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ABSTRACT
In this paper, we introduce operator geodesically convex and opera-
tor convex-log functions and characterize some properties of them.
Then we apply these classes of functions to present several opera-
tor Azcél and Minkowski-type inequalities extending some known
results. The concavity counterparts are also considered.
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1. Introduction

It is known that the theory of matrix/operator convex functions introduced by Kraus [1]
has many important applications in matrix analysis and quantum information and so on.
Following this study, significant concepts of convexity have been extended elegantly to
Hilbert space operators from scalar cases. The main aim of this paper is to establish an
analogue of some convexity properties for operator functions. For this purpose, we first
briefly review a survey on convex functions and operator convex functions. Throughout
this paper, we use subintervals J and J+ in the sense that J ⊂ R and J+ ⊂ (0,∞).

Definition 1.1 ([2]): Let f be a positive function defined on J or J+.

(AA) The function f is said to be (usual) convex iff

f ((1 − v)a + vb) ≤ (1 − v)f (a) + vf (b) for any v ∈ [0, 1] and a, b ∈ J.

(AG) The function f is said to be log-convex iff

f ((1 − v)a + vb) ≤ f 1−v(a)f v(b) for any v ∈ [0, 1] and a, b ∈ J.
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2 V. KALEIBARY ET AL.

(GA) The function f is said to be geodesically convex iff

f (a1−vbv) ≤ (1 − v)f (a) + vf (b) for any v ∈ [0, 1] and a, b ∈ J+.

(GG) The function f is said to be geometrically convex iff

f (a1−vbv) ≤ f 1−v(a)f v(b) for any v ∈ [0, 1] and a, b ∈ J+.

If the inequalities are reversed, then we have the corresponding types of concave functions.

Definition 1.2 ([3]): A function f : (0,∞) → R is called convex-log if it can be written
in the form f (t) = h(log t), t > 0, where h : R → R is a convex function.

We give a remark on the basic properties of the above function.

Remark 1.3: (i) A convex-log function satisfies the inequality

f (a1−vbv) ≤ (1 − v)f (a) + vf (b), a, b > 0,

for v ∈ [0, 1]. Indeed,

f (a1−vbv) = h(log(a1−vbv)) = h((1 − v) log(a) + v log(b))

≤ (1 − v)h(log(a)) + vh(log(b)) = (1 − v)f (a) + vf (b).

So, we can say every convex-log function is a geodesically convex function. Precisely,
the equivalence between a convex-log function and a geodesically convex function is
shown in [3, Lemma 3.2].

(ii) For a continuous positive function f, if log f is convex, then it is natural to say
that f is log-convex. If f is a positive increasing log-convex function, then it is a
geometrically convex function. Indeed, it follows f (a1−vbv) ≤ f ((1 − v)a + vb) ≤
f 1−v(a)f v(b) from the monotone increasingness of f and the arithmetic-geometric
mean inequality. We note that a non-increasing log-convex function is not a geo-
metrically convex function in general since the first inequality above is not valid. We
can give a counter-example. Take the function f (t) := − log t on (0, 1/e]. Then the
function f (t) is decreasing and log-convex since d2

dt2 (log(− log t)) = − log t−1
t2(log t)2 ≥ 0 for

t ∈ (0, 1/e]. Then we have (− log a)1−v(− log b)v − (− log(a1−vbv)) = √
2 − 3/2 <

0 when a = 1/e, b = 1/e2 and v = 1/2, so that this function does not satisfy the
definition of a geometrically convex function.

In addition, a geometrically convex function is not always a log-convex function. It
is known that the function sinh t on (0,∞) is geometrically convex [2]. However, the
calculation d2(sinh t)

dt2 = − 1
sinh2 t

< 0 shows that the function sinh t is not log-convex.
(iii) A geometrically convex function is a geodesically convex function by the arithmetic-

geometric mean inequality. However, an increasing convex-log function is not nec-
essarily a geometrically convex function. There are some examples that show the
difference between these two classes of functions. For instance, the function f (t) =
tp, p ∈ R, is convex-log, by letting h(t) = exp(pt), but it is not log-convex, since
log(f (t)) = p log(t) is not convex.



