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Abstract
In this paper, we discuss measure theoretic characterizations for Lambert conditional
operators in some operator classes on L2(�) such as, p-hyponormal, centered, n-
normal and binormal. In addition, it is showed when these operators are orthogonal
projection and some correlations between these types of operators are established.
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Multiplication operator · Normal operator
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1 Introduction and Preliminaries

Let H be a Hilbert space with inner product 〈·, ·〉 and let B(H) denote the linear
bounded operators on H. We use R(T ) and N (T ), respectively, to denote the range
and the null space of T ∈ B(H). For an operator T ∈ B(H), the adjoint of T denoted
by T ∗. T is self-adjoint if T ∗ = T and T is normal if T ∗T = T T ∗. We write T ≥ 0
if T is a positive operator, meaning 〈T x, x〉 ≥ 0 for all x ∈ H. An operator T is
quasinormal if T (T ∗T ) = (T ∗T )T and is binormal or weakly centered operator if
T ∗T and T T ∗ commute. An orthogonal projection is an operator P ∈ B(H) such that
P2 = P = P∗. T is said to be p-hyponormal if (T ∗T )p ≥ (T T ∗)p for 0 < p ≤ 1.
If p = 1, T is called hyponormal.

Every bounded operator T on a Hilbert spaceH can be written as T = U |T |, where
|T | = √

T ∗T andUU∗U = U .MoreoverU and |T | are unique ifN (U ) = N (|T |). In
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this case,U |T | is said to be the polar decomposition of T . Associated with T ∈ B(H)

and 0 < λ ≤ 1, there is a useful related operator �λ(T ) = |T |λU |T |1−λ, called
the λ-Aluthge transformation of T . � 1

2
(T ) = ˜T is the Aluthge transformation and

�1(T ) = ̂T is the Duggal transformation of T . Let BC (H) be the set of all bounded
linear operators onH with closed range. For T ∈ BC (H), the Moore–Penrose inverse
of T , denoted by T †, is the unique operator T † ∈ BC (H) that satisfying the equations

T T †T = T , T †T T † = T †, (T T †)∗ = T T †, (T †T )∗ = T †T .

We recall that T † exists if and only if T ∈ BC (H). For other important properties of
˜T and T † see e.g. [1,2,6,21]. In [17] Morrel and Muhly introduced the concept of a
centered operator. An operator T ∈ B(H) with polar decomposition U |T | is said to
be centered if the doubly infinite sequence {T nT ∗n, T ∗mTm : n,m ≥ 0} consists of
mutually commuting operators. Let Un|T n| be the polar decomposition of T n . It is
shown in [17] that T is centered if and only if Un = Un , for each n ∈ N. Note that
every centered operator T is binormal. The relations between these classes are studied
in [10]. Let P = P2 ∈ B(H) be an idempotent. Then we can represent element
T ∈ B(H) as

[

T11 T12
T21 T22

]

,

where T11 = PT P , T12 = PT (I−P), T21 = (I−P)T P and T22 = (I−P)T (I−P).
Then, R(P) is an invariant subspace of T iff T21 = 0 and is reducing subspace of T
iff T12 = 0 = T21.

Let (X , �,μ) be a complete σ -finite measure space and let A be a sub-σ -finite
algebra of �. Inequalities between measurable functions is interpreted in the almost
everywhere sense, and equality between sets is interpreted up to a set of measure 0.
We denote the linear space of all complex-valued �-measurable functions on X by
L0(�). We use the notation of [8] which is a basic reference for details. The support
of a measurable function f ∈ L0(�) is defined by σ( f ) = {x ∈ X : f (x) 	= 0}. For a
real number r the power f r is defined by f r (x) = sgn( f (x))| f (x)|r . The associated
conditional expectation with respect to A is denoted by EA

μ , or when no confusion
will arise, simply E . LetD(E) = { f ∈ L0(�) : E(| f |) ∈ L0(A)} be the domain of E
(see [7]). It is known that ∪p≥1L p(�) ∪ { f ∈ L0(�) : f ≥ 0} ⊆ D(E). Conditional
expectation operator E is an orthogonal projection onto L2(A). Let u, w ∈ L0(�)

and σ(u) ⊆ A ∈ �. Then χAu = u = χσ(u)u. So, if σ(u) ⊆ σ(w) then u
w

χσ(w) = u
w
.

Indeed, we adhere to the convention that 0
0 = 0. If u is an A-measurable function,

then σ(u) ∈ A but the converse is not hold. Now let {u1, u2, u1u2} ⊂ D(E). Put
Si = σ(E(|ui |2)). Then by conditional Cauchy–Schwarz inequality, χSi ui = ui ,
χSi E(ui ) = E(ui ) and χSi E(u1u2) = E(u1u2). For details on the properties of E
see e.g. [3,8,13,15,20].

Lambert conditional operators are closely related to the multiplication operators,
integral and averaging operators and to the operators called conditional expectation-
type which has been introduced in [3] and [14]. Let 1 < p < ∞. Moy in [18]
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showed that if T ∈ B(L p(�)), T (L∞(�)) ⊆ L∞(�) and T ( f T (g)) = T ( f )T (g)
for all f , g ∈ L∞(�), then T = EAMu for some A ⊆ �. For w, u ∈ D(E),
the mapping T : L2(�) ⊇ D(T ) → L2(�) given by T ( f ) = wE(u f ) for f ∈
D(T ) = { f ∈ L2(�) : T ( f ) ∈ L2(�)}, is well-defined and linear. Such an operator
is called a Lambert conditional operator induced by the pair (w, u). Let q be the
conjugate exponent to p. Lambert and Herron in [8,14] considered the conditional
operator T1 = EMu on L p(�) and they showed that T1 ∈ B(L p(�)) if and only
if E(|u|q) ∈ L∞(A) and in this case ‖T1‖q = ‖E(|u|q)‖∞. Let T = MwEMu

and set ν = u(E(|w|p)1/p. Then ‖T f ‖ = ‖EMν f ‖ for all f ∈ L p(�). It follows
that T ∈ B(L p(�)) if and only if E(|u|q)1/q E(|w|p)1/p ∈ L∞(A). In this case,
‖T ‖ = ‖E(|u|q)1/q E(|w|p)1/p‖∞ (see [5]). Throughout this paper we consider the
case p = 2 and assume that T ∈ B(L2(�)). For further information on conditional
type operators, see e.g. [5,9,14,16].

Let K denote the set of all bounded Lambert conditional operators on L2(�) and
let T ∈ K. In the next section, first we review some basic results on the elements of
K and state some general assumptions and then we present a method for computing
the null space and the range of T n . Also, we give some necessary and sufficient
conditions for T being normal, quasinormal, p-hyponormal, centered, binormal and
n-normal. In fact, we show that all of these classes in K coincide. In addition, the
reverse order law for the Moore–Penrose inverse is established and it is showed when
these operators are partial isometry or orthogonal projection. Lastly, we show that
the Duggal transformation and the λ-Aluthge transform of T coincide. To explain the
results, some examples are then presented.

