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Abstract
In this paper, some characterizations of the Drazin and the Moore–Penrose inverses
of the conditional type operators on L2(�) are established.
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1 Introduction and Preliminaries

LetH andK be separable complexHilbert spaceswith inner product 〈 , 〉. Let B(H,K)

be the set of all bounded linear operators from H into K and let BC (H,K) be the
subspace of all T ∈ B(H,K) such that the range of T is closed in K. If H = K,
we write B(H) = B(H,K) and BC (H) = BC (H,H). For T ∈ B(H,K), N (T ) and
R(T ) denote the kernel and the range of T , respectively. The Moore–Penrose inverse
of T ∈ B(H,K) is the operator S ∈ B(K,H) which satisfies the Penrose equations

(1) T ST = T , (2) ST S = S, (3) (T S)∗ = T S, (4) (ST )∗ = ST . (1.1)
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TheMoore–Penrose inverse of T exists if andonly ifR(T ) is closed inK. If theMoore–
Penrose inverse of T exists, then it is unique, and it is denoted by T †. Let T {i, . . . , j}
denote the set of all operators S which satisfy the equations (1) ≤ (i), . . . , ( j) ≤ (4).
In this case S ∈ T {i, . . . , j} is a {i, . . . , j}-inverse of T and is denoted by T (i,..., j).
Noth that T (1,2,3,4) = T †. An element T ∈ B(H) is said to have a Drazin inverse, or
T is Drazin invertible if there exists S ∈ B(H) such that ST S = S, T S = ST and
T k+1S = T k for some k ∈ N. The minimal such k is called the Drazin index of T ,
and will be denoted by ind(T ). If T has Drazin inverse, then it is unique and denoted
by T D . When k = 1, the Drazin inverse reduced to the group inverse and it is denoted
by T #. Recall that asc(T ) and des(T ), the ascent and descent of T ∈ B(H), is the
smallest non-negative integer n such thatN (T n) = N (T n+1) andR(T n) = R(T n+1),
respectively. It is well known that asc(T ) = des(T ) if asc(T ) and des(T ) are finite (see
[16]). For T ∈ B(H), T D exists if and only if T has finite ascent and descent. In this
case, ind(T ) = asc(T ) = des(T ) = n. For other important properties of T † and T D ,
see e.g. [1,3]. Let H = H1 ⊕ H2, T ∈ B(H) and let P j : H → H be an orthogonal

projection onto H j for j = 1, 2. Then T =
(
T11 T12
T21 T22

)
, where Ti j : H j → Hi

is the operator given by Ti j = Pi T Pj |H j . In particular, T (H1) ⊆ H1 if and only if
T21 = 0. Also, H1 reduces T if and only if T12 = 0 = T21.

Let (X , �,μ)be a sigma-finitemeasure space and letAbe a sigma-finite subalgebra
of �. The space L2(X ,A, μ|A) is abbreviated by L2(A) where μ|A is the restriction
of μ to A and its norm is denoted by ‖.‖2. All comparisons between two functions
or two sets are to be interpreted as holding up to a μ-null set. We denote the linear
space of all finite-valued �-measurable functions on X by L0(�). The support of a
measurable function f ∈ L0(�) is defined by σ( f ) = {x ∈ X : f (x) �= 0}. An
A-atom of the measure μ is an element B ∈ A with μ(B) > 0 such that for each
A ∈ A, if A ⊆ B then either μ(A) = 0 or μ(A) = μ(B). As is well known, a
sigma-finite measure space (X ,A, μ|A) is decomposed into two disjoint sets Y and
Z , where Y does not possess any A-atoms and Z is a countable union of A-atoms of
finite measure. Moreover, we can easily check that f|B , the restriction of f ∈ L0(A)

to an A-atom B, is constant (see [18]). Let f ∈ L2(�). Then E( f ), the conditional
expectation of f , is the unique A-measurable function such that

∫
A
f dμ =

∫
A
EA( f )dμ, ∀A ∈ A. (1.2)

PutD(E) = { f ∈ L0(�) : E(| f |) ∈ L0(A)}. ThenD(E), the domain of E , contains
{L p(�) : 1 ≤ p ≤ ∞} ∪ { f ∈ L0(�) : f ≥ 0} (see [7]). As an operator on
L2(�), E := EA is an orthogonal projection of L2(�) onto L2(A). Conditional
expectation operator E will play a major role in our work. A detailed discussion and
verification of most of properties of E may be found in [2,4,8,11,13,14,17]. Those
properties of E used in our discussion are summarized below. In all cases we assume
that f , f g ∈ D(E).

◦ If g is A-measurable, then E( f g) = E( f )g.
◦ σ(E(| f |)) is the smallest A-measurable set containing σ( f ).
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◦ (Conditional Cauchy-Schwarz) |E( f g)|2 ≤ E(| f |2)E(|g|2).
From now on we assume that {u, w, uw} ⊆ D(E). Operators of the form

MwEMu( f ) = wE(u f ) acting in L2(�) with D(MwEMu) = { f ∈ L2(�) :
wE(u f ) ∈ L2(�)} are called weighted conditional type operators. Several aspects
of this operator were studied in [6,8–10,13]. Put K = E(|u|2)E(|w|2). Estaremi [5]
proved that MwEMu : D(T ) → L2(�) is densely defined if and only if K − 1 is
finite valued. Moreover, T := MwEMu ∈ B(L2(�)) if and only if D(T ) = L2(�).
In this case T ∗ = MūEMw̄ and ‖T ‖2 = ‖K‖∞.

