain
{
𝑓 ∈ 𝐿2(Σ) ∶ 𝑢𝑓 ∈ 𝐿2(Σ)

}
(see [1]). We now examine the commutant

𝔇′
𝜑 =

{
𝑇 ∈ 𝐵

(
𝐿2(Σ)) ∶ 𝐷

𝜑
𝑢 𝑇 = 𝑇𝐷

𝜑
𝑢 for all 𝑢 ∈ 𝔏𝜑

}
of 𝔇𝜑.

Lemma 2.19. Let 𝑓 ∈ 𝐿∞(Σ). Then

(i) 𝑀𝑓 ∈ {𝐶𝜑}′ if and only if 𝑓 ◦𝜑 = 𝑓 .
(ii) 𝑀𝑓 ∈ 𝔇′

𝜑 if and only if 𝑓 ◦𝜑 = 𝑓 and 𝑓 ∈ 𝐿∞().
Proof. Part (i) is obvious. To prove (ii), let 𝑀𝑓 ∈ 𝔇′

𝜑. Then for each 𝑔 ∈ 𝐿2(Σ), 𝐷𝜑
𝑢 𝑀𝑓 (𝑔) = 𝑀𝑓𝐷

𝜑
𝑢 (𝑔), so that

𝐸(𝑢)(𝑓 ◦𝜑)(𝑔 ◦𝜑) − 𝑢𝐸((𝑓 ◦𝜑)(𝑔 ◦𝜑)) = 𝑓 (𝐸(𝑢)𝑔 ◦𝜑 − 𝐸((𝑔 ◦𝜑)𝑢). (2.5)

Letting 𝑢 = 1 in (2.5), we have

(𝑓 ◦𝜑)(𝑔 ◦𝜑) − 𝐸((𝑓 ◦𝜑)(𝑔 ◦𝜑)) = 𝑓 (𝑔 ◦𝜑 − 𝐸(𝑔 ◦𝜑)). (2.6)

Take 𝑔 = 1 in (2.6). Then 𝐸(𝑓 ◦𝜑) = 𝑓 ◦𝜑 and hence 𝑓 ◦𝜑 is a -measurable function. So, from (2.6) we obtain

(𝑓 ◦𝜑)(𝑔 ◦𝜑 − 𝐸(𝑔 ◦𝜑) = 𝑓 (𝑔 ◦𝜑 − 𝐸(𝑔 ◦𝜑)). (2.7)

By Lemma 2.13, Choose 𝜓 ∈  (𝐸) with 0 < |𝜓 ◦𝜑| ≤ 1. By hypothesis, 𝐸𝐶𝜑 = 𝐶𝜑𝐸. So 𝜓 ◦𝜑 ∈  (𝐸). Replacing 𝑔 by

𝜓 , we can rewrite (2.7) as 𝑓 ◦𝜑 = 𝑓 . Thus 𝑓 ∈ 𝐿∞(). The converse is obvious. □

Lemma 2.20. Let 𝑇 ∈ 𝐵
(
𝐿2(Σ)

)
and let for each 𝑢 ∈ 𝔏𝜑, 𝐷𝜑

𝑢 𝑇 = 𝑇𝐷
𝜑
𝑢 . Then the following assertions hold.

(i) There exists 𝑓 ∈ 𝐿2() such that 𝑇 = 𝑀𝑓 on  (𝐸) ∩ 𝔏𝜑.
(ii) If ℎ > 0 then for each 𝑔 ∈ 𝐿∞(), 𝑇 (𝑔) = 𝑀𝑓 (𝑔).

Proof. (i) Let 𝑇 ∈ 𝔇′
𝜑. Then for each 𝑔 ∈ 𝐿2(Σ),

𝑇 (𝐸(𝑢)𝑔 ◦𝜑 − 𝑢𝐸(𝑔 ◦𝜑)) = 𝐸(𝑢)(𝑇 (𝑔) ◦𝜑) − 𝑢𝐸(𝑇 (𝑔) ◦𝜑). (2.8)

Letting 𝑢 = 1 in (2.8), we have

𝑇 (𝑔 ◦𝜑 − 𝐸(𝑔 ◦𝜑)) = 𝑇 (𝑔) ◦𝜑 − 𝐸(𝑇 (𝑔) ◦𝜑).