LINEAR ANDMULTILINEAR ALGEBRA 3

For a real-valued function f and a self-adjoint operator A ∈ B(H), the value f (A) is
understood by means of the functional calculus. For each α ∈ [0, 1] and strictly positive
operators A, B, A∇αB := (1 − α)A + αB, A!αB := ((1 − α)A−1 + αB−1)−1 and A�αB :=
A1/2(A−1/2BA−1/2)αA1/2 are the α-arithmetic, α-harmonic and α-geometric means,
respectively. It is known that for any A, B>0, we have A!αB ≤ A�αB ≤ A∇αB. Some of
the above definitions of convexity have been extended to the operator case as follows.

Definition 1.4: Let f be a continuous real function on J+,A,B be strictly positive operators
with spectra contained in J+.

(i) The function f is said to be operator convex iff

f ((1 − v)A + vB) ≤ (1 − v)f (A) + vf (B) for any v ∈ [0, 1] and A,B > 0.

(ii) The nonnegative function f is said to be operator log-convex iff

f ((1 − v)A + vB) ≤ f (A)�vf (B) for any v ∈ [0, 1] and A,B > 0.

The concept of operator convexity was delicately introduced by Kraus [1]. Ando and Hiai
[4] obtained a full characterization of operator log-convex functions. Also, a variant of the
geometrically convexity property is presented in [5] as follows:

f (A�vB) ≤ M(f (A)�vf (B))

with constant M ≥ 1. In this note, we extend the definition of geodesically convex and
convex-log functions to the operator space. In the second section, we first introduce oper-
ator geodesically convex (concave) functions. We present some properties of them and
show that the class of such functions is fairly rich. Then we obtain an operator Azcél
inequality, including operator geodesically convex functions. In the third section, we give
the definition of an operator log-convex function and investigate some properties of that.
Further, a variant of the operator Azcél inequality involving operator concave-log func-
tions is given. The last section is devoted to studying another type of geodesically convex
function, which leads to getting some Minkowski-type inequalities. The obtained results
generalize the corresponding Minkowski and Azcél inequalities in [6,7], respectively.

2. Operator geodesically convex function

In 1956, Aczél [8] proved that if ai, bi(1 ≤ i ≤ n) are positive real numbers such that a21 −∑n
i=2 a

2
i > 0 and b21 −∑n

i=2 b
2
i > 0, then(

a1b1 −
n∑
i=2

aibi

)2

≥
(
a21 −

n∑
i=2

a2i

)(
b21 −

n∑
i=2

b2i

)
.

Popoviciu [9] presented an exponential extension of the Aczél inequality, so that if p >

1, q > 1, 1p + 1
q = 1, ap1 −∑n

i=2 a
p
i > 0 and bq1 −∑n

i=2 b
q
i > 0, then

a1b1 −
n∑

i=2
aibi ≥

(
ap1 −

n∑
i=2

api

) 1
p
(
bq1 −

n∑
i=2

bqi

) 1
q

.
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Aczél’s and Popoviciu’s inequalities were sharpened and some generalizations and variants
of these inequalities are presented. See [10] and references therein. An operator version of
the classical Aczél inequality was given in [7]. Furthermore, some reverses of the operator
Aczél inequality were given in [11], and a variant of them was provided in [12].

In this section, we introduce an operator geodesically convex (concave) function and
present an operator Aczél inequality involving this class of functions.

Definition 2.1: A nonnegative continuous function f on J+ is said to be operator geodesi-
cally convex iff

f (A�vB) ≤ f (A)∇vf (B), (1)

for any strictly positive operators A,B with spectra contained in J+ and v ∈ [0, 1]. The
function f is also said to be operator geodesically concave iff −f is operator geodesically
convex.

We first aim to show that the class of functions satisfying (1) is fairly rich. For this pur-
pose, the following lemmas are provided. We also recall that a continuous real function f
defined on an interval J is said to be operator monotone if A ≤ B implies f (A) ≤ f (B) for
all A, B with spectra in J.

Lemma 2.2: Let f , f1 and f2 be nonnegative continuous functions on J+.

(i) If f is operator monotone and operator convex, then f is operator geodesically convex.
(ii) If f1 is operator monotone and operator convex and f2 is operator geodesically convex,

then f1 ◦ f2 is operator geodesically convex.
(iii) If f1 and f2 are two operator geodesically convex functions, then so is αf1 + f2 for α > 0.

Proof: For strictly positive operators A,B, we have the well-known Young inequality
A�vB ≤ A∇vB. Now, (i) clearly holds by the assumptions on f and applying the Young
inequality. For (ii) we have

f1 ◦ f2(A�vB) = f1(f2(A�vB))

≤ f1(f2(A)∇vf2(B)) (op. monotonicity of f1 and (1))

≤ f1(f2(A))∇vf1(f2(B)) (op. convexity of f1)

= f1 ◦ f2(A)∇vf1 ◦ f2(B).

