EQUIVALENT METRICS ON NORMAL COMPOSITION OPERATORS

MOHAMMAD R. JABBARZADEH AND SEDDIGHE HAGHIGHATJOO

We define some metrics on the set of all bounded normal composition operators in $L^2(\Sigma)$, and show that these metrics are equivalent with the metric induced by the usual operator norm.

1. Introduction and preliminaries

Let \mathcal{H} be a separable, infinite-dimensional, complex Hilbert space and let $B(\mathcal{H})$ denote the algebra of all bounded linear operators on \mathcal{H} . For $A \in B(\mathcal{H})$, let A^* , $\mathcal{R}(A)$, r(A) and $\|A\|$ denote the adjoint, the range, the spectral radius and the usual operator norm of A, respectively. A is called positive if $\langle Ax, x \rangle \geq 0$ holds for each $x \in \mathcal{H}$, in which case we write $A \geq 0$. Let $A \in C(\mathcal{H})$, the subsets of closed and densely defined linear operators on \mathcal{H} . Then the defect operator $I + A^*A$ is a bounded and invertible operator on \mathcal{H} . The orthogonal projection of $\mathcal{H} \oplus \mathcal{H}$ onto the graph G(A) of $A \in C(\mathcal{H})$ is given by the operator block matrix [21, p.54]

$$P(A) = \begin{bmatrix} (I + A^*A)^{-1} & A^*(I + AA^*)^{-1} \\ A(I + A^*A)^{-1} & AA^*(I + AA^*)^{-1} \end{bmatrix}.$$

For $A \in C(\mathcal{H})$, put $K(A) = I + A^*A$, $R(A) = (I + A^*A)^{-1}$ and $S(A) = (I + A^*A)^{-1/2}$. The topological structure of $C(\mathcal{H})$ induced by a metric has been considered starting with the paper by Cordes and Labrousse [3]. They proved that the metric distance between two densely defined unbounded operators A and B may be taken as ||R(A) - R(B)||. They showed that this metric defines the same topology for bounded operators as the ordinary metric ||A - B||. Kaufman [12] studied a metric δ on $C(\mathcal{H})$ defined by $\delta(A, B) = ||AS(A) - BS(B)||$ and discussed connections between δ -convergence and sot-convergence. Also, he showed that this metric is stronger than the gap metric d(A, B) = ||P(A) - P(B)|| (see [11, p. 197]) and not equivalent to it. In [15; 17], Kittaneh and Koliha presented quantitative improvements of the result of Kaufman [12] concerning equivalence of three metrics on the space of bounded linear operators on a Hilbert space. Motivated by the results mentioned above, we define some metrics on the set of all bounded normal composition operators in $L^2(\Sigma)$.

Let (X, Σ, μ) be a complete σ -finite measure space. We use the notation $L^2(\Sigma)$ for $L^2(X, \Sigma, \mu)$. All comparisons between two functions or two sets are to be interpreted as holding up to a μ -null set. We denote the linear space of all complex-valued Σ -measurable functions on X by $L^0(\Sigma)$. The support of a measurable function $u \in L^0(\Sigma)$ is defined by $\sigma(u) = \{x \in X : u(x) \neq 0\}$. Let $\varphi : X \to X$ be a nonsingular measurable point transformation, which means the measure $\mu \circ \varphi^{-1}$, defined by $\mu \circ \varphi^{-1}(B) = \mu(\varphi^{-1}(B))$

Jabbarzadeh is the corresponding author.

2010 AMS Mathematics subject classification: primary 47A30; secondary 47B38.

Keywords and phrases: gap metric, Moore-Penrose inverse, normal operator, composition operators.

Received by the editors on June 2, 2019, and in revised form on December 20, 2019.

for all $B \in \Sigma$, is absolutely continuous with respect to μ , and write $\mu \circ \varphi^{-1} \ll \mu$. Then by the Radon–Nikodym theorem there exists a unique nonnegative sigma-measurable function h on X with $h = d\mu \circ \varphi^{-1}/d\mu$. Notice that $\sigma(h \circ \varphi) = X$. Let $\varphi^{-1}(\Sigma)$ be a sub- σ -finite algebra of Σ . The conditional expectation operator associated with $\varphi^{-1}(\Sigma)$ is the mapping $f \to E^{\varphi^{-1}(\Sigma)}f$, defined for all μ -measurable nonnegative f where $E^{\varphi^{-1}(\Sigma)}f$ is, by the Radon–Nikodym theorem, the unique finite-valued $\varphi^{-1}(\Sigma)$ -measurable function satisfying

$$\int_{B} f \, d\mu = \int_{B} E^{\varphi^{-1}(\Sigma)}(f) \, d\mu \quad \text{for all } B \in \varphi^{-1}(\Sigma).$$

For simplicity set $E^{\varphi^{-1}(\Sigma)} = E_{\varphi}$. As an operator on $L^2(\Sigma)$, E_{φ} is an orthogonal projection of $L^2(\Sigma)$ onto $L^2(\varphi^{-1}(\Sigma))$. The weighted composition operator W on $\mathfrak{D}(W) = \{f \in L^2(\Sigma) : u.(f \circ \varphi) \in L^2(\Sigma)\}$ induced by a measurable function $u \in L^0(\Sigma)$ and a nonsingular self-map measurable function φ is given by $W = M_u C_{\varphi}$, where M_u is a multiplication operator and C_{φ} is a composition operator, defined by $M_u f = uf$ and $C_{\varphi} f = f \circ \varphi$, respectively. Note that the nonsingularity of φ guarantees that C_{φ} , and so W, is well defined on $\sigma(u)$. It is easy to check that $\|C_{\varphi}(f)\|_{\mu} = \|M_{\sqrt{h}} f\|_{\mu} = \|f\|_{hd\mu}$ for all $f \in \mathfrak{D}(C_{\varphi}) = \{f \in L^2(\Sigma) : f \circ \varphi \in L^2(\Sigma)\}$. Hence $\mathfrak{D}(C_{\varphi}) = L^2(\Sigma) \cap L^2(hd\mu)$. Moreover, $\overline{\mathfrak{D}(C_{\varphi})} = L^2(\Sigma)$ if and only if $\mu(\{h = \infty\}) = 0$, and $\overline{\mathfrak{R}(C_{\varphi})} = L^2(\varphi^{-1}(\Sigma)) = \{f \circ \varphi : f \in L^2(hd\mu)\}$. Note that every densely defined composition operator in $L^2(\Sigma)$ is closed; see [2]. A densely defined composition operator C_{φ} in $L^2(\Sigma)$ is said to be normal if $C_{\varphi}^*C_{\varphi} = C_{\varphi}C_{\varphi}^*$. A good reference for information on unbounded weighted composition operators is the monograph [1]. Here, we focus on the bounded case. A result of Hoover, Lambert and Quinn [6] shows that $W \in B(L^2(\Sigma))$ if and only if $h \in L^\infty(\Sigma)$, and in this case, the adjoint W^* of W on $L^2(\Sigma)$ is given by $W^*(f) = h E_{\varphi}(\bar{u}f) \circ \varphi^{-1}$. Consequently, $C_{\varphi} \in B(L^2(\Sigma))$ if and only if $h \in L^\infty(\Sigma)$. In this case $\|C_{\varphi}\|^2 = \|h\|_{\infty}$ and $L^2(\Sigma) \subseteq L^2(hd\mu)$, and so $\mathfrak{D}(C_{\varphi}) = L^2(\Sigma)$. Some other basic facts about bounded composition operators can be found in [5; 22; 23].