2 Characterizations

LetM be a closed subspace ofH. Relative to the direct sum decompositionM⊕M⊥,
an element f ∈ H can be written uniquely as f = f1 + f2 where f1 ∈ M and
f2 ∈ M⊥. Let T ∈ B(H). Then T f = T f1 + T f2 = [(T f1)1 + (T f1)2] + [(T f2)1 +
(T f2)2]. Let P ∈ B(H) be an orthogonal projection onto M. For 1 ≤ i, j ≤ 2, put
Ti, j ( f j ) = (T f j )i . Then

[

T11 T12
T21 T22

]

=
[

PT |M PT |M⊥
(I − P)T |M (I − P)T |M⊥

]

(2.1)

is the matrix representation of T . In particular, let H = L2(�), P = EA = E ,
M = R(E) = L2(A) and M⊥ = N2(E) = { f − E f : f ∈ L2(�)}. Note that
f1 = E f and f2 = f − f1, for all f ∈ D(E). Let f1 = 0 and f2 ≥ 0. Since
σ( f ) ⊆ σ( f1), so f = 0. Consequently, { f ∈ D(E) : f > 0} ∩ N2(E) = ∅. In
general, the structure of N2(E) is very complicated (see [16]). Note that E(| f |2) =
E(( f1 + f2)( f̄1 + f̄2)) = | f1|2 + E(| f2|2). Using above argument, E(| f2|2) = 0 if
and only if f2 = 0. So, |E( f )|2 = E(| f |2) if and only if f ∈ L0(A).

Notice that T11 and T22 are the compressions of T to the closed subspace M and
M⊥, respectively. Let � : B(M) → B(H) be a mapping defined as �(T ) = PT P ,
where P be an orthogonal projection ontoM. Then� is linear and�(T ∗) = PT ∗P =
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(�(T ))∗, because P = P∗ = (P|M)∗. Let T1, T2 ∈ B(M). Since P2 = P and
PT2 = T2, then �(T1T2) = (PT1P)(PT2P) = �(T1)�(T2). Moreover, �(T2) = 0,
implies that PT2|M = PT2P = 0, and hence T2 = 0. Consequently, � is a ∗-
monomorphism and thus B(M) can be considered a C∗-subalgebra of a C∗-algebra
B(H). It is a well-known fact that for any C∗-subalgebra B of a C∗-algebra A and
b ∈ B, SpecB(b)∪{0} = SpecA(b)∪{0}, where SpecB(b) is denote the spectrum of
b as an element of B. Consequently, for T ∈ B(H) with matrix representation (2.1)
we have

SpecB(M) (T11) ∪ {0} = SpecB(H)(T11) ∪ {0};
SpecB(M⊥)(T22) ∪ {0} = SpecB(H)(T22) ∪ {0}.

Let f , g ∈ L2(�). Then f1, g1 ∈ L2(A), f2, g2 ∈ N2(E) and E( f1g2) =
E(g2 f1) = 0. It follows that ( f g)1 = E( f g) = f1g1 + E( f2g2) and ( f g)2 =
(I − E)( f g) = f g − f1g1 − E( f2g2). Let K = E(|u|2)E(|w|2). We recall that
T = MwEMu is bounded in L2(�) if and only if K ∈ L∞(�). In this case,
‖T ‖2 = ‖K‖∞ and D(T ) = L2(�) (see [5]). Now, let T = MwEMu ∈ B(L2(�))

and let f = f1 + f2 ∈ L2(�). Then we have

T f1 = (w1 + w2)E((u1 + u2) f1) = w1u1 f1 + w2u1 f1 = (T f1)1 + (T f1)2;
T f2 = (w1 + w2)E((u1 + u2) f2) = E(w1u2 f2) + w2E(u2 f2) = (T f2)1 + (T f2)2.

Thus,

T11( f1) = Mw1u1 f1, T21( f1) = Mw2u1 f1
T12( f2) = EMw1u2 f2 T22( f2) = Mw2EMu2 f2.

Consequently, the matrix representation of T = MwEMu and T ∗ with respect to the
decomposition L2(�) = L2(A) ⊕ N2(E) are

T =
[

Mw1u1 EMw1u2
Mw2u1 Mw2EMu2

]

and T ∗ =
[

Mw1u1 EMw2u1
Mw1u2 Mū2EMw̄2

]

. (2.2)

In particular, if w = 1 then w1 = 1 and w2 = 0 and hence the matrix representation
of T1 := EMu and T ∗

1 are

T1 =
[

Mu1 EMu2
0 0

]

and T ∗
1 =

[

Mū1 0
Mū2 0

]

. (2.3)

Note that N (EMu) = { f ∈ L2(�) : u1 f1 + E(u2 f2) = 0}. In the following we
characterize the null space and the range of MwEMu .

Lemma 2.1 Let T1 = EMu ∈ B(L2(�)). Then N (T1) = (ūL2(A))⊥.
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Proof Let f ∈ L2(�) and let g ∈ L2(A). Since EMu f ∈ L2(A), then

f ∈ (ūL2(A))⊥ ⇐⇒ 〈g, EMu f 〉 = 〈Eg, u f 〉 = 〈g, u f 〉 = 〈ūg, f 〉 = 0

⇐⇒ f ∈ N (T1).

Thus, N (T1) = { f ∈ L2(�) : f ⊥ ūL2(A)}. ��
Proposition 2.2 Let T = MwEMu ∈ B(L2(�)) and let n ∈ N. Then we have

(a) N (T n) = {ū|E(uw)|n−1
√

E(|w|2)L2(A))}⊥;
(b) R(T n) = {w|E(uw)|n−1

√

E(|u|2)L2(A))}.

Moreover, if |E(uw)| ≥ k on σ(E(uw)) for some k > 0, then N (T n) = N (T 2) and
R(T 2) = R(T n).

Proof Let n = 1 and f ∈ L2(�). Since

‖MwEMu f ‖ = ‖EM
u
√

E(|w|2) f ‖, (2.4)

then by Lemma 2.1 we have

N (T ) = N (EM
u
√

E(|w|2)) = {ū
√

E(|w|2)L2(A)}⊥;
R(T ) = N (T ∗)⊥ = {w

√

E(|u|2)L2(A))}.

Now, (a) and (b) follows from equality T n = ME(uw)n−1wEMu .

Put ν1 = ū
√

E(|w|2) and A = σ(E(uw)). Then for each g ∈ L2(A) and n > 2
we have ‖ gχA

|E(uw)|n−2 ‖2 ≤ 1
kn−2 ‖g‖2. Thus, gχA

|E(uw)|n−2 ∈ L2(A) and so

ν1|E(uw)|g = ν1|E(uw)|n−1 gχA

|E(uw)|n−2 ∈ ν1|E(uw)|n−1L2(A).

Consequently, ν1|E(uw)|L2(A) ⊆ ν1|E(uw)|n−1L2(A) and hence

N (T 2) = (ν1|E(uw)|L2(A))⊥ ⊇ (ν1|E(uw)|n−1L2(A))⊥ = N (T n).

Now, by a similar argument we have

R(T n) = N (T n∗)⊥ = {w|E(uw)|n−1
√

E(|u|2)L2(A))}.

Set ν2 = w
√

E(|u|2). By a similar argument as above,

ν2|E(uw)|L2(A) ⊆ ν2|E(uw)|n−1L2(A),

and hence R(T 2) ⊆ R(T n). This completes the proof. ��
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It is worth nothing that if |E(uw)|2 = E(|u|2)E(|w|2) = K 2, then for all n ∈ N,
‖T n‖ = ‖|E(uw)|n−1K‖∞ = ‖K‖n∞ = ‖T ‖n and hence T , in this case, is normaloid.

