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Abstract
In this paper, some characterizations of the Drazin and the Moore—Penrose inverses
of the conditional type operators on L?(X) are established.
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1 Introduction and Preliminaries

LetH and C be separable complex Hilbert spaces with inner product (, ).Let B(H, K)
be the set of all bounded linear operators from H into K and let B¢ (H, K) be the
subspace of all T € B(H, K) such that the range of T is closed in K. If H = K,
we write B(H) = B(H, K) and Bc(H) = Bc(H, H). For T € B(H, K), N(T) and
R(T) denote the kernel and the range of T, respectively. The Moore—Penrose inverse
of T € B(H, K) is the operator S € B(/C, H) which satisfies the Penrose equations

(DTST =T, 2)STS=S, Q) (TS)* =TS, (4) (ST)* =ST. (1.1)
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The Moore—Penrose inverse of T exists ifand only if R(T') is closed in /C. If the Moore—

Penrose inverse of T exists, then it is unique, and it is denoted by 77. Let T'{i, . . ., j}
denote the set of all operators S which satisfy the equations (1) < (i), ..., (j) =< (4).
In this case S € T'{i,..., j}isa{i,..., j}-inverse of T and is denoted by 7 (>-/)

Noth that 70234 = 77 An element T € B(H) is said to have a Drazin inverse, or
T is Drazin invertible if there exists S € B(H) such that STS = S, TS = ST and
T*+1S = T for some k € N. The minimal such & is called the Drazin index of T,
and will be denoted by ind(T). If T has Drazin inverse, then it is unique and denoted
by TP. When k = 1, the Drazin inverse reduced to the group inverse and it is denoted
by T#. Recall that asc(T) and des(T), the ascent and descent of T € B(H), is the
smallest non-negative integer n such that V' (7") = N (T" 1) and R(T") = R(T"+),
respectively. Itis well known that asc(7') = des(T") if asc(T') and des(T') are finite (see
[16]). For T € B(H), TP exists if and only if T has finite ascent and descent. In this
case, ind(T') = asc(T) = des(T) = n. For other important properties of Tt and TP,
seee.g. [1,3]. Let H = H1 & Ha, T € B(H) and let Pj : H — H be an orthogonal
21 22), where T;; : H; — H;
is the operator given by 7;; = F;T P; |y;. In particular, T(H;) € H; if and only if
T»1 = 0. Also, H; reduces T if and only if 712 = 0 = T»;.

Let (X, X, u) be a sigma-finite measure space and let .4 be a sigma-finite subalgebra
of X. The space L3(X, A, 4| 4) is abbreviated by L?(A) where I 4 is the restriction
of i to A and its norm is denoted by ||.||2. All comparisons between two functions
or two sets are to be interpreted as holding up to a u-null set. We denote the linear
space of all finite-valued X -measurable functions on X by L%(X). The support of a
measurable function f € LO(X) is defined by o(f) = {x € X : f(x) # 0}. An
A-atom of the measure u is an element B € A with w(B) > 0 such that for each
A € A, if A C B then either u(A) = 0 or u(A) = wu(B). As is well known, a
sigma-finite measure space (X, A, u| ) is decomposed into two disjoint sets ¥ and
Z, where Y does not possess any 4-atoms and Z is a countable union of A-atoms of
finite measure. Moreover, we can easily check that f|,, the restriction of f € LO(A)
to an A-atom B, is constant (see [18]). Let f € L*(X). Then E(f), the conditional
expectation of f, is the unique .A-measurable function such that

projection onto H; for j = 1,2. Then T = (

/fduzf EA(f)dp, VYA e A. (1.2)
A A

Put D(E) = {f € L%Z) : E(|f]) € L°(A)}. Then D(E), the domain of E, contains
(LP(Z) : 1 < p < oo} U{f € LYZ) : f > 0} (see [7]). As an operator on
LA(Y), E = EA is an orthogonal projection of L%(%) onto L2(A). Conditional
expectation operator E will play a major role in our work. A detailed discussion and
verification of most of properties of E may be found in [2,4,8,11,13,14,17]. Those
properties of E used in our discussion are summarized below. In all cases we assume
that f, fg € D(E).

o If g is A-measurable, then E(fg) = E(f)g.
o o(E(]f])) is the smallest .A-measurable set containing o ( f).
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o (Conditional Cauchy-Schwarz) |E(fg)|> < E(|fI>)E(lg|?).