Let $A \in B(\mathcal{H})$ with r(A) > 0. For $0 < a < r(A)^{-1}$, we shall relate A with a series such as

$$K_a(A) = I + a^2 A^* A + a^4 A^{*2} A^2 + \cdots$$

and then define $R_a(A)$ and $S_a(A)$. This relation has been previously used by Lambert and Petrovic [19] in the study of spectral reduced algebras; see also [4]. In the next section, we discuss some equivalent metrics on the set \mathcal{M} of all bounded normal composition operators in $L^2(\Sigma)$ endowed with the quasigap metric. More precisely, we define some metrics on \mathcal{M} equivalent to the metric generated by the operator norm. Similar results on densely defined closed operators between Hilbert spaces have been obtained in [3; 10; 18].

2. Equivalent metrics on \mathcal{M}

Let $A \in B(\mathcal{H})$ with r(A) > 0 and let $0 < a < r(A)^{-1}$ be an arbitrary but fixed number. Define $K_a(A) = \sum_{n=0}^{\infty} a^{2n} A^{*n} A^n$. Since $\overline{\lim}_{n\to\infty} \|a^{2n} A^{*n} A^n\|^{1/n} < 1$, the mapping $B(\mathcal{H}) \to B(\mathcal{H})$, $A \mapsto K_a(A)$ is well-defined. Also, for any $x \in \mathcal{H}$ we have

(2-1)
$$||x||^2 \le \sum_{n=0}^{\infty} a^{2n} ||A^n(x)||^2 = \langle K_a(A)x, x \rangle = ||\sqrt{K_a(A)}x||^2 \le ||K_a(A)|| ||x||^2.$$

Then $K_a(A)$ is positive and invertible with $||K_a(A)|| \ge 1$. Set $R_a(A) = K_a^{-1}(A)$ and $S_a(A) = \sqrt{R_a(A)}$. Replacing x by $(K_a(A))^{-1/2}(x)$ in (2-1) we obtain that $||S_a(A)|| \le 1$. Thus, $||R_a(A)|| = ||S_a^2(A)|| \le 1$. Consequently, $R_a(A)$ and $S_a(A)$ are positive and invertible elements of $B(\mathcal{H})$, $\max\{||R_a(A)||, ||S_a(A)||\} \le 1$, and

(2-2)
$$||K_a(A)|| = \sup_{\|x\|=1} \langle K_a(A)x, x \rangle \le \sum_{n=0}^{\infty} (||aA||^2)^n = \frac{1}{1 - ||aA||^2}.$$

Let A_m , $A \in B(\mathcal{H})$, $0 < a_0 = \inf\{r(A_m)^{-1}, r(A)^{-1} : m \in \mathbb{N}\}$ and let $0 < a < a_0$. If $||A_m - A|| \to 0$, then $a^{2n}A_m^{*n}A_m^n \to a^{2n}A^{*n}A^n$ for each $n \in \mathbb{N}$, and so $||K_a(A_m) - K_a(A)|| \to 0$ as $m \to \infty$. But the converse is not true. Indeed, if A_1 and A_2 are distinct unitary operators on \mathcal{H} , then $K_a(A_1) = K_a(A_2) = (1 - a^2)^{-1}I$ for all 0 < a < 1. Set $\mathcal{N} = \{A \in B(\mathcal{H}) \setminus \{0\} : A \text{ is normal}\}$. Let $A \in \mathcal{N}$ and $0 < a < r(A)^{-1} = ||A||^{-1}$. Then $K_a(A^*) = K_a(A) = K_a(|A|)$, and A^n and A^{*n} commute with $K_a(A)$ and $R_a(A)$. Moreover,

(2-3)
$$K_a(A) = \sum_{n=0}^{\infty} a^{2n} (A^*A)^n = (I - a^2 A^*A)^{-1}, \quad R_a(A) = I - a^2 A^*A, \quad S_a(A) = \sqrt{I - a^2 A^*A}.$$

Consequently, $R_a(A) \to 0$, $S_a(A) \to 0$ and $\|K_a(A)\| \to +\infty$ as $a \to \|A\|^{-1}$. Let $A_1, A_2 \in \mathcal{N}$. Then it follows from (2-3) that $K_a(A_1) = K_a(A_2)$ whenever $A_1^*A_1 = A_2^*A_2$, for all $0 < a < \min\{\|A_1\|^{-1}, \|A_2\|^{-1}\}$. Let $0 < a < b < \|A\|^{-1}$. Then $K_a(A) \le K_b(A)$. Hence the net $\{K_a(A)\}_a$ is increasing with respect to a. Set $\mathcal{N}\mathscr{C} = \{C_\varphi \in B(L^2(\Sigma)) \setminus \{0\} : C_\varphi$ is normal}. It is a classical fact that $C_\varphi \in \mathcal{N}\mathscr{C}$ if and only if $\varphi^{-1}(\Sigma) = \Sigma$ and $h \circ \varphi = h$; see [5; 22]. In this case, C_φ is injective and has dense range. Moreover, $\|C_\varphi\|^2 = r^2(C_\varphi) = \|h\|_\infty$ and $C_\varphi^*C_\varphi = M_h$. It follows that $K_a(C_\varphi) = M_{(1-a^2h)^{-1}}, R_a(C_\varphi) = M_{1-a^2h}$ and $S_a(C_\varphi) = M_{\sqrt{1-a^2h}}$ for all $0 < a < \|C_\varphi\|^{-1}$. Let $A, B, C, D \in B(\mathcal{H})$. Then

(2-4)
$$AB - CD = \frac{1}{2}(A - C)(B + D) + \frac{1}{2}(A + C)(B - D).$$

In the following lemma we recall some useful operator inequalities which will be used later.

Lemma 2.1 (Kittaneh [14; 13; 16]). Let $A, B \in B(\mathcal{H})$. Then the following hold.

- (a) If A and B are positive, then $||A B||^2 \le ||A^2 B^2||$.
- (b) If A and B are positive and $A + B \ge cI > 0$, then $c\|A B\| \le \|A^2 B^2\|$.
- (c) $||A^*A B^*B|| \le ||A B|| ||A + B||$.

Theorem 2.2. Let $\{C_{\varphi_1}, C_{\varphi_2}\} \subseteq \mathcal{NC}, 0 < a < \min\{\|C_{\varphi_i}\|^{-1} : i = 1, 2\}$ and let $\alpha_a(C_{\varphi_i}) = aC_{\varphi_i}S_a^{-1}(C_{\varphi_i})$. Then $\|\alpha_a(C_{\varphi_1}) - \alpha_a(C_{\varphi_2})\| \le k_1 \|C_{\varphi_1} - C_{\varphi_2}\|$ for some $k_1 = k_1(a) > 0$.