Recall that themultiplication operatorMu ∈ B(L2(�)) has closed range if and only
if there exists k > 0 such that ‖Mu( f χσ(u))‖ ≥ k‖ f χσ(u)‖, for all f ∈ L2(�). Equiv-
alently, ‖Mu f ‖ ≥ k‖ f ‖ for all f ∈ N (Mu)

⊥ = χσ(u)L2(�). Using Lemma 2.1,
T1 ∈ B(L2(�)) has closed range if and only if there exists k > 0 such that
‖T1 f ‖ ≥ k‖ f ‖, for all f ∈ ūL2(A). So we have the following proposition.

Proposition 2.3 Let T1 = EMu ∈ B(L2(�)) and S = σ(E(|u|2)). Then the follow-
ings hold.

(a) If T1 has closed range, then E(|u|2) ≥ k on S for some k > 0.
(b) If σ(u) ∈ A and E(|u|2) ≥ α on S for some α > 0, then T1 has closed range.

Proof (a) Suppose E(|u|2) is not bounded away from zero on its support. Then for
fixed ε > 0, there exists A ∈ A with A ⊆ S and 0 < μ(A) < ∞ such that
E(|u|2)χA < ε. Put f0 = ūχA. Then f0 is nonzero and ‖ f0‖2 = ∫

A |u|2dμ =
∫

A E(|u|2)dμ < εμ(A) < ∞. Thus, f0 ∈ ūL2(A) ∩ L2(�) and satisfies

‖T1 f0‖2 = ‖E(u f0)‖2 = ‖E(|u|2)χA‖2 =
∫

A
(E(|u|2)χA)E(|u|2)dμ

≤ ε

∫

A
E(|u|2)dμ = ε

∫

A
|u|2dμ = ε

∫

X
|ūχA|2dμ = ε‖ f0‖2.

But this is a contraction.
(b) Let σ(u) ∈ A. Since σ(u) = σ(|u|) ⊆ σ(E(|u|2)) = S, then for all f ∈ L2(A)

we have

‖Mū( f χσ(u))‖2 =
∫

σ(u)

|u f |2dμ =
∫

σ(u)

E(|u|2)| f |2dμ

≥ α

∫

σ(u)

χS| f |2dμ = α‖ f χσ(u)‖2.

It follows that Mū : L2(A) → L2(�) have closed range. Hence ūL2(A) =
ūL2(A). Let ūg ∈ ūL2(A) be arbitrary. Since χS E(|u|2) = E(|u|2), then we
have

‖T1(ūg)‖2 = ‖EMu(ūg)‖2 = ‖E(|u|2)g‖2 =
∫

X
(E(|u|2))(E(|u|2)|g|2)dμ

≥ α

∫

X
E(|u|2)|g|2dμ = α

∫

X
|ūg|2dμ = α‖ūg‖2.

This completes the proof. ��
Using (2.4), we have the following corollary.
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Corollary 2.4 Let T = MwEMu ∈ B(L2(�)) has closed range. Then K =
E(|u|2)E(|w|2) is bounded away from zero on σ(K ). Also, if σ(u

√

E(|w|2)) ∈ A
and K is bounded away from zero on σ(K ), then T has closed range.

Remark 2.5 Recall that asc(T ) and des(T ), the ascent and descent of T ∈ B(H), is the
smallest non-negative integer n such thatN (T n) = N (T n+1) andR(T n) = R(T n+1),
respectively. If T = MwEMu ∈ B(L2(�)), σ(u

√

E(|w|2)) ∈ A and E(|u|2)E(|w|2)
is bounded away from zero on its support, then by Proposition 2.2 and Corollary 2.4,
asc(T ) = des(T ) = 2.

Let EMu ∈ B(L2(�)) and EMu = 0. Then by (2.3), Mu1 = 0 on L2(A) and
EMu2 = 0 on N2(E). Let σ(u1) = ∪An with An ⊆ An+1, 0 < μ(An) < ∞. Then
χAn ↗ χσ(u1). Set fn = χAn ū1. Then for each n ∈ N,

∫

X
|χAn ū1|2dμ =

∫

An

E(|u1|2)dμ ≤
∫

An

E(|u|2)dμ ≤ ‖E(|u|2)‖∞μ(An) < ∞.

Thus, fn ∈ L2(A) and 0 = Mu1( fn) = χAn |u1|2 → |u1|2. It follows that u1 = 0.
Moreover, EMu2 = 0 onN2(E) if and only if u2N2(E) ⊆ N2(E). However, if u ≥ 0,
then u = 0. Thus, the mapping u �→ EMu is not one-to-one, in general. However,
this occurs under certain conditions.

Proposition 2.6 Let Kn = {u ∈ Ln(�) : E(|u|2) ∈ L∞(A)}.
(a) Ifμ(X) < ∞, then the mapping�1 : K0 → B(L2(�)) defined by�1(u) = EMu

is one-to-one.
(b) The mapping �2 : K2 → B(L2(�)) defined by �2(u) = EMu is one-to-one.

Proof Let EMu = 0. Using (2.3), Mu1 = 0 and EMu2 = 0 on L2(A) and N2(E),
respectively. Then by the above discussion, u1 = 0. Also, since E(|u|2) = |u1|2 +
E(|u2|2) then we have

∫

X
|ū2|2dμ ≤

∫

X
E(|u|2)dμ ≤

{ ‖E(|u|2)‖∞μ(X) if μ(X) < ∞,

‖u‖22 if u ∈ L2(�).

Thus, ū2 ∈ N (E)∩ L2(�) = N2(E). It follows that E(|u1|2) = EMu2(ū2) = 0, and
hence u = u1 + u2 = 0. ��
Corollary 2.7 Let MwEMu ∈ B(L2(�)). Ifμ(X) < ∞ or u

√

E(|w|2) ∈ L2(�), then
MwEMu = 0 implies that u = 0 on σ(E(|w|).
Proof Since ‖MwEMu‖ = ‖EM

u
√

E(|w|2)‖, then the desired conclusion follows from
Proposition 2.6. ��

Let T = MwEMu ∈ B(L2(�)). If w = gū, for some 0 ≤ g ∈ L0(A), then

〈T f , f 〉 = 〈Mgū EMu f , f 〉 =
∫

X
gūE(u f ) f̄ dμ
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=
∫

X
gE(u f )E(u f )dμ =

∫

X
g|E(u f )|2dμ ≥ 0

for all f ∈ L2(�), and so T ≥ 0. In this case, (Mgū EMu)
p( f ) = gpū

E(|u|2)p−1E(u f ) for p ∈ (0,∞) and f ∈ L2(�) [11, Lemma 2.1]. Now, sup-
pose T ≥ 0. Then T11 = ET|L2(A)

≥ 0 and T22 = (I − E)T|N2(E)
≥ 0. Indeed, for

f ∈ L2(A) and g ∈ N2(E) we have

〈T11 f , f 〉 = 〈ET f , f 〉 = 〈T f , E f 〉 = 〈T f , f 〉 ≥ 0;
〈T22 f , f 〉 = 〈(I − E)Tg, g〉 = 〈Tg, g〉 − 〈Tg, Eg〉 = 〈Tg, g〉 ≥ 0.

Theorem 2.8 Let T = MwEMu ∈ B(L2(�)). If T ≥ 0, then E(uw) ≥ 0, ūE(uw) =
wE(|u|2) and √

T22 = Mνū2EMu2 where ν =
√
E(u2w2)

E(|u2|2) .