From now on we assume that {u, w,uw} < D(E). Operators of the form
MyEM,(f) = wE(uf) acting in L*(X) with D(M,EM,) = {f € L*(2) :
wE(uf) € L*(X)} are called weighted conditional type operators. Several aspects
of this operator were studied in [6,8—10,13]. Put K = E(|u|2)E(|w|2). Estaremi [5]
proved that M, EM,, : D(T) — L2(2) is densely defined if and only if K — 1 is
finite valued. Moreover, T := M,,EM, € B(L*(%)) if and only if D(T) = L*(%).
In this case T* = Mz EMy and | T |2 = || K || so-

Conditional operators and the various types of generalized inverse have been widely
used in practise. In the next section we prove some basic results on the Drazin and
Moore—Penrose inverse of conditional type operators on L2 (). Moreover, we provide
a necessary and sufficient condition for special type products of general operators so
that the reverse order low for the Moore—Penrose inverse is satisfied. Finally, one
example is provided to illustrate the obtained results.

2 Characterizations

Put K = E(Ju|>)E(Jw|?) and set £ = {My,EM,, : u, w,uw € D(E), K € L®(2)}.
For{M,EM,, M, EM} C L, (My,EM,)(M,EM;) = MyEur)EM; € L and hence
L is closed under multiplication. So, for T € BC(LZ(E)), one might guess that
(TT, TP} C L. Recall that if R(T) is closed, then 7 is bounded below on N (T)L,

i.e., there is ¢ > 0 such that||Tf|| > c|| f| for all f € N(T)*. Now we shall prove
the following lemma.

Lemma2.1 Let T = MyEM, € Bc(L*(X)). Then K is bounded away from zero on
o(K).

Proof Suppose K is not bounded away from zero on o (K). Then for fixed ¢ > 0,
there exists A € A with A € S and 0 < u(A) < oo such that Kx4 < e. Put

fo =i/ E(w|?) xa. Then for each g € N(T) we have

g, fo)l* |/ug¢E<|w| ydpl* = |/E<wE(|w| )g)dul

5/ E(w| >|E(ug)|2du=/ |wE<ug)|2du=/ TgPdu = 0.
X X X
It follows that fo € L>(Z) NN (T)* and satisfies

ITfoll* = lwE (Jul>)V E(w|®) xall* = /X K2 xadp
S/KXAdll«:S/ liv/ E(lw|?)xalPdp = el foll*.
X X

But this is a contradiction. O
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Now, for T € B¢ (L*(%)), set S = Mx(,(,() T*. Then by Lemma 2.1, S € B(L?*(%))
and TST = MX{T(]() (TT T) MX{T(]() (MKwEM ) = UUX (K)EM =T. AISO we
have ST S = MXU(K) (T*TT*) = MXU(K) (MKMEMUJ) = MXU(K) = S, (TS)* =

(M o) TT*)* = TS and (ST)* = (an(m T*T)* = ST. Thus, S = T7. Since
K K

T* = MﬁEMIZ)’ O'(IZ) - G(E(|M|2)), Xo(K) = XG(E(\M|2))XU(E(|w\2)) and that TT has
closed range, then it x; (g (ju2y) = 4 and

T = EMy € Be(L*(X)). 2.1)

M i, guiy
E(ul2)E(w|?)

In particular, if # = w then it is easy to check that 7 and 7" are positive operators.

Proposition2.2 Let T = My,EM, € BC(LZ(E)) and let S = M EM, € L. If
Eww)Ewa) = 1 and wE (ue) = a E(uw), then TP = S € Bc(L%(X)).

Proof By hypothesis we have

STS = (My EMy,)(MyEM,)(MyEM,)

= aE(uw)E(uoz)EMu
=MyEM, =S,

TS = MuEM,)(M,EM,)
= MyEua)EM,
= MuyEuw) EM,
=M, EM,M,EM, = ST.

Since for each k € N, TX = M, ((,)k-1 EM,,, we obtain

TS = (Mg oyt EMu) (Mo EM,)

= Mw(E(uw))kE(uot)EMM
k
= Mw(E(uw))/‘_lEMM =T".

Note that the equality E(uw) E (ue) = 1 and the conditional Cauchy-Schwarz inequal-
ity implies that o (E(uw)) = X and E(|a|)E([u|>) > |E(au)|* = |Euw)|™> >
K=2 > ||IT||~*. Moreover, since ind(T) = 1,then T? = T* = § € Bc(L*(X)). O

Set R = {EM, : u € D(E) and E(|u|*) € L>(A)}. Then by [8, Theorem 3.1.2],

={M, : v € L®(A)}, where R = {A € B(L*(X)) : AT = TA, VT € R} is
the commutant of R. It follows that £’ = R’. Let T € £ be Drazin invertible. Since
TTP = TPT, then it seems that T2 has a factorization of the form M, T for some
veL®A.