This shows that 𝑇 (𝑔) ◦𝜑 ∈ 𝐿2(), for all 𝑔 ∈ 𝐿2(). Let 𝑓 = 𝑇 (1) ◦𝜑. Then 𝑓 ∈ 𝐿2(). We show that 𝑇 = 𝑀𝑓 on

 (𝐸) ∩ 𝔏𝜑. Take 𝑔 = 1 in (2.8). Then for each 𝑢 ∈ 𝔏𝜑, 𝑇 (𝐸(𝑢) − 𝑢) = 𝑀𝑓 (𝐸(𝑢) − 𝑢). Consequently, 𝑇 (𝑣) = 𝑀𝑓 (𝑣) for each

𝑣 ∈  (𝐸) ∩ 𝔏𝜑.

(ii) Choose 𝜓 ∈  (𝐸) with 0 < |𝜓 ◦𝜑| ≤ 1 and let 𝑔 ∈ 𝐿∞(). Then 𝐷
𝜑
𝜓 ◦𝜑(𝑔) = −(𝑔 ◦𝜑)(𝜓 ◦𝜑) = 𝐷

𝜑
𝑔 ◦𝜑(𝜓). From

𝑇 ∈ 𝔇′
𝜑 and (i), we have 𝑇 (𝜓) = 𝑓𝜓 . Then

𝐷𝜑
𝜓 ◦𝜑(𝑇 (𝑔)) = 𝑇

(
𝐷𝜑

𝜓 ◦𝜑(𝑔)
)
= −𝑇

(
𝐷𝜑

𝑔 ◦𝜑(𝜓)
)
= −𝐷𝜑

𝑔 ◦𝜑(𝑇 (𝜓)) = −𝐷𝜑
𝑔 ◦𝜑(𝑓𝜓).
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On the other hand, since 𝐸(𝜓 ◦𝜑) = 0, 𝑇 (𝑔) ◦𝜑 ∈ 𝐿2() and 𝐸(𝑔 ◦𝜑) = 𝑔 ◦𝜑, we have

𝐷𝜑
𝜓 ◦𝜑(𝑇 (𝑔)) = −𝐸(𝑇 (𝑔) ◦𝜑)(𝜓 ◦𝜑) = −(𝑇 (𝑔) ◦𝜑)(𝜓 ◦𝜑)

and −𝐷
𝜑
𝑔 ◦𝜑(𝑓𝜓) = −(𝑓 ◦𝜑)(𝑔 ◦𝜑)(𝜓 ◦𝜑). Since 𝜓 ◦𝜑 ≠ 0, then we obtain

𝑇 (𝑔) ◦𝜑 = (𝑓 ◦𝜑)(𝑔 ◦𝜑), 𝑔 ∈ 𝐿∞(). (2.9)

Set 𝑔 = 1 in (2.7). Then 𝑓 = 𝑇 (1) ◦𝜑 = 𝑓 ◦𝜑. So we can rewrite 2.9 as 𝐶𝜑𝑇 (𝑔) = 𝑇 (𝑔) ◦𝜑 = 𝑓 (𝑔 ◦𝜑) = 𝐶𝜑𝑀𝑓 (𝑔), for all

𝑔 ∈ 𝐿∞(). Now, if 𝐶𝜑 is one-to-one; equivalently ℎ > 0, then 𝑇 (𝑔) = 𝑀𝑓 (𝑔) for all 𝑔 ∈ 𝐿∞(). But 𝐿2(Σ) = 𝐿2()⊕ (𝐸).
Thus, by part (i), 𝑇 (𝑔) = 𝑀𝑓 (𝑔) for all 𝑔 ∈ 𝐿∞(Σ). Since 𝐿∞(Σ) ⊆ 𝔏𝜑, 𝐿∞(Σ) is dense in 𝐿2(Σ) and 𝑀𝑓 is closed, then

𝑇 = 𝑀𝑓 . □

By Lemma 2.19 and 2.20 we have the following theorem.

Theorem 2.21. Let ℎ > 0. Then 𝔇′
𝜑 =

{
𝑀𝑢 ∶ 𝑢 ◦𝜑 = 𝑢, 𝑢 ∈ 𝐿∞()}.

In [21], Lambert and Weinstock considered the set 2 =
{
𝑢 ∈ 𝐿2(Σ) ∶ 𝐸

(|𝑢|2) ∈ 𝐿∞(Σ)
}

and they asked the following

question:

For which subalgebras  does 2 = 𝐿∞(Σ)?