Conditional operators and the various types of generalized inverse have beenwidely
used in practise. In the next section we prove some basic results on the Drazin and
Moore–Penrose inverse of conditional type operators on L2(�).Moreover, we provide
a necessary and sufficient condition for special type products of general operators so
that the reverse order low for the Moore–Penrose inverse is satisfied. Finally, one
example is provided to illustrate the obtained results.

2 Characterizations

Put K = E(|u|2)E(|w|2) and set L = {MwEMu : u, w, uw ∈ D(E), K ∈ L∞(�)}.
For{MwEMu, Mr EMs} ⊆ L, (MwEMu)(Mr EMs) = MwE(ur)EMs ∈ L and hence
L is closed under multiplication. So, for T ∈ BC (L2(�)), one might guess that
{T †, T D} ⊆ L. Recall that if R(T ) is closed, then T is bounded below on N (T )⊥,
i.e., there is c > 0 such that‖T f ‖ ≥ c‖ f ‖ for all f ∈ N (T )⊥. Now we shall prove
the following lemma.

Lemma 2.1 Let T = MwEMu ∈ BC (L2(�)). Then K is bounded away from zero on
σ(K ).

Proof Suppose K is not bounded away from zero on σ(K ). Then for fixed ε > 0,
there exists A ∈ A with A ⊆ S and 0 < μ(A) < ∞ such that KχA < ε. Put
f0 = ū

√
E(|w|2)χA. Then for each g ∈ N (T ) we have

|〈g, f0〉|2 = |
∫
A
ug

√
E(|w|2)dμ|2 = |

∫
A
E(u

√
E(|w|2)g)dμ|2

≤
∫
X
E(|w|2)|E(ug)|2dμ =

∫
X

|wE(ug)|2dμ =
∫
X

|Tg|2dμ = 0.

It follows that f0 ∈ L2(�) ∩ N (T )⊥ and satisfies

‖T f0‖2 = ‖wE(|u|2)
√
E(|w|2)χA‖2 =

∫
X
K 2χAdμ

≤ ε

∫
X
KχAdμ = ε

∫
X

|ū
√
E(|w|2)χA|2dμ = ε‖ f0‖2.

But this is a contradiction. ��
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Now, for T ∈ BC (L2(�)), set S = M χσ(K )
K

T ∗. Then by Lemma 2.1, S ∈ B(L2(�))

and T ST = M χσ(K )
K

(T T ∗T ) = M χσ(K )
K

(MKwEMu) = Mwχσ(K )
EMu = T . Also, we

have ST S = M χσ(K )

K2
(T ∗T T ∗) = M χσ(K )

K2
(MKū EMw̄) = M χσ(K )

K
T ∗ = S, (T S)∗ =

(M χσ(K )
K

T T ∗)∗ = T S and (ST )∗ = (M χσ(K )
K

T ∗T )∗ = ST . Thus, S = T †. Since

T ∗ = MūEMw̄, σ(ū) ⊆ σ(E(|u|2)), χσ(K ) = χσ(E(|u|2))χσ(E(|w|2)) and that T † has
closed range, then ūχσ(E(|u|2)) = ū and

T † = M ūχ
σ(E(|w|2))

E(|u|2)E(|w|2)

EMw̄ ∈ BC (L2(�)). (2.1)

In particular, if u = w̄ then it is easy to check that T and T † are positive operators.

Proposition 2.2 Let T = MwEMu ∈ BC (L2(�)) and let S = MαEMu ∈ L. If
E(uw)E(uα) = 1 and wE(uα) = αE(uw), then T D = S ∈ BC (L2(�)).

Proof By hypothesis we have

ST S = (MαEMu)(MwEMu)(MαEMu)

= MαE(uw)E(uα)EMu

= MαEMu = S;

T S = (MwEMu)(MαEMu)

= MwE(uα)EMu

= MαE(uw)EMu

= MαEMuMwEMu = ST .

Since for each k ∈ N, T k = Mw(E(uw))k−1EMu , we obtain

T k+1S = (Mw(E(uw))k EMu)(MαEMu)

= Mw(E(uw))k E(uα)EMu

= Mw(E(uw))k−1EMu = T k .

Note that the equality E(uw)E(uα) = 1 and the conditionalCauchy-Schwarz inequal-
ity implies that σ(E(uw)) = X and E(|α|2)E(|u|2) ≥ |E(αu)|2 = |E(uw)|−2 ≥
K−2 ≥ ‖T ‖−4. Moreover, since ind(T ) = 1, then T D = T # = S ∈ BC (L2(�)). ��

Set R = {EMu : u ∈ D(E) and E(|u|2) ∈ L∞(A)}. Then by [8, Theorem 3.1.2],
R′ = {Mν : ν ∈ L∞(A)}, where R′ = {A ∈ B(L2(�)) : AT = T A, ∀T ∈ R} is
the commutant of R. It follows that L′ = R′. Let T ∈ L be Drazin invertible. Since
T T D = T DT , then it seems that T D has a factorization of the form MνT for some
ν ∈ L∞(A).

Relative to the direct sum decomposition L2(�) = R(E) ⊕ N (E), any element
f of L2(�) can be written uniquely as f = f1 + f2 where f1 = E( f ) ∈ L2(A)



Generalized inverses… Page 5 of 17 71

and f2 = f − E( f ) ∈ N (E). Since E(| f |2) = E(( f1 + f2)( f̄1 + f̄2)) = | f1|2 +
E(| f2|2), then max{| f1|2, E(| f2|2)} ≤ E(| f |2). In the following we calculate matrix
representation of the Drazin inverse of T ∈ L with respect to the decomposition
L2(�) = R(E) ⊕ N (E).