Now, let f1 and f2 be two operator geodesically convex functions and α > 0. Then

(αf1 + f2)(A�vB) = αf1(A�vB) + f2(A�vB)

≤ α
(
f1(A)∇vf1(B)

)+ (
f2(A)∇vf2(B)

)
= (

αf1(A) + f2(A)
)∇v

(
αf1(B) + f2(B)

)
= (αf1 + f2)(A)∇v(αf1 + f2)(B).

That is, αf1 + f2 is a geodesically convex function as well. �
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Lemma 2.3: Let f and g be continuous functions from (0,∞) into itself.

(i) If f (x) is an operator geodesically convex function so is f ( 1x ).
(ii) If g(x) is an operator geodesically concave function so is g( 1x ).

Proof: Let A and B be strictly positive operators. Thanks to the geometric mean property
(A�vB)−1 = A−1�vB−1, we have the first result as follows:

f ((A�vB)−1) = f (A−1�vB−1) ≤ f (A−1)∇vf (B−1).

The second one is obtained similarly. �

In the above lemma, if we let f and g be nonnegative continuous functions from J ⊂
(0,∞), we will assume that J contains both Sp(A) and Sp(A−1), where Sp(A) represents
the spectrum ofA. The next theorem presents a connection between operator geodesically
concavity and convexity. We recall that g∗(x) := 1

g( 1x )
is called the adjoint of function g.

Theorem2.4: Let g be an operator geodesically concave function. Then the functions 1/g and
g∗ are operator geodesically convex.

Proof: Let A, B be strictly positive operators. For the operator geodesically concave
function g, we have

g(A�vB) ≥ g(A)∇vg(B). (2)

Therefore,

(g(A�vB))−1 ≤ (g(A)∇vg(B))−1 = g(A)−1!vg(B)−1 ≤ g(A)−1∇vg(B)−1,

which shows 1/g is operator geodesically convex. Combining this result with part (i) of
Lemma 2.3 easily yields g∗ is a operator geodesically convex function. However, in the
sequel, we give a direct proof providing a refined inequality. Rewriting inequality (2) with
the operators A−1,B−1 and taking the inverse, we have

(
g(A−1�vB−1)

)−1 ≤ (
g(A−1)∇vg(B−1)

)−1 . (3)

Hence

g∗(A�vB) = (
g(A−1�vB−1)

)−1

≤ (
g(A−1)∇vg(B−1)

)−1 (by the inequality (3))

= (
g∗(A)−1∇vg∗(B)−1)−1

= g∗(A)!vg∗(B)

≤ g∗(A)∇vg∗(B),

as desired. �
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Example 2.5: (i) The simplest example of operator geodesically convex functions is
f (t) = t − a, a ≥ 0 on (a,∞). For a = 0, f (t) = t leads to the Young inequality
A�vB ≤ A∇vB.

(ii) Another example is f (t) = 1
1−t on (0, 1) due to its operator convexity and operator

monotonicity [13], hence so is f (1/t) = t
1−t on (0, 1).

(iii) Let f (t) = 1
t on (0,∞). Then

f (A�vB) = (A�vB)−1 = A−1�vB−1 ≤ A−1∇vB−1 = f (A)∇vf (B).

This function is an instance of an operator geodesically convex function which is not
operator monotone.

Example 2.6: (i) Every operator monotone decreasing and operator concave function g
on J is an operator geodesically concave function.

(ii) It can be seen that the Young inequality A�vB ≤ A∇vB is equivalent to I − A�vB ≥
(I − A)∇v(I − B). This means the function g(t) = 1 − t on (0, 1) is an operator
geodesically concave function. A similar statement holds for g(t) = a − t on (0, a).
By applying Theorem 2.4, it is deduced that the functions g(t)−1 = 1

a−t on (0, a) and
g∗(t) = t

at−1 on ( 1a ,∞) are operator geodesically convex.
(iii) Let g(t) = a − 1

t , t ∈ ( 1a ,∞). Then

g(A�vB) = aI − (A�vB)−1 = aI − (A−1�vB−1)

≥ (aI − A−1)∇v(aI − B−1)

= g(A)∇vg(B).

Hence, g(t) is operator geodesically concave but not operator monotone decreasing.