Relative to the direct sum decomposition LZ(Z) = R(E) @ N(E), any element
f of L>(X) can be written uniquely as f = fi + f> where fi = E(f) € L*(A)



Generalized inverses... Page50f17 71

and f = f — E(f) € N(E). Since E(If|*) = E((fi + f)(fi + f2)) = |/il* +
E(|21%), then max{| f1|%, E(| f>1*)} < E(|f]?). In the following we calculate matrix
representation of the Drazin inverse of T € L with respect to the decomposition
L?(X) = R(E) ® N(E).

Theorem2.3 Let T = My,EM, € L and let C = o (E(uw)). If E(uw) is bounded
away from zero on C, then T is Drazin invertible and

M""l“IXC EM“)]MZXC

D __ E(uw)2 E(Mw)2 —
TP — =M x T. (2.2)
Muwyuixc M wxe EM,, (Eww)?
E(uu,')2 E(uw)2

In particular, EP = E.

Proof First, we recall that (see [10]) the matrix representation of T = M, EM, € L
with respect to the direct sum decomposition L3*(X) = R(E) ® N(E) is

Mll) u EMU) u
T = 1 142 . 2.3
(MWI szEMu) 2.3)

Forv € L*°(A), set

S = Mwlulv EMwluzv
szulu szuEMuz '

Since v is an A-measurable function, then 7S = ST. Using (2.3), we have

T2:(Mwlul(w1u1+E(U)2uz)) EMu s (wyuy+E(wou) )
Moy (wiur+Eauz)) M (wyur+E wouz)) EMu,

Puta = wiu; + E(wauz). Thena = E(uw) € L*°(A) and

T2 — Mwlula EMwluza
szula szEMuza '

By induction on k € N, it is easy to check that

Tk — Mwlulak*I EMwlugak*I
My, a1 My, g1 EMy, ’

wauq

and so

Tk+1S — MUJ]M](I/‘ EMUJ]uzak MWIMIV EMU)IMZV
Myt EMuy ) \ Murs Moy EM,,,

wouak w

_ <Mw1u1akv(w1u1+E(wzu2)) EM y 1yakv(wyuy +E (wan)) )
szulakv(w1u1+E(w2u2)) szakv(w|u|+E(w2u2))EMM2
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_ My uyak+ty EMy yqe1,, )
M szakHUEMu2

woujaktly

Thus, TS = T* whenever a*t1v = a*~!. Hence

M wiu1xs) EMWI”ZXG(a)

S = %
M"’Z“lxn(a) M“ZXU(a) EMuz

a

Infact, S = M@ T, and so ST S = S. Consequently, S = TP. O
a2

Recall that if T = U|T| is the polar decomposition of T € B(H), then T =
|T|%U|T|% is called the Aluthge transformation of 7. Put g = Eww)ic

Eul) By a sim-
ilar argument used in Theorem 2.2, we have

~ M EM
T = g111 &142 ) = ME(uw)z? EM,. (24)
(Mgzul Mg, EMy, E(jul?) !

Theorem2.4 Let T = My,EM, € L and let |E(uw)| > & for some § > 0 on
o (E(uw)). Then T is Drazin invertible with ind(T) = 2.

Proof Puta = E(uw) and let g € R(T?). Then g = waE (uf) for some f € L*(X).

Since
fxa<a> ) | f1? I1£113
/ | I"du  JaP=D nan = s2n—1 =%

then

¢ = wa"E (um) — T+l (M> e R(T"™ ).
an—l an—l

Thus, R(T?) = R(T"*!) forall n € N. Now, let T7"*! f = 0. Then wa" E (uf) = 0.

Put i = %24 Then ||h]|oc < 57 < 00, and so

Xa(a)

T?f =waE(uf) = “~Zwa"E(uf) = MyT""' f = 0.

Hence, N(T"t1) = N(T?) for all n € N. Consequently, ind(T) = asc(T) =
des(T) = 2. O

Lemma 2.5 Let {u, w, uw} C D(E).Then the following assertions hold.

(2) E@uw) =uEw) iff uxpw) € L°(A).
(6) My, = 0 iff wouy = 0iff wxew) € LO(A).
(©) EMy,u, =0 iffwinz = 0 iffuxeuw) € LOCA).
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Proof (a) Let uxgw) € L%(A). Then uE(w) = uxewyEw) = E@wXEw)) =

E(uw). Conversely, if E(uw) = uE (w) then ux @) = EE(Z:,U))XE(w) e LO(A).