Proof. For i = 1, 2, put $h_i = d\mu \circ \varphi_i^{-1}/d\mu$. First observe that

$$S_a^{-1}(C_{\varphi_1}) + S_a^{-1}(C_{\varphi_2}) = M_{1/\sqrt{1-a^2h_1}+1/\sqrt{1-a^2h_2}} \ge 2I.$$

So by Lemma 2.1(b), $2\|S_a^{-1}(C_{\varphi_1}) - S_a^{-1}(C_{\varphi_2})\| \le \|S_a^{-2}(C_{\varphi_1}) - S_a^{-2}(C_{\varphi_2})\|$. Put $k = \|S_a^{-1}(C_{\varphi_1}) + S_a^{-1}(C_{\varphi_2})\|$ and $l = \|C_{\varphi_1} + C_{\varphi_2}\|$. Using (2-2) and (2-4), we obtain

$$\begin{split} \|\alpha_{a}(C_{\varphi_{1}}) - \alpha_{a}(C_{\varphi_{2}})\| &= \|aC_{\varphi_{1}}S_{a}^{-1}(C_{\varphi_{1}}) - aC_{\varphi_{2}}S_{a}^{-1}(C_{\varphi_{2}})\| \\ &\leq \frac{a}{2} \|(C_{\varphi_{1}} - C_{\varphi_{2}})(S_{a}^{-1}(C_{\varphi_{1}}) + S_{a}^{-1}(C_{\varphi_{2}}))\| + \frac{a}{2} \|(C_{\varphi_{1}} + C_{\varphi_{2}})(S_{a}^{-1}(C_{\varphi_{1}}) - S_{a}^{-1}(C_{\varphi_{2}}))\| \\ &\leq \frac{ak}{2} \|C_{\varphi_{1}} - C_{\varphi_{2}}\| + \frac{al}{4} \|S_{a}^{-2}(C_{\varphi_{1}}) - S_{a}^{-2}(C_{\varphi_{2}})\| \\ &= \frac{ak}{2} \|C_{\varphi_{1}} - C_{\varphi_{2}}\| + \frac{al}{4} \|S_{a}^{-2}(C_{\varphi_{2}})(S_{a}^{2}(C_{\varphi_{1}}) - S_{a}^{2}(C_{\varphi_{2}}))S_{a}^{-2}(C_{\varphi_{1}})\| \\ &\leq \frac{ak}{2} \|C_{\varphi_{1}} - C_{\varphi_{2}}\| + \frac{al}{4} \|S_{a}^{-2}(C_{\varphi_{2}})\| \|S_{a}^{-2}(C_{\varphi_{1}})\| \|M_{a(h_{1} - h_{2})}\| \\ &\leq \frac{ak}{2} \|C_{\varphi_{1}} - C_{\varphi_{2}}\| + \frac{a^{2}l^{2}}{4} \|S_{a}^{-2}(C_{\varphi_{1}})\| \|S_{a}^{-2}(C_{\varphi_{2}})\| \|C_{\varphi_{1}} - C_{\varphi_{2}}\| \\ &= \|C_{\varphi_{1}} - C_{\varphi_{2}}\| \left\{ \frac{ak}{2} + \frac{a^{2}l^{2}}{4} \|K_{a}(C_{\varphi_{1}})\| \|K_{a}(C_{\varphi_{2}})\| \right\} \\ &\leq \|C_{\varphi_{1}} - C_{\varphi_{2}}\| \left\{ \frac{ak}{2} + \frac{a^{2}l^{2}}{4(1 - a^{2}\|h_{1}\|_{\infty})(1 - a^{2}\|h_{2}\|_{\infty})} \right\}. \end{split}$$

This completes the proof with

$$k_1 = \left\{ \frac{ak}{2} + \frac{a^2l^2}{4(1 - a^2 \|h_1\|_{\infty})(1 - a^2 \|h_2\|_{\infty})} \right\}.$$

Notice that $||h_1 + h_2||_{\infty} \le ||C_{\varphi_1} + C_{\varphi_2}||^2 \le 2||h_1 + h_2||_{\infty}$ for all $\{C_{\varphi_1}, C_{\varphi_2}\} \subseteq \mathcal{NC}$; see [9].

Lemma 2.3. Let $\{C_{\omega_1}, C_{\omega_2}\} \subseteq \mathcal{NC}$ and let $0 < a < \min\{\|C_{\omega_i}\|^{-1} : i = 1, 2\}$. Then

$$||S_a(C_{\varphi_1}) - S_a(C_{\varphi_2})|| \le k_2 ||R_a(C_{\varphi_1}) - R_a(C_{\varphi_2})||$$

for some $k_2 > 0$.

Proof. Put $a_{\varphi_i} = \sqrt{1 - a^2 h_i}$. Since $0 < a^2 h_i \le a^2 \|h_i\|_{\infty} < 1$, we get that $\inf_{x \in X} a_{\varphi_i}(x) > 0$. Thus, $\min\{a_{\varphi_1}, a_{\varphi_2}\} \ge 1/n_0$ for some $n_0 \in \mathbb{N}$. This implies that $a_{\varphi_1} + a_{\varphi_2} \ge 2 \min\{a_{\varphi_1}, a_{\varphi_2}\} \ge 2/n_0 := k_2^{-1}$. Then we obtain

$$\begin{split} \|S_a(C_{\varphi_1}) - S_a(C_{\varphi_2})\| &= \|M_{a_{\varphi_1}} - M_{a_{\varphi_2}}\| = \|a_{\varphi_1} - a_{\varphi_2}\|_{\infty} \\ &= \left\| \frac{a_{\varphi_1}^2 - a_{\varphi_2}^2}{a_{\varphi_1} + a_{\varphi_2}} \right\|_{\infty} \le k_2 \|M_{a_{\varphi_1}^2} - M_{a_{\varphi_2}^2}\| \\ &\le k_2 \|R_a(C_{\varphi_1}) - R_a(C_{\varphi_2})\|. \end{split}$$

Theorem 2.4. Let $C_{\varphi_i} \in \mathcal{NC}$ and $0 < a < \min\{\|C_{\varphi_i}\|^{-1} : i = 1, 2\}$. Then

$$||C_{\varphi_1} - C_{\varphi_2}|| \le k_3 ||\alpha_a(C_{\varphi_1}) - \alpha_a(C_{\varphi_2})||$$

for some $k_3 = k_3(a) > 0$.

Proof. Put $\beta = \|S_a(C_{\varphi_1}) + S_a(C_{\varphi_2})\|$ and $\gamma = \|\alpha_a(C_{\varphi_1}) + \alpha_a(C_{\varphi_2})\|$. Using equality $K_a(C_{\varphi_i}) - I = M_{a^2h_i/(1-a^2h_i)} = a^2C_{\varphi_i}^*C_{\varphi_i}S_a^{-2}(C_{\varphi_i})$ and Lemma 2.1(c) we obtain