The corresponding results of Lemma 2.2 hold for operator geodesically concave func-
tions as well. The next result provides an operator Aczél inequality involving this class of
functions.

Theorem 2.7: Let g : J+ → [0,∞) be an operator geodesically concave function, and p,
q>1 with 1/p + 1/q = 1. For strictly positive operators A and B with spectra contained in
J+, we have

g
(
Ap�1/qBq

) ≥ g(Ap)�1/qg(Bq) (4)

and

〈g (Ap�1/qBq
)
x, x〉 ≥ 〈g(Ap)x, x〉1/p〈g(Bq)x, x〉1/q, (5)

for all x ∈ H.

Proof: Since g is an operator geodesically concave function, we have

g(A�vB) ≥ g(A)∇vg(B) ≥ g(A)�vg(B). (6)
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Replacing A, B with Ap,Bq, respectively, and putting v = 1/q, then we obtain the desired
inequality (4). From the first inequality of (6) and the arithmetic-geometric mean inequal-
ity, we have, for all x ∈ H,

〈g (Ap�1/qBq
)
x, x〉 ≥ 1

p
〈g(Ap)x, x〉 + 1

q
〈g(Aq)x, x〉 ≥ 〈g(Ap)x, x〉1/p〈g(Bq)x, x〉1/q.

�

By letting g(t) = 1 − t on (0, 1), we have the following result.

Corollary 2.8: Let 1/p + 1/q = 1with p, q>1. For commuting positive invertible operators
A and B with spectra contained in (0, 1),

1 − ‖(AB)1/2x‖2 ≥ (
1 − ‖Ap/2x‖2)1/p (1 − ‖Bq/2x‖2)1/q ,

for all x ∈ H with ‖x‖ = 1.

3. Operator convex-log functions

As stated in Definition 1.2, a function f : (0,∞) → R is called convex-log if it can be
written in the form f (t) = h(log t), t > 0, where h : R → R is a convex function. In this
section, we are going to present a corresponding definition for operator functions and
investigate some properties of that.

Definition 3.1: Let J1, J2 ⊂ R. We call a function f : J+ → R operator convex-log if it
can be written in the form f (t) = h(log t), t > 0, where h : J1 → J2 is an operator convex
function. Also, a function g : J+ → R is called an operator concave-log function if it can
be written in the form g(t) = ϕ(log t), t > 0, where ϕ : J1 → J2 is an operator concave
function.

Remark 3.2: (i) We stated in Remark 1.3 that every convex-log function is a geodesi-
cally convex function. However, this is not valid for the operator case. So we use two
terms, ‘convex-log’ and ‘geodesically convex’ , in this article.

(ii) We set J1 = J2 = (0,∞) in Definition 3.1. It is known that the function log(t) is
operator concave on (0,∞). Further, every operator concave function ϕ : (0,∞) →
(0,∞) is also operator monotone [14]. By applying these facts to the operator
concave-log function g, we have

g(A∇vB) = ϕ(log(A∇vB))

≥ ϕ(log(A)∇v log(B))

≥ ϕ(log(A))∇vϕ(log(B))

= g(A)∇vg(B).

This means any operator concave-log function g : J+ → (0,∞) is an operator
concave function.
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(iii) There is a wide range of this class of functions. The simplest examples are the func-
tions (log(t))p on [1,∞), which for p ∈ [−1, 0] ∪ [1, 2] are operator convex-log and
for p ∈ [0, 1] are operator concave-log.

In the rest of this section, wewill use the following definition consideredwith gentle restric-
tions on the domains. These restrictions enable us to provide some results on the operator
log-convex functions involving operator means.

Definition 3.3: We say a function f : [1,∞) → [0,∞) is operator convex-log if it can be
written in the form f (t) = h(log t), t ≥ 1, where h : [0,∞) → [0,∞) is an operator con-
vex function. Similarly, a function g : [1,∞) → [0,∞) is called an operator concave-log
function if it can be written in the form g(t) = ϕ(log t), t ≥ 1, where ϕ : [0,∞) → [0,∞)

is an operator concave function.

In what follows, the capital letters A, B denote n × n matrices or bounded linear oper-
ators on an n-dimensional complex Hilbert space H. For positive operators A and B, the
weak majorization A ≺w Bmeans that

k∑
j=1

λj(A) ≤
k∑

j=1
λj(B), k = 1, 2, . . . , n,

where λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) are the eigenvalues of A listed in decreasing order. If
equality holdswhen k = n, we have themajorizationA ≺ B. See [15] formore details. Also,
the notation �ols is used for the so-called Olson order. For positive operators, A �ols B if
and only if Ar ≤ Br for every r ≥ 1 [16].