Proof Let T ≥ 0. Using above argument T11 = Mw1u1 and T22 = Mw2EMu2 are
positive operators on L2(A) and N2(E), respectively. It follows that w1u1 ≥ 0 and

0 ≤
∫

X
w2E(u2 f ) f̄ dμ =

∫

X
E(u2 f )E(w2 f̄ )dμ, ∀ f ∈ N2(E). (2.5)

Since A is σ -finite, there exists {An}n ⊆ A such that X = ∪n An , An ⊆ An+1 with
0 < μ(An) < ∞ for all n ∈ N. In this case χAn ↗ χX . Put fn = ū2

√

E(|w2|2) χAn .
Then ‖ fn‖2 = ∫

An
|u2|2E(|w2|2)dμ ≤ ‖T ‖2μ(An) < ∞, and hence fn ∈ N2(E).

Replacing f in (2.5) by fn , we obtain

∫

An

E(|u2|2)E(|w2|2)E(u2w2)dμ ≥ 0, ∀n ∈ N.

Thus, E(u2w2) ≥ 0 on each An , and so E(u2w2) ≥ 0 on X . From this and w1u1 ≥ 0,
we conclude that E(uw) = E(u1w1 + u2w2) = u1w1 + E(u2w2) ≥ 0 on X . Now,
from the equalities T22 f0 = T ∗

22 f0 and T12 f0 = T ∗
21 f0 and that E(u2w2) ≥ 0 and

wiχσ(E |wi |) = wi we deduce that

w2E(|u2|2) = ū2E(u2w2);
w1E(|u2|2) = ū1E(u2w2). (2.6)

Thus, (w1 + w2)E(|u2|2) = (ū1 + ū2)E(u2w2) and hence

wE(|u2|2) = ūE(u2w2). (2.7)

On the other hand, since w1|u1|2 = ū1(u1w1), T21 = T ∗
12 and w1u1 ≥ 0, then

w2|u1|2 = (u2w1)ū1 = ū2(u1w1). Consequently,

w|u1|2 = ū(u1w1). (2.8)
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Now, from (2.7) and (2.8) we have

w(|u1|2 + E(|u2|2)) = ū(u1w1 + E(u2w2))

�⇒ w̄E(|u|2) = uE(uw).

Using (2.6),
w2χσ(u2)

ū2
= E(u2w2)

E(|u2|2) . Then by [11, Lemma 2.1] we get that

√

T22 =
√

Mw2χσ(u2)

ū2
ū2
EMu2 =

√

ME(u2w2)

E(|u2 |2)
ū2
EMu2

= M√
E(u2w2)

E(|u2 |2)
ū2
EMu2 .

This completes the proof. ��
Corollary 2.9 [12] Let T = MwEMu ∈ B(L2(�)). Then T is positive if and only if
w = gū for some 0 ≤ g ∈ L0(A).

Corollary 2.10 Let T = MwEMu ∈ B(L2(�)). If T ≥ 0 and E(uw) ≤ 1, then T is
an contraction on L2(�).

Proof Let E(uw) ≤ 1 and put g = E(uw)

E(|u|2) . Then 0 ≤ g ∈ L0(A) and by Corollary 2.9,

w = gū. It follows that |E(uw)|2 = g2(E(|u|2))2 = E(|u|2)E(|w|2). Consequently,
‖T ‖2 = ‖E(|u|2)E(|w|2)‖∞ = ‖E(uw)‖2∞ ≤ 1, and hence T is a contraction. ��
Bounded self-adjoint, normal and quasinormal Lambert conditional operators have
recently been characterized in [12].

Proposition 2.11 [12] Let T = MwEMu ∈ B(L2(�)). Then the followings hold.

(a) T is self-adjoint if and only if T = Mgū EMu for some ḡ = g ∈ L0(A).
(b) T is normal if and only if T = Mgū EMu for some g ∈ L0(A).
(c) T is quasinormal if and only if T is normal.

Corollary 2.12 Let T = MwEMu ∈ B(L2(�)). Then T is normal if and only if so is
T n, for n ∈ N.

Proof Suppose n ∈ N and T n = MwE(uw)n−1EMu is normal. Using Proposi-
tion 2.11(b), wE(uw)n−1 = g1ū for some g1 ∈ L0(A). It follows that w = gū
where g = g1

E(uw)n−1 χσ(E(uw)) ∈ L0(A). ��
Corollary 2.13 Let T = Mw1EMu, S = Mw2EMv be two bounded self-adjoint oper-
ators on L2(�). If T S is normal, then it is self-adjoint.

Proof Using Proposition 2.11(a), T = Mg1ū1EMu and S = Mg2v̄EMv for some
gi = ḡi ∈ L2(A). Since T S = Mg1g2ūE(uv̄)EMv is normal, then g1g2ūE(uv̄) = g3v̄
for some g3 ∈ L2(A). After multiplying both sides by v and then taking E we obtain

g1g2|E(uv̄)|2 = g3E(|v|2). Thus, g3 = g1g2
|E(uv̄)|2
E(|v|2) , and so ḡ3 = g3. It follows that

T S is self-adjoint. ��
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In the following we study measure-theoretic characterizations for p-hyponorma,
centered and binormal Lambert conditional operators in L2(�) space.

Theorem 2.14 Let T = MwEMu ∈ B(L2(�)). Then the followings hold.

(a) T is binormal if and only if T is normal. In this case |E(uw)|2 = E(|u|2)E(|w|2).
(b) T is centered if and only if |E(uw)|2 = E(|u|2)E(|w|2).
(c) T is p-hyponormal if and only if T is normal.

Proof (a) It is easy to check that

(T T ∗)(T ∗T ) = (MwE(|u|2)EMw̄)(MūE(|w|2)EMu)

= MwE(|u|2)E(uw)E(|w|2)EMu;
(T ∗T )(T T ∗) = (MūE(|w|2)EMu)(MwE(|u|2)EMw̄)

= MūE(|w|2)E(uw)E(|u|2)EMw̄.

Thus, T is binormal if and only if

wE(|u|2)E(uw)E(|w|2)E(u f ) = ūE(|w|2)E(uw)E(|u|2)E(w̄ f ), (2.9)

for all f ∈ L2(�). Put fn = ū
√

E(|w|2χAn . After substituting f in (2.9) and taking
limit on n, we obtain

wE(|u|2)E(uw)E(|w|2)E(|u|2)
√

E(|w|2
= ūE(|w|2)E(uw)E(|u|2)E(uw)

√

E(|w|2,

and hence

wE(|u|2)χσ(E(uw)) = ūE(uw). (2.10)

It follows that w = gū where g = E(uw)

E(|u|2) ∈ L0(A). Now, multiplying both sides of

(2.10) by w̄ and then taking E we obtain |E(uw)|2 = E(|u|2)E(|w|2).
(b) Let U |T | be the polar decomposition of T . Then by [5, Theorem 3.6],

U = M w√
E(|w|2)E(|u|2)

EMu; |T | = M
ū

√

E(|w|2)

E(|u|2)

EMu .