Then by Lemma 2.3 and (2-5) we have

$$\begin{split} \|C_{\varphi_{1}} - C_{\varphi_{2}}\| &= \frac{1}{a} \|(aC_{\varphi_{1}}S_{a}^{-1}(C_{\varphi_{1}}))S_{a}(C_{\varphi_{1}}) - (aC_{\varphi_{2}}S_{a}^{-1}(C_{\varphi_{2}}))S_{a}(C_{\varphi_{2}})\| \\ &= \frac{1}{a} \|\alpha_{a}(C_{\varphi_{1}})S_{a}(C_{\varphi_{1}}) - \alpha_{a}(C_{\varphi_{2}})S_{a}(C_{\varphi_{2}})\| \\ &\leq \frac{\beta}{2a} \|\alpha_{a}(C_{\varphi_{1}}) - \alpha_{a}(C_{\varphi_{2}})\| + \frac{\gamma}{2a} \|S_{a}(C_{\varphi_{1}}) - S_{a}(C_{\varphi_{2}})\| \\ &\leq \frac{\beta}{2a} \|\alpha_{a}(C_{\varphi_{1}}) - \alpha_{a}(C_{\varphi_{2}})\| + \frac{\gamma k_{2}}{2a} \|R_{a}(C_{\varphi_{1}}) - R_{a}(C_{\varphi_{2}})\| \\ &\leq \frac{\beta}{2a} \|\alpha_{a}(C_{\varphi_{1}}) - \alpha_{a}(C_{\varphi_{2}})\| + \frac{\gamma k_{2}}{2a} \|R_{a}(C_{\varphi_{1}})(R_{a}^{-1}(C_{\varphi_{1}}) - R_{a}^{-1}(C_{\varphi_{2}}))R_{a}(C_{\varphi_{2}})\| \\ &\leq \frac{\beta}{2a} \|\alpha_{a}(C_{\varphi_{1}}) - \alpha_{a}(C_{\varphi_{2}})\| + \frac{\gamma^{2}k_{2}}{2a} \|R_{a}(C_{\varphi_{1}})\|\|R_{a}(C_{\varphi_{2}})\|\|\alpha_{a}(C_{\varphi_{1}}) - \alpha_{a}(C_{\varphi_{2}})\| \\ &= \|\alpha_{a}(C_{\varphi_{1}}) - \alpha_{a}(C_{\varphi_{2}})\| \left\{ \frac{\beta}{2a} + \frac{\gamma^{2}k_{2}}{2a} \|R_{a}(C_{\varphi_{1}})\|\|R_{a}(C_{\varphi_{2}})\| \right\}. \end{split}$$

Since $||R_a(C_{\varphi_i})|| \le 1$, then the desired conclusion holds with $k_3 = \{\beta/2a + \gamma^2 k_2/2a\}$.

Lemma 2.5. Let $C_{\varphi_i} \in \mathcal{NC}$, $0 < a < \min\{\|C_{\varphi_i}\|^{-1} : i = 1, 2\}$ and $0 < u \in L^{\infty}(\Sigma)$. Then $C_{\varphi_1} = C_{\varphi_2}$ whenever $M_u C_{\varphi_1} = C_{\varphi_2}$.

Proof. It suffices to show that u=1. If $\mu(X)<\infty$, then there is nothing to prove, because $C_{\varphi_1}(1)=C_{\varphi_2}(1)=1$. Set $A=\{x\in\sigma(u):u(x)\neq 1\}$. If $\mu(A)>0$, then there exists $B\subseteq A$ with $0<\mu(B)<\infty$. Moreover, since $\varphi_1^{-1}(\Sigma)=\Sigma$, then $B=\varphi_1^{-1}(C)$ for some $C\in\Sigma$. Now choose $C_0\subseteq C$ such that $\mu(C_0)<\infty$ and $\mu(\varphi_1^{-1}(C_0))>0$. Take $f_0=\chi_{C_0}$. Then $u\chi_{\varphi_1^{-1}(C_0)}=M_uC_{\varphi_1}(f_0)=C_{\varphi_2}(f_0)=\chi_{\varphi_2^{-1}(C_0)}$. But this is a contraction. Thus, $\mu(A)=0$ and hence $C_{\varphi_1}=C_{\varphi_2}$.

Now we consider the bounded weighted composition operators on $L^2(\Sigma)$. Recall that the adjoint W^* of W is given by $W^*(f) = hE(\bar{u}f) \circ \varphi^{-1}$ for each $f \in L^2(\Sigma)$. As an application of this adjoint formula, we have $W^*W = M_J$, where $J = hE(|u|^2) \circ \varphi^{-1}$. Moreover, W is normal (see [2]) if and only if $\varphi^{-1}(\Sigma) \cap J = \Sigma$ and $J = J \circ \varphi$ on $\sigma(J)$. Put $\mathcal{N}^*W = \{M_u C_\varphi \in B(L^2(\Sigma)) \setminus \{0\} : M_u C_\varphi$ is normal\}. Suppose $\{W_n\} \subseteq \mathcal{N}^*W$ converges (in norm) to some $K \in B(L^2(\Sigma))$. Then $\{W_n^*\}$ converges to K^* , and since the multiplication map is continuous, then we have $K^*K = \lim_{n \to \infty} W_n^* W_n = \lim_{n \to \infty} W_n W_n^* = KK^*$, and so K is normal. Let $W = M_u C_\varphi \in \mathcal{N}^*W$ and let $0 < a < \|W\|^{-1}$ be a fixed number. Direct computations show that $K_a(W) = M_{(1-a^2J)^{-1}}$, $R_a(W) = M_{(1-a^2J)}$ and $S_a(W) = M_{\sqrt{1-a^2J}}$. The previous results can be stated in terms of weighted composition operators.

Definition 2.6. Let $\mathcal{M} \subseteq \mathcal{NW}$. We say that \mathcal{M} has infimum property if

$$a_0 := \inf\{\|M_u C_{\varphi}\|^{-1} : M_u C_{\varphi} \in \mathcal{M}\} > 0.$$

Let $C_{\varphi_i} \in \mathcal{M}$. For fixed $0 < a < a_0$, let $a < a_1 < a_0$. It is easy to see that $(1 - a_1^2 ||h_i||) \le ||a_{\varphi_i}||_{\infty}^2 \le 2$, where $h_i = h_{\varphi_i}$ and $a_{\varphi_i} = \sqrt{1 - a^2 h_i}$. Define

$$\delta_a(C_{\varphi_1}, C_{\varphi_2}) = \|\alpha_a(C_{\varphi_1}) - \alpha_a(C_{\varphi_2})\|, \quad \text{where } \alpha_a(C_{\varphi_i}) = aC_{\varphi_i}S_a^{-1}(C_{\varphi_i}) = M_{a/\sqrt{1-a^2h_i}}C_{\varphi_i}.$$

Note that $\alpha_a(C_{\varphi_i})$ is not necessarily a contraction. Indeed,

$$\|\alpha_a(C_{\varphi_i})\|^2 = a^2 \left\| \frac{ah_i}{1 - a^2h_i} \right\|_{\infty}$$

Moreover, $\delta_a(C_{\varphi_1}, C_{\varphi_2}) = 0$ implies that $M_u C_{\varphi_1} = C_{\varphi_2}$, where $u = a_{\varphi_2}/a_{\varphi_1}$. Then by Lemma 2.5, $C_{\varphi_1} = C_{\varphi_2}$. Thus, for each correspondence a, the function δ_a is a metric on \mathcal{M} . Put

$$l = \|C_{\omega_1} + C_{\omega_2}\|, \quad \gamma = \|\alpha_a(C_{\omega_1}) + \alpha_a(C_{\omega_2})\|, \quad p = \|K_a(C_{\omega_1}) + K_a(C_{\omega_2})\|.$$

Then by Theorem 2.2, Theorem 2.4 and (2-5) we have

(2-6)
$$\delta_a(C_{\varphi_1}, C_{\varphi_2}) \le k_1 \|C_{\varphi_1} - C_{\varphi_2}\| \le k_1 k_3 \delta_a(C_{\varphi_1}, C_{\varphi_2}),$$

$$||K_a(C_{\varphi_1}) - K_a(C_{\varphi_2})|| \le \gamma \delta_a(C_{\varphi_1}, C_{\varphi_2}) \le \gamma k_1 ||C_{\varphi_1} - C_{\varphi_2}||.$$

Moreover, since $K_a(C_{\varphi_i})$ and $\alpha_a(C_{\varphi_i})$ are bounded and positive, then by (2-5), (2-6) and (2-7) we get

 $\|u\|_{\varphi_{1}} C_{\varphi_{1}} K_{a}(C_{\varphi_{1}}) - u\|_{C_{\varphi_{2}}} C_{\varphi_{2}} K_{a}(C_{\varphi_{2}})\| = \|u\|_{C_{\varphi_{1}}} (C_{\varphi_{1}}) - u\|_{C_{\varphi_{2}}} (C_{\varphi_{2}})\|_{2}$ $\leq \gamma \|\alpha_{a}(C_{\varphi_{1}}) - \alpha_{a}(C_{\varphi_{2}})\|_{2}$ $\leq \gamma k_{1} \|C_{\varphi_{1}} - C_{\varphi_{2}}\|.$

So, we have the following corollary.