Lemma 3.4 ([17, Corollary 2.3]): Let A and B be positive operators acting on a Hilbert
space of finite dimension. Then for every v ∈ [0, 1]

log(A�vB) ≺ log(A)∇v log(B).

Theorem 3.5: Let f : [1,∞) → [0,∞) be an operator convex-log function. Then for every
A,B > I and v ∈ [0, 1]

f (A�vB) ≺w f (A)∇vf (B). (7)

Proof: Since f is operator convex-log, then there is an operator convex function h :
[0,∞) → [0,∞) such that f (t) = h(log t), t ≥ 1. Since A, B> I, so A�vB > I and we have

f (A�vB) = h(log(A�vB))

≺w h(log(A)∇v log(B)) (by Lemma 3.4)

≤ h(log(A))∇vh(log(B)) (by op. convexity of h)

= f (A)∇vf (B).

In the second inequality, we use the fact that for every convex function h, A ≺ B implies
h(A) ≺w h(B) [14, Proposition 4.1.4]. �
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Remark 3.6: Inequality (7) can be considered as a variant of the operator geodesically
convexity property for expansive operators. Also, it provides an elegant extension of
Lemma 3.4.

In the sequel, we use the notation μ(s, t) := max{S(s), S(t)}, where S(t) = t
1

t−1

e log(t
1

t−1 )

for

t>0 is the so-called Specht ratio. Note that limt→1 S(t) = 1 and S(t) = S(1/t) > 1 for
t �= 1, t > 0. For more details, see [18]. We first give a reverse of Lemma 3.4 and then
apply it to show the next main result. The following lemmas are needed.

Lemma 3.7 ([5, Lemma 1]): Let 0 < sA ≤ B ≤ tA, 0 < s ≤ t and ν ∈ [0, 1]. Then

A∇νB ≤ μ(s, t)(A�νB). (8)

Lemma 3.8 ([19, Theorem 1]): Let H and K be Hermitian matrices such that es eH �ols
eK �ols et eH for some scalars s ≤ t, and v ∈ [0, 1]. Then for all r>0 and k = 1, 2, . . . , n

λk(e(1−v)H+vK) ≤ μ
1
r
(
ers, ert

)
λk(erH�v erK)

1
r ,

where �ols is the so-called Olson order.

Lemma 3.9 ([19, Lemma 1]): Let A and B be positive definite matrices such that sA ≤ B ≤
tA for some scalars 0 < s ≤ t and v ∈ [0, 1]. Then

Ar�vBr ≤ μr(s, t)(A�vB)r 0 < r ≤ 1.

Proposition 3.10: Let A and B be positive definite matrices such that esA �ols B �ols etA
for some scalars s ≤ t, and v ∈ [0, 1]. Then

λk
(
logA ∇v logB

) ≤ λk
(
log (MN(A�vB))

)
, (9)

and so

logA∇v logB ≺w log (MN(A�vB)) ,

where M := μ
1
r (ers, ert), N := μ(es, et), and 0 < r ≤ 1.

Proof: Considering the condition esA �ols B �ols etA in the form of es elogA �ols
elogB �ols et elogA, we can apply Lemma 3.8 by setting H = logA, K = logB, M =
μ

1
r (ers, ert) and r>0 as follows:

λk

(
e(1−v) logA+v logB

)
≤ Mλk(Ar�vBr)

1
r . (10)

On the other hand, since the sandwich condition esA �ols B �ols etA implies esA ≤ B ≤
etA, we can use Lemma 3.9 for 0 < r ≤ 1 as follows:

Ar�vBr ≤ μr (es, et) (A�vB)r.
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So

λk(Ar�vBr)
1
r ≤ (

μr (es, et) λk(A�vB)r
) 1
r

= μ
(
es, et

)
λk(A�vB). (11)

Let N = μ(es, et). Combining inequalities (10) and (11) implies

λk

(
e(1−v) logA+v logB

)
≤ MNλk ((A�vB)) = λk (MN(A�vB)) .

Thereupon

log
(
λk

(
e(1−v) logA+v logB

))
≤ log (λk (MN(A�vB))) ,

and hence

λk
(
(1 − v) logA + v logB

) ≤ λk
(
log (MN(A�vB))

)
.