Now let Un|T n| be the polar decomposition of T n = ME(uw)n−1wEMu . Put K =
√

E(|u|2)E(|w|2). Then we have

Un = ME(uw)n−1w

Kn−1K

EMu, and Un = M E(uw)n−1w

|E(uw)|n−1K

EMu,

for all n ∈ N. Consequently, if |E(uw)| = K then Un = Un , and so T is centered.
The converse follows from part (a).
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(c) Let T is p-hyponormal. Then by [5, Theorem 3.4(a)], T is hyponormal. So, for
each f ∈ L2(�) we have

∫

X

{

ūE(|w|2)E(u f ) − wE(|u|2)E(w̄ f )
}

f̄ dμ ≥ 0. (2.11)

Put fn = ū
√

E(|w|2χAn . After substituting f in (2.11), we obtain

∫

An

E(|u|2)E(|w|2)
{

|u|2E(|w|2) − uwE(uw)
}

dμ

=
∫

An

E(|u|2)E(|w|2)
{

|w|2E(|u|2) − uwE(uw)
}

dμ ≥ 0.

It follows that Im
{

|w|2E(|u|2) − uwE(uw)
}

= 0 on each An , and hence uwE(uw)

is real-valued on X . From this fact and the Cauchy–Schwarz inequality we have

uwE(uw) ≤ |w|2E(|u|2). (2.12)

For An ∈ A with 0 < μ(An) < ∞, put fn = w
√

E(|u|2χAn . On substituting f in
the inequality (2.11) and using uwE(uw) = uwE(uw) we obtain

∫

An

E(|u|2)E(|w|2)
{

uwE(uw) − |w|2E(|u|2)
}

dμ ≥ 0.

Using (2.12)we obtain that uwE(uw) = |w|2E(|u|2) on each An , and so uwE(uw) =
|w|2E(|u|2) on X . Consequently, |E(uw)|2 = E(|u|2)E(|w|2). Now, the desired
conclusion follows from (b). ��
Corollary 2.15 Let T = MwEMu ∈ B(L2(�)) and n ∈ N. Then T n is normal
(quasinormal, p-hyponormal, binormal) if and only if |E(uw)|2 = E(|u|2)E(|w|2).
Remark 2.16 Set K = {MwEMu : u, w, uw ∈ D(E), E(|u|2)E(|w|2) ∈ L∞(�)}.
Then K is closed under multiplication by scaler, multiplication and positive root
elements. Indeed, for Ti = Mwi EMui and Tj = Mw j EMu j in K, we have
Ti Tj = Mwi E(uiw j )EMu j ∈ K. Moreover, if 0 ≤ T = MwEMu ∈ K and n ∈ N then
by Corollary 2.9 and [11, Lemma 2.1] we have

T
1
n = M

g
1
n ūE(|u|2) 1−n

n
EMu ∈ K.

Also,

‖Ti Tj‖ = ‖E(|wi |2) 1
2 |E(uiw j )|E(|u j |2) 1

2 ‖∞
≤ ‖E(|wi |2) 1

2 E(|ui |2) 1
2 E(|w j |2) 1

2 E(|u j |2) 1
2 ‖∞

≤ ‖Ti‖ ‖Tj‖ < ∞.
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However, K is not closed under the sum. Put

L =
{

n
∑

i=1

Twi ,ui : n ∈ N, Twi ,ui = Mwi EMui ∈ K
}

.

Then L is an algebra. Moreover, (�n
i=1Twi ,ui )

∗ = �n
i=1Tūi ,w̄i and (�n

i=1Twi ,ui )Mν =
Mν(�

n
i=1Twi ,ui ), for all�

n
i=1Twi ,ui ∈ L and ν ∈ L∞(A). Thus,L is in fact a ∗-algebra

and L′ ⊇ {Mν : ν ∈ L∞(A)}, where L′ = {A ∈ B(L2(�)) : AT = T A, ∀T ∈ L}
is the commutant of L. Put R = {EMu : E(|u|2) ∈ L∞(A)}. Then by [8, Theorem
3.1.2], R′ = {Mν : ν ∈ L∞(A)} whenever μ(X) = 1. Since R ⊆ L, then L′ ⊆ R′.
Thus, A ∈ L′ if and only if A = Mν with ν ∈ L∞(A). Consequently, if (X , �,μ) be
a probability measure space, then L′, the commutant of L, is {Mν : ν ∈ L∞(A)}.
Lemma 2.17 [5,11] Let T ∈ K. Then the followings hold.

(a) The Aluthge transformation of T is ˜T = ME(uw)ū
E(|u|2)

EMu.

(b) If T has closed range, then the Moore–Penrose inverse of T is

T † = M ū
E(|u|2)E(|w|2)

EMw̄.

Corollary 2.18 The following assertions hold.

(a) {˜T : T ∈ K} ⊆ K.
(b) (K ∩ BC (L2(�)))† ⊆ K ∩ BC (L2(�)).
(c) For every T ∈ K, ˜T is always normal.
(d) U is normal if and only if so is T = U |T | ∈ K.
(e) T † is normal if and only if so is T ∈ BC (L2(�)).

Put g1 = E(|w|2)1/2E(|u|2)−1/2, g2 = E(|w|2)−1/2E(|u|2)−1/2 and a = E(|u|2).
Then by [11, Lemma 2.1] and Lemma 2.17, we have

|T |λ = (Mg1ū EMu)
λ = M(gλ

1a
λ−1)ū EMu;

|T |1−λ = M
(g1−λ

1 a−λ)ū EMu

and U = Mg2wEMu . It follows that |T |λU |T |1−λ = M(g1g2E(uw))ū EMu and
�λ(T ) = Mbū EMu , where b = g1g2E(uw) ∈ L0(A). Then, by Proposition 2.11(b),
�λ(T ) is always normal. Put N = {MwEMu ∈ K : MwEMu is normal}. Then
�λ(K) ⊆ N , and so N is invariant under �λ. On the other hand, if T = MwEMu ∈
N , then by Proposition 2.11(b), w = gū where g = E(|w|2)

E(uw)
χσ(E(uw)). It follows that

b = g1g2E(uw) = gE(|u|2)
E(|u|2) = gχE(|u|2) = g.

Consequently, �λ(N ) = N and all points of N are fixed points for the λ-Aluthge
transform �λ. Also, it is easy to check that |T |U = ˜T and by the conditional
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Cauchy–Schwarz inequality, ‖�λ(T )‖ = ‖E(uw)‖∞ ≤ ‖T ‖. So, if |E(uw)|2 =
E(|u|2)E(|w|2), then ‖�λ(T )‖ = ‖T ‖. Now, let U 2 = U∗. Then we have

Mg22wE(uw)EMu = Mg2ū EMw̄. (2.13)

Put fn = ū
√

E(|w|2χAn . After substituting fn in (2.13) and using the similar argument
in Proposition 2.11(b), we obtain g2wE(uw)E(|u|2) = ūE(uw). Then w = gū,

where w = E(uw)

g2E(uw)E(|u|2) .
We recall that L2(A) is a reducing subspace of T if and only if wχσ(E(u)) and

uχσ(E(w)) are A-measurable functions [12]. Now, let T ∈ N . Then by Propo-

sition 2.11(b), T = Mgū EMu where g = E(|w|2)
E(uw)

χσ(E(uw)). In view of matrix

representation of T and T ∗, L2(A) is invariant under T and T ∗ if and only if
(gū2)u1 = 0 and (gū1)u2 = 0. Thus, L2(A) is a reducing subspace for T if and
only if uχσ(E(u))∩σ(E(uw)) ∈ L0(A). Note that T |L2(A) = MwE(u) is always normal
and for MwEMu ∈ N , σ(E(uw)) = σ(E(|u|2)) ∩ σ(E(|w|2)).