In [19], Lambert prove that 𝑀𝑢𝐸 is bounded on 𝐿2(Σ) if and only if 𝐸
(|𝑢|2) ∈ 𝐿∞(). Let 𝑢 ∈ 2. Since |𝐸(𝑢)|2 ≤ 𝐸

(|𝑢|2),

the boundedness of 𝑀𝑢𝐸 implies that 𝐸(𝑢) ∈ 𝐿∞(), and so 𝑀𝐸(𝑢) is bounded. Consequently, in this case, 𝐷𝑢 = 𝑀𝐸(𝑢) −𝑀𝑢𝐸

is bounded. On the other hand, if  is a type-0 sub-𝜎-finite algebra of Σ and 𝐷𝑢 is bounded on 𝐿2(Σ), then 𝐸
(|𝑢|2) ∈ 𝐿∞().

Thus, 2 =
{
𝑢 ∈ 𝐿2(Σ) ∶ 𝐷𝑢 ∈ 𝐵

(
𝐿2(Σ)

)}
. Hence, by [19, Proposition 2.2] we obtain the following proposition.

Proposition 2.22. Let  is a type-0 sub-𝜎 algebra of Σ and let 𝔏 =
{
𝑢 ∈ 𝐿2(Σ) ∶ 𝐷𝑢 ∈ 𝐵

(
𝐿2(Σ)

)}
. Then the following asser-

tions hold.

(a) 𝔏 = 2.
(b) 𝔏 = 𝐿2(Σ) if and only if  is generated by a finite partition of 𝑋.
(c) 𝔏 = 𝐿∞(Σ) if and only if there is a constant 𝐶 so that every 𝑓 ∈ 𝐿1(Σ), |𝑓 | ≤ 𝐶𝐸(|𝑓 |).
Lemma 2.23. Let  be a (𝜑0)0-type sub-sigma algebra of Σ. Then the following assertions hold.

(a) If ℎ ◦𝜑 is bounded away from zero then for each 𝑓 ∈ 𝐿2(Σ), ℎ
(
𝐸𝜑−1()(𝑓 )) ◦𝜑−1 ∈ 𝐿∞(Σ) if and only if 𝐸𝜑−1()(𝑓 ) ∈

𝐿∞(Σ).
(b) If ℎ ◦𝜑 is bounded away from zero, then 𝔏𝜑 =

{
𝑢 ∈ 𝐿2(Σ) ∶ 𝐸𝜑−1()(|𝑢|2) ∈ 𝐿∞(Σ)

}
.

Proof.

(a) Let 𝑓 ∈ 𝐿2(Σ) and let 𝑔 ∶= ℎ
(
𝐸𝜑−1()(𝑓 )) ◦𝜑−1 ∈ 𝐿∞(Σ). Since 𝐿∞(Σ) reduces 𝐶𝜑, then 𝐸𝜑−1()(𝑓 ) = 𝐶𝜑(𝑔)

ℎ ◦𝜑
∈ 𝐿∞(Σ).

Conversely, let 𝐸𝜑−1()(𝑓 ) ∈ 𝐿∞(Σ). Then 𝑔 = 𝐶∗
𝜑

(
𝐸𝜑−1()(𝑓 )) ∈ 𝐿∞(Σ).

(b) By Theorem 2.10, 𝔏𝜑 =
{
𝑢 ∈ 𝐿2(Σ) ∶ ℎ𝐸𝜑

(
𝐸
(|𝑢|2)) ◦𝜑−1 ∈ 𝐿∞(Σ)

}
. Now, the desired conclusion follows from (a) and

Lemma 2.11. □

Corollary 2.24. Let  be a (𝜑0)0-type sub-sigma algebra of Σ. Then the following assertions hold.

(a) 𝔏𝜑 = 𝐿2(Σ) if and only if 𝜑−1() is generated by a finite partition of 𝑋.