(b) Let My, (f) = 0 forall f € L%(A). Since A is sigma-finite, there exists
{Ay}n € Asuchthat X = U,A,, A, C A,y with u(A,) < oo forall n € N. In
this case x4, /" xx.Put f = xa,. Then woujxa, = 0. It follows that wou; = 0 as
n — o0. The converse is obvious. On the other hand,

wau; =0 < (w — Ew))E(m) =0
<— wE) = E(w)E(u)
<— wEw) = E(WE(u))
< wE(E)) = E(WE))
& wxew € LA, (by part (a)).

(c) Let My, EM,, = EMy,,, = 0 on N(E). Then wiu E(uzf) = 0 for
all f € N(E). Put f = wiizx4, as in the previous part of the proof. Then
IF1? = [y, lwilPluzlPdp < [, EqQwP)E(ui)dp < |TIIPu(A,) < oo, and
so f € N(E) N L?(X). By hypothesis, we have wlqu(|u2|2)w1XAn = 0. Since
o(up) C 0(E(|u2|2)), then wjuy = 0 as n — o0o. Moreover,

wiuy =0 E(w)(u — E(m)) =0
— uE(w) = EWEw))
> UXEw) € LO(A), (by part (a)).

This completes the proof. O

Wil Xo@ _ () — Y241 Xo(@) __mwn =
Note that —=5== = 0 = —23 E(w)E(u?) — 0

U Wi .
EwDED " So, by (2.1),(2.2),(2.3) and Lemma 2.5 we have the following corollary.

iff wiuy = 0 = wouy iff

Corollary 2.6 L?(A) is a reducing subspace for T € L iff it is a reducing subspace
for TP iff it is a reducing subspace for T™.

Lemma2.7 [10] Let T = MyEM, € L. Then T is normal if and only if T =
Moi EM,, for some g € LO(A). In this case |E(uw)|* = E(|u|*)E(Jw|?).

Take K := E(lu|®) E(Jw|?) and leta := E (uw) be bounded away from zero on its
support. Put

Xo(K) Xo(a) a

r==——= 5= , = .
K a? E(ul?)

Recall from (2.1), (2.2) and (2.4) that TT = M, T*, TP = M,T and T = M;EM,.

So,if K =1=aonX,thenT" = T* and (TP =T" = My T =T foralln € N.

Now, suppose a is bounded below on X. Then by the conditional Cauchy-Schwarz



71 Page8of17 H. Emamalipour et al.

inequality, o (K) = X, [lall2, < IKlloo = IT||* < oo and hence {a, 1} € L>®(A)
and Ma_1 =My, € B(L%(X)). So we have the following corollary.

Corollary2.8 Let T = M,EM, € L and let a = E(uw) be bounded below on X.
Then the following assertions hold.

(a) Foreachn e N, (TP = Ma‘(”“)xa(a)T = (TP

) If(TPY' =TP =T, thena = 1 on o (a).

() IfTT =T* thenr =1ono(r).

(d) Let o(w) C o (a). Then TP is normal iff T is normal iff T is normal iff T'T =
TTT.

Proof (a) Since T" = M u-1,,EM,,, then we have

(TD)I’l — (MST)FL = Msn Tn = M(XL(Z‘I))nMa"’lT

=M EM, = (Mu-1,EM,)P = (TMP.

wa—1 Xo (a)
a2n

(b) Let TP = T. Then M(afzxn(a)—l)T(f) =0, forall f € L*(Z). Put f =
wy E(lul*)xa, € L?(X), as in the proof of Lemma 2.5. Then we have

@ *Xo@ — D(wavE(ul?)xa, =0
% (@ *Xo@ — Da*VE(u?) =0, asn — oo

— @ = Do =0.=a=1, ono(a).

(c) Let TT = T*. Then M,_1T*(f) = (r — DaEWwf) = 0, for all f € L*(%).
Again put f = wy/E(lu|?)xa,. Then (r — D E(|lw|?)y/E(Ju|?) = 0asn — oo.
Multiplying by u and then taking E, we obtain (r — 1)%‘/E(|u|2) = 0, and so
r=1ono(r).