Now, let T ∈ BC (L2(�)). Put z = χσ(K )

K , where K = E(|u|2)E(|w|2). Then, by
Lemma 2.17(b), T † = MzT ∗. Thus, the matrix representation of T † with respect to
the decomposition L2(�) = L2(A) ⊕ N2(E) is

T † =
[

Mz 0
0 Mz

] [

Mw1u1 EMw2u1
Mw1u2 Mū2EMw̄2

]

.

It follows that

T †(L2(A)) ⊆ L2(A) ⇐⇒ zw1u2 = 0

⇐⇒ zuχσ(E(w)) ∈ L0(A)

⇐⇒ uχσ(K )∩σ(E(w)) ∈ L0(A)

⇐⇒ uχσ(E(|u|2))∩σ(E(w)) ∈ L0(A), since σ(E(w))⊆E(|w|2).

These observations establish the following result.

Theorem 2.19 The following assertions hold.

(a) �λ(K) ⊆ N and �λ(N ) = N .
(b) For each 0 < λ ≤ 1, n ∈ N and T ∈ K, �λ(T ) = ˜T = ̂T = �n

λ(T ), where
̂T = |T |U is the Duggal transformation of T and �n

λ(T ) is the n-times iterated
λ–Aluthge transform of T .

(c) If U 2 = U∗, then T is normal.
(d) L2(A) is a reducing subspace of T ∈ N if and only if uχB ∈ L0(A), where

B = σ(E(|w|2)) ∩ σ(E(u)).
(e) Let T ∈ BC (L2(�)). Then L2(A) is a invariant subspace of T † if and only if

uχC ∈ L0(A), where C = σ(E(|u|2)) ∩ σ(E(w)).

Let T and S are in B(H). The equality (T S)† = S†T † is called the reverse order
low for the Moore-Penrose inverse whenever both sides of equality be well defined.
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Proposition 2.20 Let T = MwEMu, S = Mw1EMu1 and {T , S, T S} ⊆ BC (L2(�)).
Then (T S)† = S†T † if and only if |E(uw1)|2 = E(|u|2)E(|w1|2).
Proof Put K = E(|u|2)E(|w|2) and K1 = E(|u1|2)E(|w1|2). Direct computations
show that T † = M ū

K
EMw̄, S† = M ū1

K1

EMw̄1 and for all f ∈ L2(�) we have

(S†T †)( f ) = E(uw1)u1
E(|u|2)E(|w|2)E(|u1|2)E(|w1|2) E(w̄ f ); (2.14)

(T S)†( f ) = E(uw1)u1
E(|u1|2)E(|w|2)|E(uw1)|2 E(w̄ f ). (2.15)

Let |E(uw1)|2 = E(|u|2)E(|w1|2). Then by (2.14) and (2.15), (T S)† = S†T †. Con-
versely, let (T S)† = S†T †. Put

g = E(uw1)

{

1

KK1
− 1

E(|u1|2)E(|w|2)|E(uw1)|2
}

.

Then MgT ∗ = Mū((T S)† − S†T †) = 0, and so

‖MgT
∗‖ = ‖|g|E(|u|2) 1

2 E(|w|2) 1
2 ‖∞ = 0.

Consequently, g = 0 and hence |E(uw1)|2 = E(|u|2)E(|w1|2). ��
In view of matrix representation of T and T ∗ (2.2), we have

T ∗T =
[

M|u1|2E(|w|2) EMū1u2E(|w|2)
Mū2u1E(|w|2) Mū2E(|w|2)EMu2

]

.

Thus, forA 	= �, T ∗T , under any other conditions, can not be an isometry. However,
it can be partial isometry. A bounded operator T ∈ B(H) is a partial isometry if
‖T x‖ = ‖x‖ for all x ∈ N (T )⊥ or equivalently, T T ∗T = T . Powers and roots of a
partial isometry are not necessarily partial isometries.

Proposition 2.21 Let T ∈ K and K = E(|w|2)E(|u|2). Then the followings hold.

(a) T is a partial isometry if and only if K = 1 on σ(K ).
(b) If T n0 is a partial isometry for some n0 ≥ 2, then for all n ∈ N, T n is a partial

isometry whenever ‖T ‖ ≤ 1.

Proof (a) Direct computations show that T T ∗T = MKT . Thus, T is a partial isom-
etry iff MK−1T = M(K−1)wEMu = 0 iff ‖|K − 1|√K‖∞ = ‖MK−1T ‖ = 0 iff
K = χσ(K ).

(b) Put S = χσ(E(uw)). Using (a), |E(uw)|2(n0−1)K = χS . Since, by the conditional
Cauchy–Schwarz inequality, |E(uw)|2 ≤ K then Kn0 ≥ χS . On the other hand,
because K ≤ ‖T ‖2 then K ≤ χS whenever ‖T ‖ ≤ 1. Consequently, K = χS =
|E(uw)|, and hence |E(uw)|2(n−1)K = χS for all n ∈ N.

��
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Douglas in [4] showed that P ∈ B(L1(�)) is a contractive projection if and only
if P = MūEMu for some u ∈ L0(�) with |u| = 1. The following theorem gives a
necessary and sufficient condition for the Lambert conditional operator MwEMu on
L2(�) to be an orthogonal projection.

Theorem 2.22 Let T ∈ K be a nonzero operator. Then T is an orthogonal projection
if and only if w = ū

E(|u|2) .

Proof Let w = ū
E(|u|2) . Then it is easy to check that ‖T ‖ = 1 and T 2 = T = T ∗.

Conversely, let T be an orthogonal projection. Using (2.2), the equality T = T ∗ and
T 2 = T becomes:

[

Mw1u1 EMw1u2
Mw2u1 Mw2EMu2

]

=
[

Mw1u1 EMw2u1
Mw1u2 Mū2EMw̄2

]

. (2.16)

and

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Mw2
1u

2
1
+ EMw1u2w2u1 = Mw1u1 (1);

Mw1u1EMw1u2 + EMw1u2w2EMu2 = EMw1u2 (2);
Mw1u1w2u1 + Mw2EMw2u1u2 = Mw2u1 (3);
Mw2u1EMw1u2 + Mw2EMu2w2EMu2 = Mw2EMu2 (4).

We consider the following cases;

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(I) one of ui ’s is zero;
(I) one of wi ’s is zero;
(III) u2w2 ∈ N (E) and w1u1 = 1;
(IV) w2u2 ∈ L2(A) and w1u1 + w2u2 = 1.

(I) If u1 = 0 or u2 = 0, we have

u1 = 0
(2.16)=�⇒ w1u2 = 0

T 	=0=�⇒ w1 = 0
(4)=�⇒ E(u2w2) = 1 �⇒ E(uw) = 1.

u2 = 0
(2.16)=�⇒ w2u1 = 0

T 	=0=�⇒ w2 = 0
(1)=�⇒ u1w1 = 1 �⇒ E(uw) = 1.

(II) Suppose that one of wi ’s is zero. Then we get that

w1 = 0
(2.16)=�⇒ w2u1 = 0

T 	=0=�⇒ u1 = 0
(4)=�⇒ E(u2w2) = 1 �⇒ E(uw) = 1.

w2 = 0
(2.16)=�⇒ w1u2 = 0

T 	=0=�⇒ u2 = 0
(1)=�⇒ u1w1 = 1 �⇒ E(uw) = 1.