Corollary 2.7. In M, the metric δ_a is equivalent to the metric generated by the operator norm.

Let $C_{\varphi} \in \mathcal{M}$. Since for each $n \in \mathbb{N}$, $|C_{\varphi}|^{2n} = (C_{\varphi}^*)^n C_{\varphi}^n$, we have $K_a(|C_{\varphi}|) = K_a(C_{\varphi})$ and hence $S_a^{-1}(|C_{\varphi}|) = S_a^{-1}(C_{\varphi})$. Consequently, $|\alpha_a(C_{\varphi})| = \alpha_a(|C_{\varphi}|)$.

Now, let $\{C_{\varphi_n}\}\subseteq \mathcal{M}$ and $\delta_a(C_{\varphi_n}, C_{\varphi})\to 0$ as $n\to\infty$. Then by (2-6) we have $\|C_{\varphi_n}-C_{\varphi}\|\to 0$. But

$$\begin{split} \||C_{\varphi_n}| - |C_{\varphi}|\| &= \|M_{\sqrt{h_{\varphi_n}} - \sqrt{h_{\varphi}}}\| \le \left\| \frac{1}{\sqrt{h_{\varphi_n}} + \sqrt{h_{\varphi}}} \right\|_{\infty} \|M_{h_{\varphi_n} - h_{\varphi}}\| \\ &= \left\| \frac{1}{\sqrt{h_{\varphi_n}} + \sqrt{h_{\varphi}}} \right\|_{\infty} \|C_{\varphi_n}^* C_{\varphi_n} - C_{\varphi}^* C_{\varphi}\| \\ &\le \left\| \frac{1}{\sqrt{h_{\varphi_n}} + \sqrt{h_{\varphi}}} \right\|_{\infty} \|C_{\varphi_n} - C_{\varphi}\| \|C_{\varphi_n} + C_{\varphi}\|. \end{split}$$

Again by using Corollary 2.7, we conclude that $\delta_a(|C_{\varphi_n}|, |C_{\varphi}|) \to 0$. It is not the case in general that $||A_n - A|| \to 0$ whenever $||A_n| - |A|| \to 0$. Indeed, for

$$A_n = \begin{bmatrix} (-1)^n & 0 \\ 0 & 1 \end{bmatrix}$$

and A = I, we have $||A_n| - |A|| = 0$ but $||A_{2n+1} - A|| = 2$. However, in our setting, if

$$\max\{\|\sqrt{h_n}-\sqrt{h}\|_{\infty},\|M_{1/\sqrt{h_n}}C_{\varphi_n}-M_{1/\sqrt{h}}C_{\varphi}\|\}\to 0\quad\text{as }n\to\infty,$$

then we have

$$\begin{split} \|C_{\varphi_n} - C_{\varphi}\| &= \|M_{\sqrt{h_n}} (M_{1/\sqrt{h_n}} C_{\varphi_n}) - M_{\sqrt{h}} (M_{1/\sqrt{h}} C_{\varphi})\| \\ &\leq \|\sqrt{h_n} - \sqrt{h}\|_{\infty} \|M_{1/\sqrt{h_n}} C_{\varphi_n} + M_{1/\sqrt{h}} C_{\varphi}\| + \|M_{1/\sqrt{h_n}} C_{\varphi_n} - M_{1/\sqrt{h}} C_{\varphi}\| \|\sqrt{h_n} + \sqrt{h}\|_{\infty} \to 0. \end{split}$$

So we have the following corollary.

Corollary 2.8. Let $\{C_{\varphi_n}, C_{\varphi}\} \subseteq \mathcal{M}$. Then the following hold.

- (a) $\delta_a(|C_{\varphi_n}|, |C_{\varphi}|) \to 0$ whenever $\delta_a(C_{\varphi_n}, C_{\varphi}) \to 0$; i.e., the mapping $C_{\varphi} \mapsto |C_{\varphi}|$ is continuous on (\mathcal{M}, δ_a) .
- (b) If $\max\{\||C_{\varphi_n}| |C_{\varphi}|\|, \|M_{1/\sqrt{h_n}}C_{\varphi_n} M_{1/\sqrt{h}}C_{\varphi}\|\} \to 0$, then $\delta_a(|C_{\varphi_n}|, |C_{\varphi}|) \to 0$.

For $C_{\varphi} \in B(L^2(\Sigma))$ with $0 < a < \|C_{\varphi}\|^{-1}$, the graph of C_{φ} is the set $\mathfrak{G}(C_{\varphi}) = \{(f, C_{\varphi}(f)) : f \in L^2(\Sigma)\}$. Now, let $C_{\varphi} \in \mathcal{M}$. Define

$$\mathcal{P}_a(C_{\varphi}) = \begin{bmatrix} K_a(C_{\varphi}) & -a^2 C_{\varphi}^* K_a(C_{\varphi}) \\ C_{\varphi} K_a(C_{\varphi}) & -a^2 C_{\varphi}^* C_{\varphi} K_a(C_{\varphi}) \end{bmatrix}.$$

Then $\mathcal{P}_a(C_{\varphi})$ is a bounded operator on $L^2(\Sigma) \oplus L^2(\Sigma)$ with $\mathcal{R}(\mathcal{P}_a(C_{\varphi})) \subseteq \mathcal{G}(C_{\varphi})$. Let $A, B, C, D \in B(L^2(\Sigma))$ and $k = ||A||^2 + ||B||^2 + ||C||^2 + ||D||^2$. Put

$$P_n = \begin{bmatrix} A_n & B_n \\ C_n & D_n \end{bmatrix}, \quad P = \begin{bmatrix} A & B \\ C & D \end{bmatrix}.$$

We recall the well-known fact (see e.g. [3]) that

$$||P_n - P|| \to 0 \iff \max\{||A_n - A||, ||B_n - B||, ||C_n - C||, ||D_n - D||\} \to 0.$$

Moreover, if P is positive, then

$$(2-10) \max\{\sqrt{\|A\|^2 + \|C\|^2}, \sqrt{\|B\|^2 + \|D\|^2}\} \le \|P\| \le \sqrt{k} \le 2\|P\|.$$