(d) Set N = {T = MyEM, € B(L*(X)) \ {0} : T isnormal}. As it turns out,
MyEM, € N if and only if w = gii for some g € LO(A). Let T € N.
Then {M,T*, M;T} € N and T'T = M, T*T = TM,T* = TT". Let
TP = My,EM, € N, then sw = gii for some g € L°(A). Since o (a) = o (s),
it follows that w = Y,(@w = (@)ﬁ and hence {7, T"} € N. Similarly,
if T € N, then M,T = M,,EM, € N and hence rw = gji for some
g1 € L%A). Since o(a) € o(K) = o(r), then w = Xo(HW = (W)ﬁ,
and so {T, TP} € N.Now, let TTT = TT7. Then M, (T*T — TT*) = 0, and so

M,y EMy — Mwxoy EMyp = 0.
E(u?) E(jw|?)
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Put f = i/ E(Jw|?)xa, € L*>(2), as in the proof of Lemma 2.5. Then we have

- a
UXo(K)V E(|U)|2 = Ww, asn — oQ.
w

2
YoV EWWD) 5o hence T e N

Sow = Yo@yw = = O

For T € B(H), the spectrum of T is denoted by o (T') and r(T') its spectral radius.
In [10] it was proved that the spectrum of T = M, EM,, € L is the essential range of
E(uw). Recall from (2.1), (2.2) and the conditional Cauchy-Schwarz inequality, we
have the following corollary.

Corollary 2.9 Let T = MyEM, € L. Then o (T) \ {0} = o(T) \ {0},

; B E(uw) .
o(T")\ {0} = ess range (—E(|u|2)E(|w|2)) \ {0};
o (TP) \ {0} = ess range (%) \ {0},

and so max{%,r(TT)} < r(TP). Moreover, if k = E(ul>)E(lw|?) > 1 then
r(TYY < r(T) and ifk < 1, then r(T) < r(T").

For u,w € L*(X) \ {0}, the rank-one operator u ® w on L*(X) is defined by
(uQ@w)f = (f,wu, forall f € L>(X). Let w(X) = 1 and Ay = {#, X}. Put
EA0 = E,. Then by (1.2) we have [y Eo(fdn = [y fdu, for all f € L*(Z).
Since X is an Ap-atom, then the Ap-measurable function Eg(f) is constant on X. It
follows that Eo(f) = fX fdu, for all f € L>(%). In this case the nonzero operator
T = M,,EqoM,, is bounded on L2(E) if and only if

Eo(lul*)Eo(jw|*) = (/X Iulzdu)(/x lezdu) = JJul} w3 < .

Note that for all f € L3(D), Tf=wEyuf)= wa ufdu = (f,u)w =(wu)f.
Thus, 7 is a rank-one operator with ||| = [u|2||w]|2. Since R(TT) = R(T*) =
Ru ® w), then TT is also a rank-one operator. Put TT = i @ w, for some w’ €
L?(%). To obtain T7 it is enough to find the element w’ in L*(%). Since TTT =
(W)@ ®w) = |lul*(w @ w'), then we have TT T = |[u||?(w @ w)(w ® i) =
lluel|? (w, w')(w & ir). It follows that TTTT = T if and only if |u|*(w, w’) = 1.

Hence w’ = m, andso | T7|| = |IT||~" (see [12]). From this, it is easy to check
2 2

that 77 is satisfy the other equations in (1.1). Thus,

. 1
T f=i® —2 ) f = / )i
U S T (nun% i J T

u
~ Eo(jul®) Eo(lw[?)

E@f) =M1 T"f,
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where f € L*(2) and K = Eo(Jul>)Eo(|w®) = [ul3 llwl5 < co. Put C =
o(Eg(uw)) and set S = M, (w ® u), where v = Since forn € N, (w ®

)" = (w, 1) (w ® i) and

n+1 n+1
—n (Eo(uw)) e
v(w, i) +1=v</xuwdu> =W=<w,u> "

XC
(Eo(uw))?”

then 7"+1S = My iyt (W @ ) = My, gyn-1(w ® ) = T". Also, it is easy to
check that TS = ST and STS = S. Thus, T? = S.

Now, fix any n € N and let A be the o-algebra generated by the partition
{A], -+, A,) of X. Then

n

1
BN =3 (A)</ fdu)xA,., fe L.

It follows that

1= (MBS = Zu(A)(/””“)

XA,,

{XA‘ ® ua ) + -+ B

® (XA,,’D} /-
u(Ar)
Putu; = xa,u, w; = xa,w and x4, LZ(E) = Lz(Ai). Then the matrix representation
T with respect to the decomposition L*(X) = L2(A)) @ -+ @ L*(A,) is T =

w QU Wy Quy

diag(ucany -+ ua,) ) and so
i [ @ w)u(Ar) (itn @ wn) L (An)
T’ =dia 2 2 2 2
llur [l lTwrllz lln 13 llwnll3

where |u;||? = Ja lu|?>dp and ||w;||> = I, |w|?d . By a similar argument as above,
. - X

we obtain TP = 31| M, (w; ® ii;), where v; = m and C; = o (E, (u;w;)).