In both cases (III) and (IV), we have E(uw) = E(u1w1 + u2w2) = 1. On the other
hand, since T is self-adjoint, then by Proposition 2.11(a), T = Mgū EMu for some
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g = ḡ ∈ L0(A). It follows that 1 = E(uw) = gE(|u|2), and so σ(g) = X . Thus,
g = 1

E(|u|2) , and hence T = M ū
E(|u|2)

EMu . ��

Let T ∈ B(H). T is said to be generalized projection [19], if T 2 = T ∗. In this case,
T T ∗ = T ∗T = T 3, and so T is normal. So, when T ∈ K be a nonzero generalized
projection, then by Proposition 2.11(b), T = Mgū EMu for some g ∈ L0(A).

Proposition 2.23 Let g ∈ L0(A) and let T = Mgū EMu ∈ K be a nonzero generalized
projection. Then g = 1

E(|u|2)χσ(E(|u|2)).

Proof The equality T 2 = T ∗ implies that Mg2E(|u|2)ū EMu = MugEMu and hence
M(g2E(|u|2)−ḡ)MūEMu = 0. Then by multiplying both sides of this by Mg we obtain
M(g2E(|u|2)−ḡ)T = 0. Thus, ‖(g2E(|u|2) − ḡ)E(|ūg|2)E(|u|2)‖∞ = 0. Because
T 	= 0, g2E(|u|2) = ḡ. So if we multiply both sides of this by g, we conclude that
g ≥ 0 and g = 1

E(|u|2)χσ(E(|u|2)). This completes the proof. ��

Corollary 2.24 The following assertions hold.

(a) EMu ∈ B(L2(�)) is an orthogonal projection if and only if u = 1 on X.
(b) Let 0 	= T ∈ K with σ(E(|u|2)) = X. Then T is an orthogonal projection if and

only if T is a generalized projection on L2(�).

Proposition 2.25 Let T ∈ K . Then T is quasinilpotent if and only if E(uw) = 0 on
X.

Proof Let n ∈ N. By induction we have T n = M(E(uw))n−1wEMu , and hence ‖T n‖ =
‖(E(uw))n−1

√

E(|u|2)E(|w|2)‖∞. It follows that r(T ) = limn→∞ ‖T n‖1/n =
‖E(uw)‖∞ = 0, whenever E(uw) = 0 on X .

Conversely, suppose T is quasinilpotent. We show that E(uw) = 0. Suppose, on
the contrary that there exists λ 	= 0 and B ∈ A with 0 < μ(B) < ∞ such that

E(uw)χB = λχB . (2.17)

Multiplying both sides of (2.17) by λn−1w
√

E(|u|2 χB we obtain

E(uw))n−1wE(uw
√

E(|u|2 χB) = λnw
√

E(|u|2 χB . (2.18)

Put f = w
√

E(|u|2χB . Evidently, f is in L2(�). Also f is nonzero because if
f = 0, then |E(uw)|2χB ≤ E(|u|2)E(|w|2)χB = E(| f |2) = 0. So E(uw)χB = 0,
and hence λ = 0. But this is a contradiction. Now, from (2.18) we obtain that

0 = lim
n→∞ ‖T n f ‖ 1

n = lim
n→∞ |λ|‖ f ‖ 1

n = |λ|.

But again, this is a contradiction. Thus, E(uw) = 0 on X . ��
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Corollary 2.26 Let T ∈ K and n0 ≥ 2. If T n0 = 0, then E(uw) = 0.

Example 2.27 Let X = {1, 2, 3, 4},� = 2X ,μ({n}) = 1/4 and letA be the σ -algebra
generated by the partition {{1, 3}, {2, 4}}. Then L2(�) ∼= C

4 and

E( f ) =
(

1

μ(A1)

∫

A1

f dμ

)

χA1 +
(

1

μ(A2)

∫

A2

f dμ

)

χA2

= f1 + f3
2

χA1 + f2 + f4
2

χA2 ,

where A1 = {1, 3} and A2 = {2, 4}. Then matrix representation of E with respect to
the standard orthonormal basis is

E =

⎡

⎢

⎢

⎣

1
2 0 1

2 0
0 1

2 0 1
2

1
2 0 1

2 0
0 1

2 0 1
2

⎤

⎥

⎥

⎦

.

It can be easily checked that E2 = E = E∗, N2(E) = 〈(a, a,−a,−b) : a, b ∈ C〉,
R(E) = 〈(a, b, a, b) : a, b ∈ C〉 and R(E) ⊥ N2(E). For w = (w1, w2, w3, w4)

and u = (u1, u2, u3, u4) in C4 we have

T = MwEMu =

⎡

⎢

⎢

⎣

w1 0 0 0
0 w2 0 0
0 0 w3 0
0 0 0 w4

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

1
2 0 1

2 0
0 1

2 0 1
2

1
2 0 1

2 0
0 1

2 0 1
2

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

u1 0 0 0
0 u2 0 0
0 0 u3 0
0 0 0 u4

⎤

⎥

⎥

⎦

.

=

⎡

⎢

⎢

⎣

w1u1
2 0 w1u3

2 0
0 w2u2

2 0 w2u4
2

w3u1
2 0 w3u3

2 0
0 w4u2

2 0 w4u4
2

⎤

⎥

⎥

⎦

. (2.19)

Let ui 	= 0 and wi 	= 0. Put G = (E(|w|2))1/2(E(|u|2))−1/2. Then

G(1) = G(3) =
√

|w1|2 + |w3|2
|u1|2 + |u3|2 ;

G(2) = G(4) =
√

|w2|2 + |w4|2
|u2|2 + |u4|2 .

For 1 ≤ i ≤ 4, take Wi = G(i)ūi . Then we have

|T | = MW EMu =

⎡

⎢

⎢

⎣

W1u1
2 0 W1u3

2 0
0 W2u2

2 0 W2u4
2

W3u1
2 0 W3u3

2 0
0 W4u2

2 0 W4u4
2

⎤

⎥

⎥

⎦

. (2.20)
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Now, put K 2 = E(|w|2)E(|u|2). Then we have

K (1) = K (3) = 1
√

(|w1|2 + |w3|2)(|u1|2 + |u3|2)
;

K (2) = K (4) = 1
√

(|w2|2 + |w4|2)(|u2|2 + |u4|2)
.

Set Vi = K (i)wi . Then

U = MV EMu =

⎡

⎢

⎢

⎣

V1u1
2 0 V1u3

2 0
0 V2u2

2 0 V2u4
2

V3u1
2 0 V3u3

2 0
0 V4u2

2 0 V4u4
2

⎤

⎥

⎥

⎦

. (2.21)

Put bi = K 2(i). Then we get that

T † = MK 2T ∗ =

⎡

⎢

⎢

⎣

b1 0 0 0
0 b2 0 0
0 0 b1 0
0 0 0 b2

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

w̄1ū1
2 0 w̄3ū1

2 0
0 w̄2ū2

2 0 w̄4ū2
2

w̄1ū3
2 0 w̄3ū3

2 0
0 w̄2ū4

2 0 w̄4ū4
2

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

b1w̄1ū1
2 0 b1w̄3ū1

2 0
0 b2w̄2ū2

2 0 b2w̄4ū2
2

b1w̄1ū3
2 0 b1w̄3ū3

2 0
0 b2w̄2ū4

2 0 b2w̄4ū4
2

⎤

⎥

⎥

⎦

. (2.22)

Also, since

E(|u|2) =
( |u1|2 + |u3|2

2
,
|u2|2 + |u4|2

2
,
|u1|2 + |u3|2

2
,
|u2|2 + |u4|2

2

)

;

E(uw) =
(

u1w1 + u3w3

2
,
u2w2 + u4w4

2
,
u1w1 + u3w3

2
,
u2w2 + u4w4

2

)

,

then

E(uw)

E(|u|2) = (a1, a2, a1, a2), where a1 = u1w1 + u3w3

|u1|2 + |u3|2 and a2 = u2w2 + u4w4

|u2|2 + |u4|2 .