(b) 𝔏𝜑 = 𝐿∞(Σ) if and only if there is a constant 𝐶 so that every 𝑓 ∈ 𝐿1(Σ), |𝑓 | ≤ 𝐶𝐸𝜑−1()(|𝑓 |).
Let 𝑓, 𝑔 ∈ 𝐿2(Σ). Then by conditional Cauchy–Schwarz inequality we have

𝐸
(|𝑓 + 𝑔|2) ≤ 𝐸

(|𝑓 |2) + 𝐸
(|𝑔|2) + 2

(
𝐸
(|𝑓 |2)) 1

2
(
𝐸
(|𝑔|2)) 1

2 =
(√

𝐸(|𝑓 |2) +√
𝐸(|𝑔|2))2.

Thus, we have the following corollary.
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Corollary 2.25. Let 𝑓, 𝑔 ∈ 𝐿2(Σ). Then√
ℎ𝐸𝜑

(
𝐸
(|𝑓 + 𝑔|2)) ◦𝜑−1 ≤

√
ℎ𝐸𝜑

(
𝐸
(|𝑓 |2)) ◦𝜑−1 +

√
ℎ𝐸𝜑

(
𝐸
(|𝑔|2)) ◦𝜑−1.

We recall that 𝔏𝜑 =
{
𝑢 ∈ 𝐿2(Σ) ∶ ℎ𝐸𝜑

(
𝐸
(|𝑢|2)) ◦𝜑−1 ∈ 𝐿∞(Σ)

}
is a closed subspace of 𝐿2(Σ). For 𝑢 ∈ 𝔏𝜑, define

‖𝑢‖𝔏𝜑
=
√‖‖‖ℎ𝐸𝜑

(
𝐸
(|𝑢|2)) ◦𝜑−1‖‖‖∞ =

√‖‖‖𝐶∗
𝜑

(
𝐸
(|𝑢|2))‖‖‖∞.

Let ‖𝑢‖𝔏𝜑
= 0. Then 𝐶∗

𝜑

(
𝐸
(|𝑢|2)) = 0, and so (ℎ ◦𝜑)𝐸𝜑

(
𝐸
(|𝑢|2)) = 𝐶𝜑𝐶

∗
𝜑

(
𝐸
(|𝑢|2)) = 0. Since ℎ ◦𝜑 > 0 and

𝐸𝜑𝐸 = 𝐸𝜑−1(), then 𝐸𝜑−1()(|𝑢|2) = 0 and thus 𝑢 = 0, because  (
𝐸𝜑−1(Σ)) contains no positive element. Triangle

inequality follows from Corollary 2.25.

Hence
(
𝔏𝜑, ‖ ⋅ ‖𝔏𝜑

)
is a normed space.

Lemma 2.26. Let 𝑢 ∈ 𝔏𝜑. Then ‖𝑢‖2 ≤ √
𝜇(𝑋)‖𝑢‖𝔏𝜑

.

Proof.

‖𝑢‖22 = ∫𝑋

|𝑢|2𝑑𝜇 = ∫𝑋

ℎ𝐸𝜑

(
𝐸
(|𝑢|2)) ◦𝜑−1𝑑𝜇 ≤ ∫𝑋

‖‖‖ℎ𝐸𝜑

(
𝐸
(|𝑢|2)) ◦𝜑−1‖‖‖∞ 𝑑𝜇 = 𝜇(𝑋)‖𝑢‖2𝔏𝜑

.
□

Proposition 2.27.
(
𝔏𝜑, ‖ ⋅ ‖𝔏𝜑

)
is a Banach space.

Proof. Let {𝑢𝑛} ⊆ 𝔏𝜑 be a Cauchy sequence. Then by Lemma 2.26 there is an element 𝑢 ∈ 𝐿2(Σ) such that ‖𝑢𝑛 − 𝑢‖2 → 0.

Also, for 𝜀 > 0 fixed, we can find an 𝑛0 ∈ ℕ such that ℎ𝐸𝜑

(
𝐸
(|𝑢𝑛0 − 𝑢𝑛|2)) ◦𝜑−1 < 𝜀, for all 𝑛 ≥ 𝑛0. Let

𝑆 =
{
𝑥 ∈ 𝑋 ∶ ℎ(𝑥)𝐸𝜑

(
𝐸
(|𝑢𝑛0 − 𝑢|2)) ◦𝜑−1(𝑥) ≥ 2𝜀

}
.