Theorem 2.3 Let T = MwEMu ∈ L and let C = σ(E(uw)). If E(uw) is bounded
away from zero on C, then T is Drazin invertible and

T D =
⎛
⎝ Mw1u1χC

E(uw)2
EMw1u2χC

E(uw)2

Mw2u1χC
E(uw)2

M w2χC
E(uw)2

EMu2

⎞
⎠ = M χC

(E(uw))2
T . (2.2)

In particular, ED = E.

Proof First, we recall that (see [10]) the matrix representation of T = MwEMu ∈ L
with respect to the direct sum decomposition L2(�) = R(E) ⊕ N (E) is

T =
(
Mw1u1 EMw1u2
Mw2u1 Mw2EMu2

)
. (2.3)

For ν ∈ L∞(A), set

S =
(
Mw1u1ν EMw1u2ν

Mw2u1ν Mw2νEMu2

)
.

Since ν is an A-measurable function, then T S = ST . Using (2.3), we have

T 2 =
(
Mw1u1(w1u1+E(w2u2)) EMw1u2(w1u1+E(w2u2))

Mw2u1(w1u1+E(w2u2)) Mw2(w1u1+E(w2u2))EMu2

)
.

Put a = w1u1 + E(w2u2). Then a = E(uw) ∈ L∞(A) and

T 2 =
(
Mw1u1a EMw1u2a

Mw2u1a Mw2EMu2a

)
.

By induction on k ∈ N, it is easy to check that

T k =
(
Mw1u1ak−1 EMw1u2ak−1

Mw2u1ak−1 Mw2ak−1EMu2

)
,

and so

T k+1S =
(
Mw1u1ak EMw1u2ak

Mw2u1ak Mw2ak EMu2

)(
Mw1u1ν EMw1u2ν

Mw2u1ν Mw2νEMu2

)

=
(
Mw1u1akν(w1u1+E(w2u2)) EMw1u2akν(w1u1+E(w2u2))
Mw2u1akν(w1u1+E(w2u2)) Mw2akν(w1u1+E(w2u2))EMu2

)
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=
(
Mw1u1ak+1ν EMw1u2ak+1ν

Mw2u1ak+1ν Mw2ak+1νEMu2

)
.

Thus, T k+1S = T k whenever ak+1ν = ak−1. Hence

S =
⎛
⎝ Mw1u1χσ(a)

a2
EMw1u2χσ(a)

a2

Mw2u1χσ(a)

a2
Mw2χσ(a)

a2
EMu2

⎞
⎠ .

In fact, S = M χσ(a)

a2
T , and so ST S = S. Consequently, S = T D . ��

Recall that if T = U |T | is the polar decomposition of T ∈ B(H), then T̃ =
|T | 12U |T | 12 is called the Aluthge transformation of T . Put g = E(uw)ū

E(|u|2) . By a sim-
ilar argument used in Theorem 2.2, we have

T̃ =
(
Mg1u1 EMg1u2
Mg2u1 Mg2EMu2

)
= ME(uw)ū

E(|u|2)

EMu . (2.4)

Theorem 2.4 Let T = MwEMu ∈ L and let |E(uw)| ≥ δ for some δ > 0 on
σ(E(uw)). Then T is Drazin invertible with ind(T ) = 2.

Proof Put a = E(uw) and let g ∈ R(T 2). Then g = waE(u f ) for some f ∈ L2(�).
Since

∫
X

| f χσ(a)

an−1 |2dμ =
∫
X

| f |2
|a|2(n−1)

dμ ≤ ‖ f ‖22
δ2(n−1)

< ∞,

then

g = wanE

(
u
f χσ(a)

an−1

)
= T n+1

(
f χσ(a)

an−1

)
∈ R(T n+1).

Thus,R(T 2) = R(T n+1) for all n ∈ N. Now, let T n+1 f = 0. Then wanE(u f ) = 0.
Put h = χσ(a)

an−1 . Then ‖h‖∞ ≤ 1
δn−1 < ∞, and so

T 2 f = waE(u f ) = χσ(a)

an−1 wanE(u f ) = MhT
n+1 f = 0.

Hence, N (T n+1) = N (T 2) for all n ∈ N. Consequently, ind(T ) = asc(T ) =
des(T ) = 2. ��
Lemma 2.5 Let {u, w, uw} ⊆ D(E).Then the following assertions hold.

(a) E(uw) = uE(w) iff uχE(w) ∈ L0(A).
(b) Mw2u1 = 0 iff w2u1 = 0 iff wχE(u) ∈ L0(A).
(c) EMw1u2 = 0 iff w1u2 = 0 iff uχE(w) ∈ L0(A).
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Proof (a) Let uχE(w) ∈ L0(A). Then uE(w) = uχE(w)E(w) = E(uwχE(w)) =
E(uw). Conversely, if E(uw) = uE(w) then uχE(w) = E(uw)

E(w)
χE(w) ∈ L0(A).

(b) Let Mw2u1( f ) = 0 for all f ∈ L2(A). Since A is sigma-finite, there exists
{An}n ⊆ A such that X = ∪n An , An ⊆ An+1 with μ(An) < ∞ for all n ∈ N. In
this case χAn ↗ χX . Put f = χAn . Then w2u1χAn = 0. It follows that w2u1 = 0 as
n → ∞. The converse is obvious. On the other hand,

w2u1 = 0 ⇐⇒ (w − E(w))E(u) = 0

⇐⇒ wE(u) = E(w)E(u)

⇐⇒ wE(u) = E(wE(u))

⇐⇒ wE(E(u)) = E(wE(u))

⇐⇒ wχE(u) ∈ L0(A), (by part (a)).