Now, we consider two other metrics on \mathcal{M} defined as

$$\begin{split} d_a(C_{\varphi_1}, C_{\varphi_2}) &= \|\mathcal{P}_a(C_{\varphi_1}) - \mathcal{P}_a(C_{\varphi_2})\|, \\ l_a(C_{\varphi_1}, C_{\varphi_2}) &= \sqrt{2\|K_a(C_{\varphi_1}) - K_a(C_{\varphi_2})\|^2 + b\|C_{\varphi_1}K_a(C_{\varphi_1}) - C_{\varphi_2}K_a(C_{\varphi_2})\|^2}, \end{split}$$

where $b = a^4 + 1$. The metric d_a is called, in that case, a quasigap metric, or more specifically, an a-quasigap metric. Inspired by the matrix representation of $\mathcal{P}_a(C_{\varphi_i})$ we get that

$$(2-11) \quad d_{a}^{2}(C_{\varphi_{1}}, C_{\varphi_{2}}) \\ \leq \|K_{a}(C_{\varphi_{1}}) - K_{a}(C_{\varphi_{2}})\|^{2} + a^{4} \|C_{\varphi_{1}}^{*}K_{a}(C_{\varphi_{1}}) - C_{\varphi_{2}}^{*}K_{a}(C_{\varphi_{2}})\|^{2} + \|C_{\varphi_{1}}K_{a}(C_{\varphi_{1}}) - C_{\varphi_{2}}K_{a}(C_{\varphi_{2}})\|^{2} \\ + \|\alpha^{*}(C_{\varphi_{1}})\alpha(C_{\varphi_{1}}) - \alpha^{*}(C_{\varphi_{2}})\alpha(C_{\varphi_{2}})\|^{2}.$$

Using (2-7), (2-8) and (2-9) we obtain

$$(2-12) d_a(C_{\varphi_1}, C_{\varphi_2}) \le c \|C_{\varphi_1} - C_{\varphi_2}\|$$

for some c > 0. On the other hand we have

$$\begin{split} \delta_{a}(C_{\varphi_{n}}, C_{\varphi}) &= \|\alpha_{a}(C_{\varphi_{n}}) - \alpha_{a}(C_{\varphi})\| \\ &\leq \|aC_{\varphi_{n}}K_{a}(C_{\varphi_{n}})K_{a}^{-1/2}(C_{\varphi_{n}}) - C_{\varphi}K_{a}(C_{\varphi})K_{a}^{-1/2}(C_{\varphi})\| \\ &\leq a\|C_{\varphi_{n}}K_{a}(C_{\varphi_{n}}) - C_{\varphi}K_{a}(C_{\varphi})\|\|K_{a}^{-1/2}(C_{\varphi_{n}}) + K_{a}^{-1/2}(C_{\varphi})\| \\ &\quad + a\|C_{\varphi_{n}}K_{a}(C_{\varphi_{n}}) + C_{\varphi}K_{a}(C_{\varphi})\|\|K_{a}^{-1/2}(C_{\varphi_{n}}) - K_{a}^{-1/2}(C_{\varphi})\|. \end{split}$$

But using Lemma 2.1(a) we have

$$\begin{split} \|K_{a}^{-1/2}(C_{\varphi_{n}}) - K_{a}^{-1/2}(C_{\varphi})\|^{2} &\leq \|K_{a}^{-1}(C_{\varphi_{n}}) - K_{a}^{-1}(C_{\varphi})\| \\ &= \|K_{a}^{-1}(C_{\varphi_{n}})(K_{a}(C_{\varphi_{n}}) - K_{a}(C_{\varphi}))K_{a}^{-1}(C_{\varphi})\| \\ &\leq \|R_{a}(C_{\varphi_{n}})\|\|R_{a}(C_{\varphi})\|\|K_{a}(C_{\varphi_{n}}) - K_{a}(C_{\varphi})\| \\ &\leq \|K_{a}(C_{\varphi_{n}}) - K_{a}(C_{\varphi})\| \\ &\leq d_{a}(C_{\varphi_{n}}, C_{\varphi}), \end{split}$$

and $||C_{\varphi_n}K_a(C_{\varphi_n}) - C_{\varphi}K_a(C_{\varphi})|| \le d_a(C_{\varphi_n}, C_{\varphi})$. Moreover, since $S_a(C_{\varphi_n})$ and $S_a(C_{\varphi})$ are contractions,

$$||K_a^{-1/2}(C_{\varphi_n}) + K_a^{-1/2}(C_{\varphi})|| \le 2.$$

So, if $d_a(C_{\varphi_n}, C_{\varphi}) \to 0$ as $n \to \infty$, then $\delta_a(C_{\varphi_n}, C_{\varphi}) \to 0$. On the other hand, by (2-5),

$$\|\alpha^*(C_{\varphi_1})\alpha(C_{\varphi_1}) - \alpha^*(C_{\varphi_2})\alpha(C_{\varphi_2})\| = \|K_a(C_{\varphi_1}) - K_a(C_{\varphi_2})\|,$$

so by using (2-11) we get that

$$l_a(C_{\varphi_1}, C_{\varphi_2}) \le \sqrt{2} d_a(C_{\varphi_1}, C_{\varphi_2}) \le \sqrt{2} l_a(C_{\varphi_1}, C_{\varphi_2}).$$

In view of these observations and Corollary 2.7 we have the following corollary.

- **Corollary 2.9.** (i) In \mathcal{M} , the metrics d_a , δ_a , l_a and the metric generated by the operator norm on \mathcal{M} are equivalent.
- (ii) The mappings $C_{\varphi} \mapsto K_a(C_{\varphi})$, $C_{\varphi} \mapsto R_a(C_{\varphi})$ and $C_{\varphi} \mapsto S_a(C_{\varphi})$ on \mathcal{M} with operator norm are continuous.

Let $B_C(\mathcal{H})$ be the set of all bounded linear operators on \mathcal{H} with closed range. For $T \in B_C(\mathcal{H})$, the Moore–Penrose inverse of T, denoted by T^{\dagger} , is the unique operator $T^{\dagger} \in B_C(\mathcal{H})$ that satisfies the equations TST = T, STS = S, $(TS)^* = TS$ and $(ST)^* = ST$. The reduced minimum modulus $\gamma(T)$ of $T \in B(\mathcal{H})$ is defined by $\gamma(T) = \inf\{\|Tx\| : \operatorname{dist}(x, \mathcal{N}(T)) = 1 \text{ for all } x \in \mathcal{H}\}$. Notice that $\gamma(T) = \|T^{\dagger}\|^{-1}$.

Lemma 2.10 [22; 8]. Let $C_{\varphi} \in B(L^2(\Sigma))$. Then the following hold.

- (i) $C_{\omega} \in B_C(L^2(\Sigma))$ if and only if $h = d\mu \circ \varphi^{-1}/d\mu$ is bounded away from zero on $\sigma(h)$.
- (ii) $C_{\varphi}C_{\varphi}^* = M_{h \circ \varphi}E$, where $E = E^{\varphi^{-1}(\Sigma)}$.
- (iii) If $C_{\varphi} \in B_C(L^2(\Sigma))$, then $C_{\varphi}^{\dagger} = M_{\chi_{\sigma(h)}/h} C_{\varphi}^*$.
- (iv) $\gamma(C_{\varphi}) = \|1/(h \circ \varphi)\|_{\infty}^{-1/2}$.