Since 𝐿2() reduces 𝐶∗
𝜑, then 𝑆 ∈  and so 𝜑−1(𝑆) ∈ 𝜑−1() ⊆ . It follows that

𝜀𝜇(𝑆) ≥ ∫𝑆

ℎ𝐸𝜑

(
𝐸
(|𝑢𝑛0 − 𝑢𝑛|2)) ◦𝜑−1𝑑𝜇

= ∫𝜑−1(𝑆)
𝐸
(|𝑢𝑛0 − 𝑢𝑛|2) 𝑑𝜇 = ∫𝜑−1(𝑆)

|𝑢𝑛0 − 𝑢𝑛|2𝑑𝜇
=
‖‖‖‖(𝑢𝑛0 − 𝑢𝑛

)
𝜒𝜑−1(𝑆)

‖‖‖‖22 ←→ ‖‖‖‖(𝑢𝑛0 − 𝑢
)
𝜒𝜑−1(𝑆)

‖‖‖‖22 (as 𝑛 → ∞)

= ∫𝜑−1(𝑆)
|𝑢𝑛0 − 𝑢|2𝑑𝜇 = ∫𝜑−1(𝑆)

𝐸
(|𝑢𝑛0 − 𝑢|2) 𝑑𝜇

= ∫𝑆

ℎ𝐸𝜑

(
𝐸
(|𝑢𝑛0 − 𝑢|2)) ◦𝜑−1𝑑𝜇 ≥ 2𝜀𝜇(𝑆),

which is impossible. Thus, 𝜇(𝑆) = 0 and so ℎ𝐸𝜑

(
𝐸
(|𝑢𝑛0 − 𝑢|2)) ◦𝜑−1 ∈ 𝐿∞(). So 𝑢𝑛0 − 𝑢 ∈ 𝔏𝜑 and thus 𝑢 ∈ 𝔏𝜑. More-

over, we obtain ℎ𝐸𝜑

(
𝐸
(|𝑢𝑛0 − 𝑢|2)) ◦𝜑−1 < 𝜀 for some 𝑢𝑛0 ∈ 𝔏𝜑 and consequently, ‖𝑢𝑛0 − 𝑢‖𝔏𝜑

≤ √
𝜀. This completes the

proof. □

A Lie algebra over the field 𝔽 ∈ {ℝ,ℂ} is a vector space 𝔏 over 𝔽 endowed with a Lie product 𝔏 × 𝔏 → 𝔏, (𝑓, 𝑔) → [𝑓, 𝑔]
which is bilinear, [𝑓, 𝑔] = −[𝑔, 𝑓 ] and satisfies the Jacobi identity, i.e.

[𝑓, [𝑔, 𝑘]] + [𝑔, [𝑘, 𝑓 ]] + [𝑘, [𝑓, 𝑔]] = 0,

for every 𝑓, 𝑔, 𝑘 ∈ 𝔏. A Banach–Lie algebra is a normed algebra
(
𝔏, ‖ ⋅ ‖𝔏) that satisfies ‖[𝑓, 𝑔]‖𝔏 ≤ 𝐶‖𝑓‖𝔏 ‖𝑔‖𝔏 for a positive

𝐶 > 0 and all 𝑓, 𝑔 in 𝔏.
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Now, we define [ , ] on 𝔏𝜑 × 𝔏𝜑 by

[𝑓, 𝑔] = 𝐷
𝜑

𝐸𝜑(𝑓 )

(√
ℎ𝐸𝜑(𝑔) ◦𝜑−1

)
= 𝐸(𝐸𝜑(𝑓 ))

(√
ℎ ◦𝜑𝐸𝜑(𝑔)

)
− 𝐸𝜑(𝑓 )𝐸

(√
ℎ ◦𝜑𝐸𝜑(𝑔)

)
.

For simplicity, set 𝐸𝜑(𝑓 ) = 𝑓𝜑. Since 𝐿2() reduces 𝐶𝜑, then ℎ is -measurable ([4, Theorem 5(b)]) and so

ℎ ◦𝜑 ∈ 𝐿2(𝜑−1()) ⊆ 𝐿2(). Thus

[𝑓, 𝑔] =
√

ℎ ◦𝜑
(
𝐸
(
𝑓𝜑

)
𝑔𝜑 − 𝐸

(
𝑔𝜑
)
𝑓𝜑

)
=
√

ℎ ◦𝜑 𝐷𝑓𝜑

(
𝑔𝜑
)
.