(c) Let Mw1EMu2 = EMw1u2 = 0 on N (E). Then w1u2E(u2 f ) = 0 for
all f ∈ N (E). Put f = w1ū2χAn as in the previous part of the proof. Then
‖ f ‖2 = ∫

An
|w1|2|u2|2dμ ≤ ∫

An
E(|w|2)E(|u|2)dμ ≤ ‖T ‖2μ(An) < ∞, and

so f ∈ N (E) ∩ L2(�). By hypothesis, we have w1u2E(|u2|2)w1χAn = 0. Since
σ(u2) ⊆ σ(E(|u2|2)), then w1u2 = 0 as n → ∞. Moreover,

w1u2 = 0 ⇐⇒ E(w)(u − E(u)) = 0

⇐⇒ uE(w) = E(uE(w))

⇐⇒ uχE(w) ∈ L0(A), (by part (a)).

This completes the proof. ��
Note that w1u2χσ(a)

a2
= 0 = w2u1χσ(a)

a2
iff w1u2 = 0 = w2u1 iff ū1w̄2

E(|w|2)E(|u|2) = 0 =
ū2w̄1

E(|w|2)E(|u|2) . So, by (2.1), (2.2), (2.3) and Lemma 2.5 we have the following corollary.

Corollary 2.6 L2(A) is a reducing subspace for T ∈ L iff it is a reducing subspace
for T D iff it is a reducing subspace for T †.

Lemma 2.7 [10] Let T = MwEMu ∈ L. Then T is normal if and only if T =
Mgū EMu for some g ∈ L0(A). In this case |E(uw)|2 = E(|u|2)E(|w|2).

Take K := E(|u|2)E(|w|2) and let a := E(uw) be bounded away from zero on its
support. Put

r = χσ(K )

K
, s = χσ(a)

a2
, t = a

E(|u|2) .

Recall from (2.1), (2.2) and (2.4) that T † = MrT ∗, T D = MsT and T̃ = Mtū EMu .
So, if K = 1 = a on X , then T † = T ∗ and (T D)n = T n = Man−1T = T for all n ∈ N.
Now, suppose a is bounded below on X . Then by the conditional Cauchy-Schwarz
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inequality, σ(K ) = X , ‖a‖2∞ ≤ ‖K‖∞ = ‖T ‖2 < ∞ and hence {a, 1
a } ⊆ L∞(A)

and M−1
a = M1/a ∈ B(L2(�)). So we have the following corollary.

Corollary 2.8 Let T = MwEMu ∈ L and let a = E(uw) be bounded below on X.
Then the following assertions hold.

(a) For each n ∈ N, (T n)D = Ma−(n+1)χσ(a)
T = (T D)n.

(b) If (T D)n = T D = T , then a = 1 on σ(a).
(c) If T † = T ∗, then r = 1 on σ(r).
(d) Let σ(w) ⊆ σ(a). Then T D is normal iff T is normal iff T † is normal iff T †T =

T T †.

Proof (a) Since T n = Man−1wEMu , then we have

(T D)n = (MsT )n = MSnT
n = M

(
χσ(a)

a2
)n
Man−1T

= Mwan−1χσ(a)

a2n

EMu = (Man−1wEMu)
D = (T n)D.

(b) Let T D = T . Then M(a−2χσ(a)−1)T ( f ) = 0, for all f ∈ L2(�). Put f =
w

√
E(|u|2)χAn ∈ L2(�), as in the proof of Lemma 2.5. Then we have

(a−2χσ(a) − 1)(wa
√
E(|u|2)χAn = 0

×u=�⇒
E

(a−2χσ(a) − 1)a2
√
E(|u|2) = 0, as n → ∞

�⇒ (a−2 − 1)χσ(a) = 0. �⇒ a = 1, on σ(a).

(c) Let T † = T ∗. Then Mr−1T ∗( f ) = (r − 1)ūE(w̄ f ) = 0, for all f ∈ L2(�).
Again put f = w

√
E(|u|2)χAn . Then (r − 1)ūE(|w|2)√E(|u|2) = 0 as n → ∞.

Multiplying by u and then taking E , we obtain (r − 1) 1r
√
E(|u|2) = 0, and so

r = 1 on σ(r).

(d) Set N = {T = MwEMu ∈ B(L2(�)) \ {0} : T is normal}. As it turns out,
MwEMu ∈ N if and only if w = gū for some g ∈ L0(A). Let T ∈ N .
Then {MrT ∗, MsT } ⊆ N and T †T = MrT ∗T = T MrT ∗ = T T †. Let
T D = MswEMu ∈ N , then sw = gū for some g ∈ L0(A). Since σ(a) = σ(s),
it follows that w = χσ(a)w = (

gχσ(a)

s )ū and hence {T , T †} ⊆ N . Similarly,
if T † ∈ N , then MrT = MrwEMu ∈ N and hence rw = g1ū for some
g1 ∈ L0(A). Since σ(a) ⊆ σ(K ) = σ(r), then w = χσ(r)w = (

g1χσ(r)
r )ū,

and so {T , T D} ⊆ N . Now, let T †T = T T †. Then Mr (T ∗T − T T ∗) = 0, and so

Mūχσ(K )

E(|u|2)

EMu − Mwχσ(K )

E(|w|2)

EMw̄ = 0.
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Put f = ū
√
E(|w|2)χAn ∈ L2(�), as in the proof of Lemma 2.5. Then we have

ūχσ(K )

√
E(|w|2) = ā√

E(|w|2)w, as n → ∞.