Consequently,

˜T = M E(uw)

E(|u|2)

(MūEMu) =

⎡

⎢

⎢

⎣

a1 0 0 0
0 a2 0 0
0 0 a1 0
0 0 0 a2

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

|u1|2
2 0 ū1u3

2 0

0 |u2|2
2 0 ū2u4

2
ū3u1
2 0 |u3|2

2 0

0 ū4u2
2 0 |u4|2

2

⎤

⎥

⎥

⎥

⎥

⎦
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=

⎡

⎢

⎢

⎢

⎢

⎣

a1|u1|2
2 0 a1ū1u3

2 0

0 a2|u2|2
2 0 a2ū2u4

2
a1ū3u1

2 0 a1|u3|2
2 0

0 a2ū4u2
2 0 a2|u4|2

2

⎤

⎥

⎥

⎥

⎥

⎦

. (2.23)

Now, set u = (1, i, 2, 2i) andw = (i, 1, 2i, 2). It is easy to check thatG = (1, 1, 1, 1),
K = ( 25 ,

2
5 ,

2
5 ,

2
5 ), W = ū and V = 2

5w. Then by (2.19), (2.20) and (2.21) we have

T =

⎡

⎢

⎢

⎣

i
2 0 i 0
0 i

2 0 i
i 0 2i 0
0 i 0 2i

⎤

⎥

⎥

⎦

;

|T | =

⎡

⎢

⎢

⎣

1
2 0 1 0
0 1

2 0 1
1 0 2 0
0 1 0 2

⎤

⎥

⎥

⎦

and U =

⎡

⎢

⎢

⎣

i
5 0 2i

5 0
0 i

5 0 2i
5

2i
5 0 4i

5 0
0 2i

5 0 4i
5

⎤

⎥

⎥

⎦

.

It follows that U |T | = |T |U , T ∗ 	= T , but T T ∗ = T ∗T , and so ˜T = T and
|E(uw)|2 = E(|u|2)E(|w|2). Also, by (2.22) and (2.23) we have

T † = 4

25

⎡

⎢

⎢

⎣

−i
2 0 −i 0
0 −i

2 0 −i
−i 0 −2i 0
0 −i 0 −2i

⎤

⎥

⎥

⎦

.

Finally, take u = (i,−1, 2i, 3) and w = (−2
5 i, −1

5 , −4
5 i, 3

5 ). Direct computations
show that

T =

⎡

⎢

⎢

⎣

1
5 0 2

5 0
0 1

10 0 −3
10

2
5 0 4

5 0
0 −3

10 0 9
10

⎤

⎥

⎥

⎦

= T 2 = T ∗.

Indeed, E(|u|2) = ( 52 , 5,
5
2 , 5) and ū

E(|u|2) = w. It follows by Theorem 2.22 that
T is a orthogonal projection. Moreover, N (T ) = 〈(−2a, 3b, a, b) : a, b ∈ C〉,
R(T ) = 〈(a, b, 2a,−3b) : a, b ∈ C〉.

Let (X , �,μ) be a complete probability space We recall that an A-atom of the
measure μ is an element C ∈ A with μ(C) > 0 such that for each F ∈ A, if F ⊆ C
then either μ(F) = 0 or μ(F) = μ(C). LetA = {∅, X}. Then X is anA-atom. Since
every L2(A)-function is constant on any A-atom, then we have

E( f ) = E( f )μ(X) =
∫

X
E( f )dμ =

∫

X
f d A, f ∈ L2(�).
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Since E is a contraction, E( f ) ∈ L∞(�) whenever so is f . But the converse, in
general, is not true. For this, let f ∈ L2(�) \ L∞(�). Since |E( f )| ≤ E(| f 2|)1/2 =
(
∫

X | f |2dμ)1/2 = ‖ f ‖2 < ∞, then E( f ) ∈ L∞(�) whence f is not in L∞(�).
Now, letA = 〈Xi 〉i∈I be the σ -algebra generated by the countable collection of the

non-null disjoint measurable subsets of X . As the same way, E( f ) is constant on any
A-atom Xi . Then for all f ∈ L2(�) and i ∈ I , μ(Xi )E( f )χXi = (

∫

Xi
f d A)χXi . It

follows that

E( f ) =
∞
∑

i=1

1

μ(Xi )

(∫

Xi

f dμ

)

χXi .

Example 2.28 Let X = [0, 1], dμ = dx , � be the Lebesgue measurable sets and let
A = {∅, X}. Then T f (x) = w(x)E(u f )(x) = w(x)

∫ 1
0 u(x) f (x)dx and T ∗ f (x) =

u(x)
∫ 1
0 w(x) f (x)dx for all f ∈ L2(�). In this case f isA-measurable if and only if

f is a constat function. So, L2(A) ∼= R andN2(E) = { f ∈ L2(�) : ∫ 1
0 f (x)dx = 0}.

Using the previous results, AT = T A if and only if A = α I for some α ∈ R.
Put u(x) = −2x2 − x + 1, w(x) = 1

x+1 . Then E(uw)(x) = ∫ 1
0 (−2x + 1)dx = 0,

E(|u|2) = 4
3 and E(|w|2) = 1

2 . Thus, T f (x) = 1
x+1

∫ 1
0 (−2x2 − x + 1) f (x)dx with

‖T ‖2 = 2
3 is quasinilpotent and so Spec(T ) = {0}. Also, T T ∗ 	= T ∗T but T has

closed range, T † f (x) = 3
2 (−2x2 − x + 1)

∫ 1
0

f (x)
x+1 dx and ˜T = 0.

Now, if we take u(x) = 2x+1 andw(x) = ex , thenwe have u1(x) = E(u)(x) = 3,
w1(x) = E(w)(x) = e−1, u2(x) = 2x −2 and w2(x) = ex − e+1. Thus the matrix
representation of T with respect to the decomposition L2(�) = R ⊕ N2(E) is

T

[

f1
f2

]

=
[

3(e − 1) f1 2(e − 1)
∫ 1
0 (x − 1) f2(x)dx

3(ex − e + 1) f1 2(ex − e + 1)
∫ 1
0 (x − 1) f2(x)dx

]

,

where f1 = ∫ 1
0 f (x)dx and f2 = f − ∫ 1

0 f (x)dx .
Finally, if u = √

2χ[0, 12 ] and w = √
3χ[0, 13 ] then E(|u|2) = 1 = E(|w|2) and

|E(uw)| =
√
6
3 . Thus, T is a partial isometry but neither T 2 nor T n is a partial

isometry.
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