Note that
(
𝑓𝜑

)
𝜑
= 𝑓𝜑 and [𝑓, 𝑔]𝜑 = [𝑓, 𝑔], because [𝑓, 𝑔] is 𝜑−1(Σ)-measurable (Corollary 2.11(c)). Moreover,

[𝑓, 𝑔] = −
√

ℎ ◦𝜑 𝐷𝑔𝜑

(
𝑓𝜑

)
= −[𝑔, 𝑓 ]

and 𝐸([𝑓, 𝑔]) = 0, because 𝐸
(
𝐷

𝜑
𝑢

)
= 0. It follows that

[𝑓, [𝑔, 𝑘]] =
√

ℎ ◦𝜑
(
𝐸
(
𝑓𝜑

)
[𝑔, 𝑘]𝜑 − 𝐸([𝑔, 𝑘]𝜑)𝑓𝜑

)
=
√

ℎ ◦𝜑
(
𝐸
(
𝑓𝜑

)(√
ℎ ◦𝜑

(
𝐸
(
𝑔𝜑
)
𝑘𝜑 − 𝐸

(
𝑘𝜑

)
𝑔𝜑
)))

= ℎ ◦𝜑
(
𝐸
(
𝑓𝜑

)
𝐸
(
𝑔𝜑
)
𝑘𝜑 − 𝐸

(
𝑓𝜑

)
𝐸
(
𝑘𝜑

)
𝑔𝜑
)
,

for every 𝑓, 𝑔, 𝑘 ∈ 𝔏𝜑. Hence the Jacobi identity holds on 𝔏𝜑, and so
(
𝔏𝜑, ‖ ⋅ ‖𝔏𝜑

)
is a complete Lie algebra.

Lemma 2.28. Let 𝑓, 𝑔 ∈ 𝔏𝜑. Then the following assertions hold.
(a) 𝑓𝜑 ∈ 𝔏𝜑.
(b) 𝐸

(|[𝑓, 𝑔]|2) ≤ 4(ℎ ◦𝜑)𝐸𝜑

(
𝐸
(|𝑓 |2))𝐸𝜑

(
𝐸
(|𝑔|2)).

(c) ‖[𝑓, 𝑔]‖𝔏𝜑
≤ 2‖𝑓‖𝔏𝜑

‖𝑔‖𝔏𝜑
.

Proof. (a) Let 𝑓 ∈ 𝔏𝜑. Since 𝐸𝐸𝜑 = 𝐸𝜑𝐸, then |𝑓𝜑|2 = |𝐸𝜑(𝑓 )|2 ≤ 𝐸𝜑

(|𝑓 |2) and so 𝐸
(|𝑓𝜑|2) ≤ 𝐸𝐸𝜑

(|𝑓 |2) = 𝐸𝜑𝐸
(|𝑓 |2).

It follows that

ℎ𝐸𝜑

(
𝐸
(|𝑓𝜑|2)) ◦𝜑−1 ≤ ℎ𝐸𝜑

(
𝐸
(|𝑓 |2)) ◦𝜑−1 ∈ 𝐿∞().

(b) For 𝑓, 𝑔 ∈ 𝔏𝜑 we have |[𝑓, 𝑔]|2 = |||√ℎ ◦𝜑
(
𝐸
(
𝑓𝜑

)
𝑔𝜑 − 𝐸

(
𝑔𝜑
)
𝑓𝜑

)|||2. Then

|[𝑓, 𝑔]|2 ≤ (ℎ ◦𝜑)
(|𝐸(𝑓𝜑)𝑔𝜑|2 + |𝐸(𝑔𝜑)𝑓𝜑|2 + 2|𝐸(𝑓𝜑)𝐸(𝑔𝜑)𝑓𝜑𝑔𝜑|).

Using 𝐸𝐸𝜑 = 𝐸𝜑𝐸, conditional Cauchy–Schwarz inequality and taking conditional expectation E of both sides the above equa-

tion, gives

𝐸
(|[𝑓, 𝑔]|2) ≤ 4(ℎ ◦𝜑)𝐸

(|𝑓𝜑|2)𝐸(|𝑔𝜑|2) ≤ 4(ℎ ◦𝜑)𝐸𝜑

(
𝐸
(|𝑓 |2))𝐸𝜑

(
𝐸
(|𝑔|2)).