So w = χσ(a)w = χσ(a)

√
E(|w|2)
ā ū, and hence T ∈ N . ��

For T ∈ B(H), the spectrum of T is denoted by σ(T ) and r(T ) its spectral radius.
In [10] it was proved that the spectrum of T = MwEMu ∈ L is the essential range of
E(uw). Recall from (2.1), (2.2) and the conditional Cauchy-Schwarz inequality, we
have the following corollary.

Corollary 2.9 Let T = MwEMu ∈ L. Then σ(T̃ ) \ {0} = σ(T ) \ {0},

σ(T †) \ {0} = ess range

(
E(uw)

E(|u|2)E(|w|2)
)

\ {0};

σ(T D) \ {0} = ess range

(
χE(uw)

E(uw))

)
\ {0},

and so max{ 1
r(T )

, r(T †)} ≤ r(T D). Moreover, if k = E(|u|2)E(|w|2) ≥ 1 then

r(T †) ≤ r(T ) and if k ≤ 1, then r(T ) ≤ r(T †).

For u, w ∈ L2(�) \ {0}, the rank-one operator u ⊗ w on L2(�) is defined by
(u ⊗ w) f = 〈 f , w〉u, for all f ∈ L2(�). Let μ(X) = 1 and A0 = {∅, X}. Put
EA0 = E0. Then by (1.2) we have

∫
X E0( f )dμ = ∫

X f dμ, for all f ∈ L2(�).
Since X is an A0-atom, then the A0-measurable function E0( f ) is constant on X . It
follows that E0( f ) = ∫

X f dμ, for all f ∈ L2(�). In this case the nonzero operator
T = MwE0Mu is bounded on L2(�) if and only if

E0(|u|2)E0(|w|2) =
(∫

X
|u|2dμ)(

∫
X

|w|2dμ

)
= ‖u‖22 ‖w‖22 < ∞.

Note that for all f ∈ L2(�), T f = wE0(u f ) = w
∫
X u f dμ = 〈 f , ū〉w = (w⊗ ū) f .

Thus, T is a rank-one operator with ‖T ‖ = ‖u‖2‖w‖2. Since R(T †) = R(T ∗) =
R(ū ⊗ w), then T † is also a rank-one operator. Put T † = ū ⊗ w′, for some w′ ∈
L2(�). To obtain T † it is enough to find the element w′ in L2(�). Since T T † =
(w ⊗ ū)(ū ⊗ w′) = ‖u‖2(w ⊗ w′), then we have T T †T = ‖u‖2(w ⊗ w′)(w ⊗ ū) =
‖u‖2〈w,w′〉(w ⊗ ū). It follows that T T †T = T if and only if ‖u‖2〈w,w′〉 = 1.
Hence w′ = w

‖u‖22‖w‖22
, and so ‖T †‖ = ‖T ‖−1 (see [12]). From this, it is easy to check

that T † is satisfy the other equations in (1.1). Thus,

T † f = (ū ⊗ w

‖u‖22 ‖w‖22
) f =

(
1

‖u‖22 ‖w‖22

∫
X

w̄ f dμ

)
ū

= ū

E0(|u|2)E0(|w|2) E(w̄ f ) = M 1
K
T ∗ f ,
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where f ∈ L2(�) and K = E0(|u|2)E0(|w|2) = ‖u‖22 ‖w‖22 < ∞. Put C =
σ(E0(uw)) and set S = Mv(w ⊗ ū), where v = χC

(E0(uw))2
. Since for n ∈ N, (w ⊗

ū)n+1 = 〈w, ū〉n(w ⊗ ū) and

v〈w, ū〉n+1 = v

(∫
X
uwdμ

)n+1

= (E0(uw))n+1

(E0(uw))2
= 〈w, ū〉n−1,

then T n+1S = Mv〈w,ū〉n+1(w ⊗ ū) = M〈w,ū〉n−1(w ⊗ ū) = T n . Also, it is easy to
check that T S = ST and ST S = S. Thus, T D = S.

Now, fix any n ∈ N and let A be the σ -algebra generated by the partition
{A1, · · · , An} of X . Then

E( f ) =
n∑

i=1

1

μ(Ai )

(∫
Ai

f dμ

)
χAi , f ∈ L2(�).

It follows that

T f = (MwEMu) f =
n∑

i=1

w

μ(Ai )

(∫
Ai

u f dμ

)
χAi

=
{

χA1w

μ(A1)
⊗ (χA1 ū) + · · · + χAnw

μ(An)
⊗ (χAn ū)

}
f .

Put ūi = χAi ū, wi = χAi w and χAi L
2(�) = L2(Ai ). Then the matrix representation

T with respect to the decomposition L2(�) = L2(A1) ⊕ · · · ⊕ L2(An) is T =
diag(w1⊗ū1

μ(A1)
, · · · , wn⊗ūn

μ(An)
), and so

T † = diag

(
(ū1 ⊗ w1)μ(A1)

‖u1‖22 ‖w1‖22
, · · · ,

(ūn ⊗ wn)μ(An)

‖un‖22 ‖wn‖22

)
,

where ‖ui‖2 = ∫
Ai

|u|2dμ and ‖wi‖2 = ∫
Ai

|w|2dμ. By a similar argument as above,

we obtain T D = ∑n
i=1 Mvi (wi ⊗ ūi ), where vi = χCi

(E(uiwi ))
2 and Ci = σ(En(uiwi )).

These observations establish the following result.