Using Lemma 2.10 and the fact that $\chi_{\sigma(h)} \circ \varphi = \chi_{\varphi^{-1}(\sigma(h))} = \chi_{\sigma(h)} \circ \varphi = 1$, we obtain

$$C_{\varphi}C_{\varphi}^{\dagger} = C_{\varphi}M_{\chi_{\sigma(h)}/h}C_{\varphi}^{*} = M_{1/(h\circ\varphi)}C_{\varphi}C_{\varphi}^{*} = E.$$

Put $\mathscr{CM} = \mathscr{M} \cap \mathscr{N}\mathscr{C}$ and $E_i = E^{\varphi_i^{-1}(\Sigma)}$. Define $d_{ma} : \mathscr{CM} \times \mathscr{CM} \to \mathbb{R}^+$ as

$$d_{ma}(C_{\varphi_1}, C_{\varphi_2}) = \sqrt{\|E_1 - E_2\|^2 + \|\alpha_a(C_{\varphi_1}) - \alpha_a(C_{\varphi_2})\|^2}.$$

Then d_{ma} is a metric on closed subset $\mathscr{C}M$ of $B(L^2(\Sigma))$. Let $\{C_{\varphi_n}, C_{\varphi}\} \subseteq \mathscr{C}M$. Using Corollary 2.7, $\|C_{\varphi_n} - C_{\varphi}\| \to 0$ whenever $d_{ma}(C_{\varphi_n}, C_{\varphi}) \to 0$ as $n \to \infty$. Now, let $\|C_{\varphi_n} - C_{\varphi}\| \to 0$. Then by Corollary 2.7 and using the continuity of the map $C_{\varphi} \mapsto C_{\varphi}^{\dagger}$ (see [7]) on $B_C(L^2(\Sigma))$ we have $\|\alpha_a(C_{\varphi_n}) - \alpha_a(C_{\varphi})\| \to 0$, $\|C_{\varphi_n}^{\dagger} - C_{\varphi}^{\dagger}\| \to 0$, and so $\|E_n - E\| = \|C_{\varphi_n}C_{\varphi_n}^{\dagger} - C_{\varphi}C_{\varphi}^{\dagger}\| \to 0$. Consequently, $d_{ma}(C_{\varphi_n}, C_{\varphi}) \to 0$. Moreover, $\|C_{\varphi_n} - C_{\varphi}\| \to 0$ implies that $\gamma(C_{\varphi_n}) = \|C_{\varphi_n}^{\dagger}\|^{-1} \to \|C_{\varphi_n}^{\dagger}\|^{-1} = \gamma(C_{\varphi})$. Note that $\|C_{\varphi_n} - C_{\varphi}\| \to 0$ does not imply that $\|E_n - E\| \to 0$. However, if $\max\{\|h\|_{\infty}^{-1}, \|h_n\|_{\infty}^{-1}\} \le k^2$ for some positive integer k, then $\|C_{\varphi_n}C_{\varphi_n}^{\dagger} - C_{\varphi}C_{\varphi}^{\dagger}\| \le k\|C_{\varphi_n} - C_{\varphi}\|$; see [20, Proposition 6.2]. Thus, in this case, $\|E_n - E\| \to 0$ wherever $\|C_{\varphi_n} - C_{\varphi}\| \to 0$.

Corollary 2.11. For a fixed positive integer k, the metric d_{ma} is equivalent to the metric generated by the operator norm on $\{C_{\varphi_i} \in \mathcal{CM} : ||h_i||^{-1} \le k^2\}$.

For $0 < a < \|C_{\varphi}\|^{-1}$, the *a*-bisecting of $C_{\varphi} \in \mathcal{M}$ is, in our case, defined as

$$(\widetilde{C}_{\varphi})_a = aS_a^{-1}(C_{\varphi})(I + S_a^{-1}(C_{\varphi}))^{-1}C_{\varphi}.$$

Put $a_{\varphi} = \sqrt{1 - a^2 h}$. Then $(\widetilde{C}_{\varphi})_a = M_{a(1 + a_{\varphi})^{-1}} C_{\varphi}$ is a normal weighted composition operator with norm $\|(\widetilde{C}_{\varphi})_a\| = \|(1 + a_{\varphi})^{-1} \sqrt{a^2 h}\|_{\infty}$. Let $C_{\varphi_i} \in \mathcal{M}$ and $0 < a < a_0$; see Definition 2.6. If $(\widetilde{C}_{\varphi_1})_a = (\widetilde{C}_{\varphi_2})_a$, then $M_u C_{\varphi_1} = C_{\varphi_2}$ where $u = (1 + a_{\varphi_1})/(1 + a_{\varphi_2})$. Then by Lemma 2.5, $C_{\varphi_1} = C_{\varphi_2}$. Thus, the mapping $C_{\varphi} \mapsto (\widetilde{C}_{\varphi})_a$ from \mathcal{M} into \mathcal{N}^*W is injective and continuous with respect to the operator norm. Indeed, if $\|C_{\varphi_n} - C_{\varphi}\| \to 0$, then $M_{h_n} = C_{\varphi_n}^* C_{\varphi_n} \to C_{\varphi}^* C_{\varphi} = M_h$, and so $\|h_n - h\|_{\infty} \to 0$. Then $a_{\varphi_n} \to a_{\varphi}$ and hence $M_{a(1 + a_{\varphi_n})^{-1}} \to M_{a(1 + a_{\varphi_n})^{-1}}$. Now, the desired conclusion follows from the continuity of the multiplication

map in $B(L^2(\Sigma))$. The bisecting of a closed operator A was originally introduced in [18] by Labrousse and Mercier, in order to study semi-Fredholm operators.

Let C_{φ_1} , $C_{\varphi_2} \in \mathcal{M}$. For a fixed $0 < a < a_0$ we define the Cordes–Labrousse type transform $V_{1,2}$ with respect to the pair $(C_{\varphi_1}, C_{\varphi_2})$ as

$$V_{1,2} = M_{1/(a_{\varphi_1}a_{\varphi_2})} - (aM_{1/a_{\varphi_1}}C_{\varphi_1}^*)(aM_{1/a_{\varphi_2}}C_{\varphi_2}).$$

Then $V_{1,2} \in B(L^2(\Sigma))$, $V_{1,1}^* = I$ and $V_{1,2}^* = V_{2,1}$. For $f \in L^2(\Sigma)$, set $f_1 = M_{1/a_{\varphi_2}} f$ and $f_2 = a M_{1/a_{\varphi_2}} C_{\varphi_2} f$. By a similar argument to that used in [18, Lemma 5.3], we can show that

$$|\|V_{1,2}f\|^2 - \|f\|^2| \le (\|f_1\|^2 + \|f_2\|^2)l_a(C_{\varphi_1}, C_{\varphi_2})$$

and

$$||f_1||^2 + ||f_2||^2 = \int_X \frac{1 + a^2 h_2}{1 - a^2 h_1} |f|^2 d\mu \le 2||K_a(C_{\varphi_2})|| ||f||^2.$$

It follows that $(1-2\|K_a(C_{\varphi_2})\| l_a(C_{\varphi_1}, C_{\varphi_2}))\|f\|^2 \le \|V_{1,2}f\|^2$. In view of these observations we have the following proposition.

Proposition 2.12. For a fixed $0 < a < a_0$, the following assertions hold.

- (i) The bisecting map $C_{\varphi} \mapsto (\widetilde{C}_{\varphi})_a$ from M into NW is injective and continuous.
- (ii) If $l_a(C_{\varphi_1}, C_{\varphi_2})$ $< 1/(2||K_a(C_{\varphi_2})||)$, then the Cordes–Labrousse type transform $V_{1,2}$ is invertible.