(c) Using (b) and -measurability of ℎ, we obtain

ℎ𝐸𝜑

(
𝐸
(|[𝑓, 𝑔]|2)) ◦𝜑−1 ≤ 4ℎ

(
𝐸𝜑

(
ℎ ◦𝜑𝐸𝜑

(
𝐸
(|𝑓 |2))𝐸𝜑

(
𝐸
(|𝑔|2)))) ◦𝜑−1

= 4ℎ2
(
𝐸𝜑

(
𝐸
(|𝑓 |2)) ◦𝜑−1)(𝐸𝜑

(
𝐸
(|𝑔|2)) ◦𝜑−1)

≤ 4‖𝑓‖2𝔏𝜑
‖𝑔‖2𝔏𝜑

.

This completes the proof. □

Corollary 2.29.
(
𝔏𝜑, ‖ ⋅ ‖𝔏𝜑

, [ , ]
)

is a Banach–Lie algebra.

Example 2.30. Let 𝑔 = (𝑔1, 𝑔2, 𝑔3, 𝑔4) ∈ ℂ4. Under the hypotheses of Example 2.8(ii) we have ‖ℎ‖∞ = 2 and

𝐸𝜑(𝑔) =
1
2
(𝑔1 + 𝑔3, 𝑔2 + 𝑔4, 𝑔1 + 𝑔3, 𝑔2 + 𝑔4);
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√
ℎ𝐸𝜑(𝑔) ◦𝜑−1 =

√
2
2

(𝑔1 + 𝑔3, 𝑔2 + 𝑔4, , 0, 0);

[𝑓, 𝑔] = 𝐷
𝜑

𝐸𝜑(𝑓 )

(√
ℎ𝐸𝜑(𝑔) ◦𝜑−1

)
=
√
2
8

(𝑎,−𝑎, 𝑎,−𝑎),

where 𝑓 = (𝑓1, 𝑓2, 𝑓3, 𝑓4) ∈ ℂ4 and

𝑎 = det
[
𝑔1 + 𝑔3 𝑔2 + 𝑔4
𝑓1 + 𝑓3 𝑓2 + 𝑓4

]
.

Also, a direct computation shows that

𝐸
(|𝑓 |2) = 1

2
(|𝑓1|2 + |𝑓2|2, |𝑓1|2 + |𝑓2|2, |𝑓3|2 + |𝑓4|2, |𝑓3|2 + |𝑓4|2);

ℎ𝐸𝜑

(
𝐸
(|𝑓 |2)) ◦𝜑−1 = 1

2
(|𝑓1|2 + |𝑓2|2 + |𝑓3|2 + |𝑓4|2, |𝑓1|2 + |𝑓2|2 + |𝑓3|2 + |𝑓4|2, 0, 0);

‖𝑓‖𝔏𝜑
=
√‖ℎ𝐸𝜑(𝐸(|𝑓 |2)) ◦𝜑−1‖∞ =

√
1
2
(|𝑓1|2 + |𝑓2|2 + |𝑓3|2 + |𝑓4|2).

Similarly, we have |[𝑓, 𝑔]|2 = 1
32

(
𝑎2, 𝑎2, 𝑎2, 𝑎2

)
and

√
ℎ𝐸𝜑

(
𝐸
(|[𝑓, 𝑔]|2)) ◦𝜑−1 =

√
1
16

(𝑎2, 𝑎2, 0, 0) = 1
4
(|𝑎|, |𝑎|, 0, 0).

Thus ‖[𝑓, 𝑔]‖𝔏𝜑
= |𝑎|

4 . Then by Cauchy–Schwarz inequality we have

‖[𝑓, 𝑔]‖𝔏𝜑
≤ 1

4
{|𝑓2𝑔1 + 𝑓4𝑔3 − 𝑓1𝑔2 − 𝑓3𝑔4| + |𝑓4𝑔1 + 𝑓2𝑔3 − 𝑓3𝑔2 − 𝑓1𝑔4|}

≤ 1
2

(√|𝑓1|2 + |𝑓2|2 + |𝑓3|2 + |𝑓4|2)(√|𝑔1|2 + |𝑔2|2 + |𝑔3|2 + |𝑔4|2)
= ‖𝑓‖𝔏𝜑

‖𝑔‖𝔏𝜑
.

Thus, the inequality in Lemma 2.30(c) is not sharp.
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