Theorem 2.10 Let T0 = MwE0Mu and Tn = MwEnMu be nonzero elements in L.
Put C = σ(E(uw)). Then T0 = w ⊗ ū is a rank-one operator and

T †
0 = ū ⊗ w

‖u‖22 ‖w‖22
, T D

0 = M χC
(E0(uw))2

(w ⊗ ū).

Moreover, if ūi = ū|Ai , wi = w|Ai and Ci = σ(En(uiwi )), then

T †
n =

n∑
i=1

μ(Ai )

‖ui‖22 ‖wi‖22
(ūi ⊗ wi );
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T D
n =

n∑
i=1

M χCi
(E(uiwi ))

2
(wi ⊗ ūi ).

Example 2.11 Let X = [0, 1], dμ = dx , � be the Lebesgue measurable sets and
let A0 = {∅, X} and EA0 = E0. Set u(x) = 3x2 and w(x) = x2. Then for each
f ∈ L2([0, 1]) we have

T f (x) = w(x)E0(u f )(x) = w(x)
∫ 1

0
u(x) f (x)dx

=
(∫ 1

0
3x2 f (x)dx

)
x2 =

(∫ 1

0
x2 f (x)dx

)
3x2 = T ∗ f (x).

It is easy to check that T k+1 = ( 35 )
kT , ‖u‖22 = 9

5 , ‖w‖22 = 1
5 and E0(uw) = 3

5 =
σ(T ). Then by Theorem 2.10, T †( f ) = 25

9 (ū ⊗ w̄)( f ) = 25
3 (

∫ 1
0 x2 f (x)dx)x2. It

follows that T † = 25
9 T = T D .

For T , S ∈ B(H), the equality (T1T2)D = T D
2 T D

1 is called the reverse order low for
the Drazin inverse whenever both sides of equality are well defined. Since the reverse
order law does not hold for various classes of generalized inverses, so a significant
number of papers investigated the sufficient or equivalent conditions such that the
reverse order law holds (see [3] and reference therein). In the following we first prove
a result concerning the reverse order law (T S)† = S†T † for S, T ∈ B(H) under a
certain condition.

Lemma 2.12 Let T ∈ B(H,K) and S ∈ B(K,H) be operators such that T is invert-
ible and T , S and ST have closed ranges. Then T−1S† ∈ ST {1, 2, 3}. Furthermore,
if T−1 = T ∗, then (ST )† = T−1S†.

Proof Since ST (T−1S†)ST = ST , (T−1S†)ST (T−1S†) = T−1S† and ST (T−1S†) =
SS† is self adjoint, so T−1S† ∈ ST {1, 2, 3}. Now, let T−1 = T ∗. Since S†S is
self-adjoint then ((T−1S†)ST )∗ = T ∗S†S(T−1)∗ = (T−1S†)ST ), and so (ST )† =
T−1S†. ��

Theorem 2.13 Let T ∈ B(H,K) and S ∈ B(K,H) be operators such that T , S and
ST have closed ranges. If T1 = T|R(T ∗) : R(T ∗) → R(T ) is an isometry, then
(ST )† = T †S† if and only if S∗

2 S1 = 0, where S1 = S|R(T ) : R(T ) → R(S) and
S2 = S|N (T ∗) : N (T ∗) → R(S).

Proof Since H = R(T ∗) ⊕ N (T ) = R(S) ⊕ N (S∗) and K = R(T ) ⊕ N (T ∗), the
matrix decompositions of T and SwithR(T ∗)⊕N (T )

T−→R(T )⊕N (T ∗) S−→R(S)⊕
N (S∗) are:

T =
(
T1 0
0 0

)
; S =

(
S1 S2
0 0

)
,
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where T1 is invertible. It follows, see [3], that

T † =
(
T−1
1 0

0 0

)
; S† =

(
S∗
1D

−1 0
S∗
2D

−1 0

)
,

where D = S1S∗
1 + S2S∗

2 is invertible and positive in B(H). Thus, T †S† =
T−1
1 S∗

1D
−1⊕0. On the other hand, by Lemma 2.12, we obtain (ST )† = (S1T1⊕0)† =

(S1T1)† ⊕ 0 = T−1
1 S†1 ⊕ 0. Consequently,

(ST )† = T †S† ⇐⇒ S∗
1D

−1 = S†1 .
⇐⇒ S∗

1 = S†1D
⇐⇒ S∗

1 = S†1(S1S
∗
1 + S2S∗

2 ) = S†1 S1S
∗
1 + S†1 S2S

∗
2

⇐⇒ S1 = S1S
†
1 S1 + S2S∗

2 (S
∗
1 )

† = S1 + S2S∗
2 (S

∗
1 )

†

⇐⇒ S2S∗
2 (S

∗
1 )

† = 0
⇐⇒ R(S1) = R((S∗

1 )
†) ⊆ N (S2S∗

2 ) = N (S∗
2 )⇐⇒ S∗

2 S1 = 0.

This complets the proof. ��
It is a worth nothing that under assumptions of Theorem 2.13, (ST )† = T †S† if and
only if R(ST ) = R(S1) ⊆ N (S∗

2 ) = (R(S2))⊥ = {Sx : x ∈ N (T ∗)}⊥. Also, using
matrix representation of T : R(T ∗) ⊕N (T ) → R(T ) ⊕N (T ∗) and T †, T † = T ∗ if
and only if T−1

1 = T ∗
1 if and only if T1 is unitary.

The expressions for the generalized Drazin inverse of the product and the sumwere
studied by many authors (see e.g. [15]). In the following we consider the product and
additive Drazin problem for conditional operators.

Lemma 2.14 Let T1 = MwEMu and T2 = MsEMr be in L. If E(rw)E(us) is
bounded away from zero on its support, then T1T2 is Derazin invertible.