Example 2.13. Let X = [0, 1] with Lebesgue measure, $a_n, k \in (1, +\infty)$ and let $\varphi_n(x) = a_n x + b$ and $\varphi(x) = kx + b$. Then, for all $n \in \mathbb{N}$, C_{φ_n} is a bounded and normal composition operator on $L^2([0, 1])$ with $\|C_{\varphi_n}\| = 1/\sqrt{a_n}$ and $C_{\varphi_n}^* = (1/a_n)C_{\varphi_n^{-1}}$. Moreover, $1 \le a_0 = \inf\{\sqrt{a_n} : n \ge 1\}$ and for each 0 < a < 1, the operator $K_a(C_{\varphi_n}) = (a_n/(a_n - a^2))I$ is

scalar multiple of the identity operator. Thus, for fixed $n_0 \in \mathbb{N}$, $||K_a(C_{\varphi_{n_0}})|| \to +\infty$ as $a \to \sqrt{a_{n_0}}$. Put $b_n = a_n/(a_n - a^2)$. Then

$$\mathcal{P}_a(C_{\varphi_n}) = \begin{bmatrix} b_n I & (-a^2 b_n/a_n) C_{\varphi_n^{-1}} \\ b_n C_{\varphi_n} & (-a^2 b_n/a_n) I \end{bmatrix}.$$

If $\|C_{\varphi_n} - C_{\varphi}\| \to 0$, then $h_n = 1/a_n = \|C_{\varphi_n}\|^2 \to \|C_{\varphi}\|^2 = 1/k = h$. Conversely, let $h_n \to h$. It follows that $\varphi_n \to \varphi$. Then, by the Weierstrass approximation theorem, $f \circ \varphi_n \to f \circ \varphi$ uniformly on [0, 1] for all continuous functions $f \in C([0, 1])$. Since C([0, 1]) is dense in $L^2([0, 1])$ and $\|C_{\varphi_n}\| \le 1/a_0$ for all $n \in \mathbb{N}$, we have $C_{\varphi_n}(f) \to C_{\varphi}(f)$ in L^2 -norm for all $f \in L^2([0, 1])$. Also, according to the previous discussions we have

$$\begin{split} (\widetilde{C}_{\varphi})_{a} &= M_{a/\left(\sqrt{a_{n}}(1+\sqrt{(a_{n}-a^{2})/a_{n}})\right)} C_{\varphi}, \quad \|(\widetilde{C}_{\varphi})_{a}\| = \frac{\|aC_{\varphi}\|}{1+\sqrt{1-\|aC_{\varphi}\|^{2}}}, \\ (V_{1,2}f)(x) &= \frac{1}{c}f(x) - \frac{a^{2}}{a_{1}c}f\left(\frac{a_{2}}{a_{1}}x + b\left(\frac{a_{1}-a_{2}}{a_{1}}\right)\right), \end{split}$$

where

$$c = \sqrt{\left(\frac{a_1 - a^2}{a_1}\right)\left(\frac{a_2 - a^2}{a_2}\right)}.$$

Acknowledgements

The authors are very grateful to the referee(s) for careful reading of the paper and for a number of corrections which improved the presentation of this paper.

References

- [1] P. Budzyński, Z. Jabłoński, I. B. Jung, and J. Stochel, *Unbounded weighted composition operators in L*²-spaces, Lecture Notes in Mathematics **2209**, Springer, 2018.
- [2] J. T. Campbell and W. E. Hornor, "Seminormal composition operators", J. Operator Theory 29:2 (1993), 323–343.
- [3] H. O. Cordes and J. P. Labrousse, "The invariance of the index in the metric space of closed operators", *J. Math. Mech.* **12** (1963), 693–719.
- [4] F. Gilfeather, "Norm conditions on resolvents of similarities of Hilbert space operators and applications to direct sums and integrals of operators", *Proc. Amer. Math. Soc.* **68**:1 (1978), 44–48.
- [5] D. J. Harrington and R. Whitley, "Seminormal composition operators", J. Operator Theory 11:1 (1984), 125–135.
- [6] T. Hoover, A. Lambert, and J. Quinn, "The Markov process determined by a weighted composition operator", *Studia Math.* **72**:3 (1982), 225–235.
- [7] S. Izumino, "Convergence of generalized inverses and spline projectors", J. Approx. Theory 38:3 (1983), 269–278.
- [8] M. R. Jabbarzadeh and M. J. Bakhshkandi, "Stability constants for weighted composition operators on $L^p(\Sigma)$ ", Bull. Belg. Math. Soc. Simon Stevin 24:2 (2017), 271–281.
- [9] M. R. Jabbarzadeh and Y. Estaremi, "Essential norm of substitution operators on L^p spaces", Indian J. Pure Appl. Math. 43:3 (2012), 263–278.
- [10] M. R. Jabbarzadeh and R. Hajipouri, "Some equivalent metrics for bounded normal operators", *Math. Bohem.* **143**:2 (2018), 201–212.
- [11] T. Kato, Perturbation theory for linear operators, 2nd ed., Grundlehren der Math. Wissenschaften 132, Springer, 1976.
- [12] W. E. Kaufman, "A stronger metric for closed operators in Hilbert space", Proc. Amer. Math. Soc. 90:1 (1984), 83–87.
- [13] F. Kittaneh, "Inequalities for the Schatten p-norm, IV", Comm. Math. Phys. 106:4 (1986), 581-585.
- [14] F. Kittaneh, "Inequalities for the Schatten p-norm, II", Glasgow Math. J. 29:1 (1987), 99–104.
- [15] F. Kittaneh, "On some equivalent metrics for bounded operators on Hilbert space", Proc. Amer. Math. Soc. 110:3 (1990), 789–798.
- [16] F. Kittaneh and H. Kosaki, "Inequalities for the Schatten p-norm, V", Publ. Res. Inst. Math. Sci. 23:2 (1987), 433-443.
- [17] J. J. Koliha, "On Kaufman's theorem", J. Math. Anal. Appl. 411:2 (2014), 688–692.
- [18] J.-P. Labrousse and B. Mercier, "Extension du théorème de Brown–Douglas–Fillmore au cas des opérateurs non bornés", J. Operator Theory 24:1 (1990), 137–154.
- [19] A. Lambert and S. Petrovic, "Beyond hyperinvariance for compact operators", J. Funct. Anal. 219:1 (2005), 93–108.
- [20] M. Mbekhta, "Résolvant généralisé et théorie spectrale", J. Operator Theory 21:1 (1989), 69–105.
- [21] K. Schmüdgen, Unbounded self-adjoint operators on Hilbert space, Graduate Texts in Mathematics 265, Springer, 2012.
- [22] R. K. Singh and J. S. Manhas, *Composition operators on function spaces*, North-Holland Mathematics Studies **179**, North-Holland, Amsterdam, 1993.
- [23] R. Whitley, "Normal and quasinormal composition operators", Proc. Amer. Math. Soc. 70:2 (1978), 114–118.

MOHAMMAD R. JABBARZADEH: mjabbar@tabrizu.ac.ir

Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran

SEDDIGHE HAGHIGHATJOO: shaghighatjoo@student.pnu.ac.ir Department of Mathematics, Payame Noor University, Tehran, Iran

RMJ — prepared by msp for the Rocky Mountain Mathematics Consortium