These observations establish the following result.

Theorem 2.10 Let Ty = M, EoM,, and T, = M, E, M, be nonzero elements in L.
Put C = o (E(uw)). Then Ty = w ® u is a rank-one operator and

M i b _y _
0= 3 ; 0 = xc 2(w®u).
l[ull5 llwll3 (Eguw))

Moreover, if u; = ﬁ|A[, Wi = Wi, and C; = o (E,(u;jw;)), then

n A
Tn’r — Z L)z( ® w;);

i—1 ||Mz||2 lw 1”2
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n
TP = ZM xe, (W @ u;).

n
=1 (E@jw)?

Example 2.11 Let X = [0, 1], du = dx, T be the Lebesgue measurable sets and
let Ag = {#), X} and E0 = Ey. Set u(x) = 3x2 and w(x) = x2. Then for each
f € L*([0, 1]) we have

1
Tf(x)=wx)Eo(uf)(x) = w()C)/0 u(x) f(x)dx

1 1
= <f 3x2f(x)dx> x2= </ xzf(x)dx> 3x2 = T* f(x).
0 0

It is easy to check that 7K+ = (%)kT, lull3 = %, w3 = % and Eg(uw) = % =
o (T). Then by Theorem 2.10, T7(f) = 2 (i ® w)(f) = 23—5(f01 x2 f(x)dx)x>2. It
follows that 77 = %T =TPD,

For T, S € B(H), the equality (71 7>)? = TP TP is called the reverse order low for
the Drazin inverse whenever both sides of equality are well defined. Since the reverse
order law does not hold for various classes of generalized inverses, so a significant
number of papers investigated the sufficient or equivalent conditions such that the
reverse order law holds (see [3] and reference therein). In the following we first prove
a result concerning the reverse order law (TS)" = STTT for S, T € B(H) under a
certain condition.

Lemma2.12 Let T € B(H,K) and S € B(K, H) be operators such that T is invert-
ible and T, S and ST have closed ranges. Then T-1st e ST{1, 2, 3}. Furthermore,
ifT~' = T*, then (ST)" = T7157.

Proof Since ST(T~'SHST = ST, (T 'SHST(T~'s") =TSt and ST(T~'ST) =
SST is self adjoint, so T-1s" e ST{1,2,3}). Now, let T~! = T*. Since S'S is
self-adjoint then (T~'ST)ST)* = T*STS(T~1)* = (T7'S")ST), and so (ST)" =
718", o

Theorem 2.13 Let T € B(H,K) and S € B(K, 'H) be operators such that T, S and
ST have closed ranges. If T\ = Tyr(r+ : R(T*) — R(T) is an isometry, then
(ST)' = T7S" if and only if S§S1 = 0, where S1 = Sjr(r) : R(T) — R(S) and

Proof Since H = R(T*) ® N(T) = R(S) & N(5*) and K = R(T) & N (T*), the
matrix decompositions of T and § with R(T*) BN (T)—> R(T)BN (T*)—> R(S)®

N (S*) are:
(T 0. . ST S
T_<O 0>’ S_<0 0)’
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where T; is invertible. It follows, see [3], that
(T 0). g _(SipTh 0
0 0)° s3p~t 0)°
where D = S§1S7 + 5287 is invertible and positive in B(H). Thus, TisT =

T, ' S¥ D' @0. On the other hand, by Lemma 2.12, we obtain (ST)" = (8,71 @0)" =
ST e0= TflSlT @ 0. Consequently,

(ST) = T7s" = stD~1 = 5.
— St=S/D
= St =S](S15F + 5285 = ] S15F + 55,83
= S1 =S58 + $285(SHT = 81 + $285(5HT
= 585 (SHT=0
= R(S1) = R((ST) S N($253) = N(53)
— 5551 =0.

This complets the proof. O

It is a worth nothing that under assumptions of Theorem 2.13, (ST)" = TTST if and
only if R(ST) = R(S1) € N(53) = (R(So)* = {Sx : x € N(T*)}*. Also, using
matrix representation of 7 : R(T*) @ N(T) — R(T) @N(T*)and TT, TT = T* if
and only if Tfl = 7" if and only if 77 is unitary.

The expressions for the generalized Drazin inverse of the product and the sum were
studied by many authors (see e.g. [15]). In the following we consider the product and
additive Drazin problem for conditional operators.

Lemma2.14 Let T\ = MyEM, and T, = MEM, be in L. If E(rw)E (us) is
bounded away from zero on its support, then T\ T, is Derazin invertible.