Proof Put C = σ(E(rw)E(us)). Since T1T2 = MwE(us)EMr , then by Theorem 2.2
we have

(T1T2)
D = M χC

(E(rw)E(us))2
T1T2 = M χC

(E(rw))2E(us)
MwEMr .

This completes the proof. ��
Theorem 2.15 Let T1 = MwEMu and T2 = MsEMr be in L. If E(uw), E(rs) and
E(rw)E(us) are bounded away from zero on their supports, then (T1T2)D = T D

2 T D
1

if and only if T1 commute with T2 and

(E(rw))2(E(us))2χA∩B = (E(uw))2(E(rs))2χC ,

where A = σ(E(uw)), B = σ(E(rs)) and C = σ(E(rw)) ∩ σ(E(us)).
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Proof By Theorem 2.3, T D
1 = MαT1 and T D

2 = MβT2, where α = χA
(E(uw))2

and

β = χB
(E(rs))2

. Since T1T2 = MwE(us)EMr , then by Lemma 2.14, T1T2 is Drazin

invertible and (T1T2)D = Mγ T1T2, where γ = χC
(E(rw))2(E(us))2

. Thus, the reverse

order low (T1T2)D = T D
2 T D

1 holds if and only if T1 and T2 commute and αβ = γ .
This completes the proof. ��
Theorem 2.16 Let T1 = MwEMu and T2 = MsEMr be in L. Then the following
assertions hold.

(a) If s = w and E(uw) + E(rw) is bounded away from zero on its support, then
T1 + T2 is Drazin invertible.

(b) If E(uw) = 0 = E(rs) and E(ur)E(sw) is bounded away from zero on its
support, then T1 + T2 is Drazin invertible with ind(T1 + T2) = 1.

Proof (a) Put S = E(uw) + E(rw). Using Theorem 2.2 we have

(T1 + T2)
D = (MwEMu+r )

D = M χσ(S)

S2
MwEMu+r .

(b) Put K = E(ur)E(sw) and define S = M χσ(K )
K

(T1 + T2). Since theA-measurable

function K is bounded away from zero on its support, then S ∈ B(L2(�)) and

S(T1 + T2) = M χσ(K )
K

(T1 + T2)
2 = (T1 + T2)S.

Since T 2
1 = MwE(uw)EMu=0 and T 2

2 = MsE(rs)EMr = 0, then

(T1 + T2)
2S = (T1T2 + T2T1)S

= M χσ(K )
K

{T1T2T1 + T2T1T2}
= M χσ(K )

K
{ME(ur)E(sw)T1 + ME(ur)E(sw)T2}

= Mχσ(K )
(T1 + T2).

Since S = 0 on X\σ(K ), then (T1+T2)2S = T1+T2. Notice that (T1+T2)n+1S =
(T1 + T2)2S(T1 + T2)n−1 = (T1 + T2)n , for all n ≥ 1. Moreover,

S(T1 + T2)S = M χσ(K )

K2
(T1 + T2)

3

= M χσ(K )

K2
{T1T2T1 + T2T1T2}

= M χσ(K )
K

(T1 + T2) = S.

These ensure that S is the group inverse of T1 + T2. ��
In the following we shall use our results to calculate the Moore–Penrose inverse

and the Drazin inverse of MwEMu ∈ L.
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Example 2.17 (a) Let ε > 0, X = [−π/4+ε, π/4−ε], dμ = dx ,� be the Lebesgue
sets and let A be the σ -subalgebra generated by the symmetric sets about the
origin. Now any real valued function on X can be written uniquely as a sum of
an even function and an odd function, one simply uses the functions fe(x) =
( f (x) + f (−x))/2 and fo(x) = ( f (x) − f (−x))/2. Put 0 < a < π/4− ε. Then
for each f ∈ L2(�) we have

∫ a
−a E( f )(x)dx = ∫ a

−a fe(x)dx and consequently,
E f = fe. This example is due to Alan Lambert [13]. Now let u(x) = sin x+cos x
and w(x) = sin x − cos x . Then u1 = −w1 = cos x , u2 = w2 = sin x and
a = w1u1 + E(w2u2) = − cos2 x + E(sin2 x) = − cos2 x + sin2 x = − cos 2x .
Moreover, E(|u|2) = E(1+sin2x) = 1 and E(|w|2) = E(1−sin2x) = 1. Thus,
T = MwEMu ∈ L with ‖T ‖ = 1. Now, using (2.3) and Theorem 2.3 we get that

T =
(
M− cos2 x EM− 1

2 sin 2x

M 1
2 sin 2x

Msin x EMsin x

)
;

T D =
⎛
⎝ M− cos2 x

cos2 2x

EM− sin 2x
2 cos2 2x

M sin 2x
2 cos2 2x

M sin x
cos2 2x

EMsin x

⎞
⎠ = M 1

cos2 2x
T .

Put k = ū
E(|u|2)E(|w|2) . Then by (2.1) we have

T † =
(
Mk1w̄1 EMk1w̄2

Mk2w̄1 Mk2EMw̄2

)
=

(
M− cos2 x EM 1

2 sin 2x

M− 1
2 sin 2x Msin x EMsin x

)
= T ∗.

Moreover, since g = E(uw)ū
E(|u|2) = − cos 2x(sin x + cos x), g1 = − cos 2x cos x and

g2 = − cos 2x sin x , so we get that

T̃ = −
(
Mcos 2x cos2 x EMcos 2x cos x sin x
Mcos 2x cos x sin x Mcos 2x sin x EMsin x

)

= −Mcos 2x(sin x+cos x)EMsin x+cos x .

Now, set u = 1
cos x sin x , w = sin x , α = cos2 x sin x and T = MwEMu . Then

E(uw) = 1
cos x and E(uα) = cos x . Then by Proposition 2.2 we have

T D = Mcos2 x sin x EM 1
cos x sin x

= Msin x EMcoth x .

Note that, in this setting, {u, w, α} ⊂ N (E).

(b) Let X = {1, 2, 3}, � = 2X , μ({n}) = 1/3 and let A be the σ -algebra generated
by the partition {{1}, {2, 3}}. Then

E( f ) =
(

1

μ(A1)

∫
A1

f dμ

)
χA1 +

(
1

μ(A2)

∫
A2

f dμ

)
χA2
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= f (1)χA1 + f (2) + f (3)

2
χA2 ,

where A1 = {1} and A2 = {2, 3}. Then matrix representation of E = EA with
respect to the standard orthonormal basis is

E =
⎡
⎣1 0 0
0 1

2
1
2

0 1
2

1
2

⎤
⎦ .

Let w = (w1, w2, w3) and u = (u1, u2, u3) be nonzero elements of C3. Then

T = MwEMu =
⎡
⎣w1 0 0
0 w2 0
0 0 w3

⎤
⎦

⎡
⎣1 0 0
0 1

2
1
2

0 1
2

1
2

⎤
⎦

⎡
⎣u1 0 0
0 u2 0
0 0 u3

⎤
⎦

=
⎡
⎣w1u1 0 0
0 w2u2

2
u3w2
2

0 u2w3
2

u3w3
2

⎤
⎦ ;

uw = (u1w1, u2w2, u3w3);
|u|2 = (|u1|2, |u2|2, |u3|2);
|w|2 = (|w1|2, |w2|2, |w3|2);

E(uw) =
(
u1w1,

u2w2 + u3w3

2
,
u2w2 + u3w3

2

)
;

E(|u|2) =
(

|u1|2, |u2|2 + |u3|2
2

,
|u2|2 + |u3|2

2

)
;

E(|w|2) =
(

|w1|2, |w2|2 + |w3|2
2

,
|w2|2 + |w3|2

2

)
.

Put a = u1w1, b = 1/2(u2w2 + u3w3) and c = 1/4(|u2|2 + |u3|2)(|w2|2 + |w3|2).
Then (E(uw))2 = (a2, b2, b2) and E(|u|2)E(|w|2) = (|a|2, c, c). For x ∈ {a, b, c},
we take 1

x = 0 whenever x = 0. Then we have

T † = M(
1

|a|2 , 1c , 1c

)T ∗ =
⎡
⎢⎣

1
|a|2 0 0

0 1
c 0

0 0 1
c

⎤
⎥⎦

⎡
⎣ w̄1ū1 0 0
0 w̄2ū2

2
ū2w̄3
2

0 ū3w̄2
2

ū3w̄3
2

⎤
⎦

=
⎡
⎢⎣

w̄1ū1
|a|2 0 0

0 w̄2ū2
2c

ū2w̄3
2c

0 ū3w̄2
2c

ū3w̄3
2c

⎤
⎥⎦ ;
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T D = M(
1
a2

, 1
b2

, 1
b2

)T =
⎡
⎢⎣

1
a2

0 0
0 1

b2
0

0 0 1
b2

⎤
⎥⎦

⎡
⎣w1u1 0 0
0 w2u2

2
u3w2
2

0 u2w3
2

u3w3
2

⎤
⎦

=
⎡
⎣

w1u1
a2

0 0
0 w2u2

2b2
u3w2
2b2

0 u2w3
2b2

u3w3
2b2

⎤
⎦ .

Now, put u = (1, 2i,−4) and w = (2i,−2i,−4). Then E(uw) = E(2i, 4, 16) =
(2i, 10, 10), E(|u|2) = E(1, 4, 16) = (1, 10, 10) and E(|w|2) = E(4, 4, 16) =
(4, 10, 10). It follows that a = 2i , b = 10 and c = 100 and

T =
⎡
⎣2i 0 0
0 2 4i
0 −4i 8

⎤
⎦ , T † =

⎡
⎣

−i
2 0 0
0 1

50
i
25

0 −i
25

2
25

⎤
⎦ = T D.

Note that w = (2i, 1, 1)ū, where (2i, 1, 1) is A-measurable. So, T is normal but
it is not self-adjoint. Moreover, by Corollary 2.9, σ(T †) = σ(T D) = {−i

2 , 1
10 } and

σ(T ) = {2i, 10}.
Now, put u = (0, i,−1), w = (1, 1, i), r = (0, 1,−1) and s = (1,−1,−1). Then

E(uw) = (0, 0, 0) = E(rs) and

E(ur) = (0,
1 + i

2
,
1 + i

2
);

E(sw) = (1,−1 + i

2
,−1 + i

2
);

E(ur)E(sw) = (0,
−i

2
,
−i

2
);

1

E(ur)E(sw)
= (0, 2i, 2i).

Moreover,

T1 = MwEMu =
⎡
⎣0 0 0
0 i

2
−1
2

0 −1
2

−i
2

⎤
⎦ , T2 = MsEMr =

⎡
⎣0 0 0
0 −1

2
−1
2

0 1
2

1
2

⎤
⎦ .

It follows that

(T1 + T2)
D = (T1 + T2)

# = M(0,2i,2i)(T1 + T2)

= 2i(T1 + T2) = i

⎡
⎣0 0 0
0 i − 1 −2
0 0 1 − i

⎤
⎦ .
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