Proof Put C = o (E(rw)E(us)). Since T1T>» = MyE(us)EM,, then by Theorem 2.2
we have

(TP =M__xc  Ti\Hh=M__x  MyEM,.

(E(rw)E (us))? (E(rw)2 E (us)
This completes the proof. O

Theorem 2.15 Let Ty = My EM, and T, = MgEM, be in L. If E(uw), E(rs) and
E(rw) E(us) are bounded away from zero on their supports, then (T} )P = T2D TID
if and only if T\ commute with T, and

(EGrw))*(Eus))?*xans = (E@uw))*(E(rs))*xc,

where A = o (E(uw)), B =0(E(rs)) and C = o (E(rw)) No (E(us)).
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Proof By Theorem 2.3, T\” = M,Ti and T, = MgT,, where o = (E(l)i—fu))z and
B = (Ez‘r# Since T1T» = My Ews)EM,, then by Lemma 2.14, T, T is Drazin
invertible and (7172)? = M, T\T>, where y = m
order low (T1 T»)P = T2D TlD holds if and only if 77 and 7> commute and o8 = y.
This completes the proof. O

Thus, the reverse

Theorem 2.16 Let T} = My,EM, and T» = MgEM, be in L. Then the following
assertions hold.

(@) If s = w and E(uw) + E(rw) is bounded away from zero on its support, then
T, + T> is Drazin invertible.

®) If Emw) = 0 = E(rs) and E(ur)E(sw) is bounded away from zero on its
support, then T 4+ T, is Drazin invertible with ind(T) + T>) = 1.

Proof (a) Put S = E(uw) + E(rw). Using Theorem 2.2 we have

(T + T2)® = (MyEMusr)® = Mo My EMusr.
N

(b) Put K = E(ur)E(sw) and define S = M x,x) (T} + T»). Since the A-measurable
K

function K is bounded away from zero on its support, then S € B(L*(%)) and

S(Th +T») = Mxox) (T7 + T2)2 = (T + Tr)S.
K

Since T2 = My Euuw) EM,=0 and T} = Mg r5)EM, = 0, then
(T1 + 7)*S = (1> + T TS
=Mwux){T' T + T, T\ T>}
K
= MXJ[({K) {ME@urEsw Tt + ME@rEGsw T2}

= MXU(K)(TI + 13).

Since S = 0on X\o (K), then (T} +15)?S = T; +T5. Notice that (T +T>)" 1§ =
(Ty + T2)2S(Ty + T»)" ' = (Ty + T»)", for all n > 1. Moreover,

S(T1 + 1) = Mo (Th + T2)°
K
=Mwxy {T1ToT) + ToT1 1>}
K2

=M (T1 + Th) = S.
I3

These ensure that S is the group inverse of 7| + T>. O

In the following we shall use our results to calculate the Moore—Penrose inverse
and the Drazin inverse of M, EM,, € L.
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Example 2.17 (a) Lete > 0, X = [—nw/4+¢,w/4—¢],dpn = dx, X be the Lebesgue

(b)

sets and let A be the o-subalgebra generated by the symmetric sets about the
origin. Now any real valued function on X can be written uniquely as a sum of
an even function and an odd function, one simply uses the functions f,(x) =
(f(xX)+ f(=x))/2and f,(x) = (f(x) — f(—x))/2.Put0 < a < /4 —¢. Then
for each f € L?(X) we have [* E(f)(x)dx = [ f.(x)dx and consequently,
Ef = f,. This example is due to Alan Lambert [13]. Now let u(x) = sin x +cos x
and w(x) = sinx — cosx. Then u; = —w; = cosx, up = wy = sinx and
a=wiu; + E(wouy) = —cos?x + E(sin2 xX) = —cos? x + sin? x = — cos 2x.
Moreover, E(Ju|?) = E(14sin2x) = 1 and E(Jw|?) = E(1 —sin2x) = 1. Thus,
T =MyEM, € L with | T|| = 1. Now, using (2.3) and Theorem 2.3 we get that

T — M_ o EM—%sinZX .
M%sian Miinx EMsinyx | °

M 2 EM_ sin 2x

COS~ X

T D = " cos2 2x 2cos2 2x =M | T
M sin2e M sinx EMsinx cos22x
2cos2 2x cos2 2x

Putk = Then by (2.1) we have

it
E(u)E(w?)”

T (Mk“;,l EMy, w, > _ (M—Coszx EM% sin 2x ) _

My, My, EMy, M_% sinax  Msinx E Miin x
Moreover, since g = g((bl‘;’ﬁ'; = —cos2x(sinx 4+ cosx), g = — cos 2x cos x and
g2 = —cos 2x sin x, so we get that

f__ Mc032x¢oszx E M os2x cos x sinx
Meosoxcosxsiny  Mecos2x sinx E Miin x

= _MCOSZ)C(Sinx+COSX)EMSiH)C+COSX'
_ G _ 2 _
Now, set u = osrsmye W = Sinx, o = cos”xsinx and T = M,EM,. Then

E(uw) = Colsx and E(ua) = cos x. Then by Proposition 2.2 we have

TP = EM_ = Min x EMcoth x -

COs X sinx

cos? x sin x
Note that, in this setting, {u, w, a} C N'(E).

Let X = {1,2,3}, © = 2%, u({n}) = 1/3 and let A be the o -algebra generated
by the partition {{1}, {2, 3}}. Then

1 1
E(f) = d d
8 (M(A]) Alf u) XA1+<M(A2) Azf M) XA,
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@+ f03

= f(Mxa, + > XAz

where A} = {1} and Ay = {2, 3}. Then matrix representation of £ = EA with
respect to the standard orthonormal basis is

1 0 O
E=|0 1 1
1 1

0 5 3

Let w = (wy, wa, w3) and u = (u;, us, u3) be nonzero elements of C3. Then

_w1 0 0 1

0 0[ur 0 O
T=MuEM,=|0 w 0 0 % % 0 u 0
0 0 wiflo I 1]l0 0 s
_wlul 0 0
— 0 wau uzwr
- 2 2 ’
0 uyw3 Uz W3
L 2 2

uw = (w1, YW, U3W3);
2 2 2 25.
[u]= = (lur|*, luzl”, lu3]®);

2 2 2 2.
lw]® = (lw]7, [w2”, ws]%);

uswy + Uzw3 Urwr + U3ws
E(uw) =(ujwi,

2 ’ 2 ’
luz|® + lusl? |uzl? + us|?
E(ul® = ( lu1)?, , ;
2 2
lwal? + w3l |wal? + |ws]?
E(w?) = (|w1|2, > , 5 .

Puta = uywi, b = 1/2(urwy + uzws) and ¢ = 1/4(jua|* + |uz?) (lwa|* + w3 |?).
Then (E (uw))? = (a2, b2, b*) and E(|u|>) E(jw|?) = (Ja|?, ¢, ¢). For x € {a, b, c},
we take )16 = 0 whenever x = 0. Then we have

1

)

ar 0 O [wa 0 0
* wou uw
Tt =M( i 1)T =10 Lol|o 5
la> ¢ ¢ 1 uzwy - U3W3
[0 0 - JLO 2 2
[~ Wiy
lal? O_ _ 9 _
— woil Ur w3
0 2c _2c ’
0 uzwy  U3W3
L 2¢ 2¢
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1
=z 0 O wiu; 0
TD_M(1 1 1)Tz 0 & 0[]0 L
222 usw
as’ b=’ b _0 0 % 0 22 3
B 0
_ Oa wou uszwl
- 2h2 2h2
0 uws uzws
L 212 202

Now, put u = (1,2i, —4) and w = (2i, —2i, —4). Then E(uw) = E(2i,4, 16)
(2i,10,10), E(ju|?>) = E(1,4,16) = (1,10, 10) and E(jw|?) = E(4,4, 16)

(4,10, 10). It follows that a = 2i, b = 10 and ¢ = 100 and

20 0 53 0 0
— T 1 ]
T=10 2 4| T'=|0 g 3

0 —4i 8 o 3 2

Note that w = (2i, 1, 1)u, where (2i, 1, 1) is .A-measurable

0

Uzwy

2
JTRYVK)

=7P,

. So, T is normal but

it is not self-adjoint. Moreover, by Corollary 2.9, o(TT = o(TP) = {_Ti, 1—10} and

o (T) = {2i, 10}.

Now, putu = (0,7, —1),w = (1, 1,i),r = (0,1, —1)and s = (1, —1, —1). Then

E(ww) = (0,0,0) = E(rs) and

1+i 1+
E(ur) =0, —, ——);
(ur) = ( > >
1+i 1+
E == 17 - s T 5
(sw) = ( > > )
—i —i
E E = 07 - )
(ur)E(sw) = ( > 2)
1
—— = (0, 2i, 2i).
E(ur)E(sw)
Moreover,
0 O 0 0 0
Ti=MyEM,=|0 5 |, h=MEM, =|0
o =L = o 1
2 2 2

It follows that

(T1 4+ 1) = (T1 + T)* = M.21.20(T1 + T2)

0 0 0
=2 +T)=i|0 i—1 =2
0 0 1—1i

NI—Ml |
—_
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