�

Theorem 3.11: Let g : [1,∞) → [0,∞) be an operator concave-log function, A and B be
positive definite matrices such that esI ≺ols esA �ols B �ols etA for some scalars 0 < s ≤ t,
and v ∈ [0, 1]. Then for every 0 < r ≤ 1 and k = 1, 2, . . . , n, we have

λk
(
g(A)∇vg(B)

) ≤ S(ert)
1
r S(et)λk

(
g(A�vB)

)
. (12)

Proof: Since g is an operator concave-log function, then there is an operator concave func-
tion ϕ : [0,∞) → [0,∞) such that g(t) = ϕ(log t), t ≥ 1. Also, according to Remark 3.2,
g is an operator concave function. On the other hand, the sandwich condition esI ≺ols
esA �ols B �ols etA with 0< s< t implies A, B> I. Compute

λk
(
g(A)∇vg(B)

) = λk
(
ϕ(log(A))∇vϕ(log(B))

)
≤ λk

(
ϕ
(
log(A)∇v log(B)

))
(op. concavity of ϕ)

= ϕ
(
λk
(
log(A)∇v log(B)

))
≤ ϕ

(
λk
(
logMN(A�vB)

))
((9) and monotonicity of ϕ)

= λk
(
ϕ
(
logMN(A�vB)

))
= λk

(
g (MN(A�vB))

)
≤ MNλk

(
g (A�vB)

)
(concavity of g),

where constants M and N are defined in Proposition 3.10. On the other hand, since
S(h) is an increasing function on [1,∞) and 1 < es ≤ et for 0 < s ≤ t, therefore MN =
S(ert)

1
r S(et) as desired. For the last inequality, given thatMN ≥ 1, we use the fact for every

nonnegative concave function g and every z>1, g(zx) ≤ zg(x). �

Remark 3.12: Under the assumptions of Theorem 3.11, we immediately have

g(A)∇vg(B) ≺w μ g(A�vB),
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where μ = S(ert)
1
r S(et). This inequality provides a variant of the geodesically concavity

property

g(a)∇vg(b) ≤ g(a�vb),

for operator concave-log functions. Also, inequality (12) is equivalent to the existence of a
unitary operator U satisfying

g(A)�vg(B) ≤ g(A)∇vg(B) ≤ μUg(A�vB)U∗. (13)

By applying Theorem 3.11, we can get a variant of the operator Aczél inequality
involving operator concave-log functions as follows:

Corollary 3.13: Let g : [1,∞) → [0,∞) be an operator concave-log function, 1
p + 1

q =
1, p, q > 1 and esI ≺ols esAp �ols Bq �ols etAp for some scalars 0 < s ≤ t. Then, there is
a unitary operator U such that for all x ∈ H

g(Ap)� 1
q
g(Bq) ≤ μ · Ug(Ap� 1

q
Bq)U∗,

〈g(Ap)Ux,Ux〉1/p〈g(Bq)Ux,Ux〉1/q ≤ μ · 〈g (Ap�1/qBq
)
Ux,Ux〉,

where μ := S(ert)
1
r S(et) and 0 < r ≤ 1.

Proof: Putting A := Ap, B := Bq and ν := 1/q in inequality (13), we have the first alleged
inequality. For the second, we first note that the condition esI ≺ols esAp �ols Bq �ols etAp

implies esI ≤ esAp ≤ Bq ≤ etAp. So, by applying Lemma 3.7 for the operators Ap and Bq,
we will get

Ap∇νBq ≤ μ
(
es, et

)
(Ap�νBp) = S(et)(Ap�νBp) ≤ μ · (Ap�νBp). (14)

As it is shown in Remark 3.2, g is an operator concave function. Also, it is the composition
of two operator monotone functions. So, we can write

μ · 〈g (Ap�1/qBq
)
Ux,Ux〉 ≥ 〈g (μ(Ap�1/qBq)

)
Ux,Ux〉 (concavity of g)

≥ 〈g(Ap∇1/qBq)Ux,Ux〉 (op. monotonicity of g with (14))

≥
〈(

1
p
g(Ap) + 1

q
g(Bq)

)
Ux,Ux

〉
(op. concavity of g)

= 1
p
〈g(Ap)Ux,Ux〉 + 1

q
〈g(Aq)Ux,Ux〉

≥ 〈g(Ap)Ux,Ux〉1/p〈g(Bq)Ux,Ux〉1/q (AM-GM inequality).

�
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4. Another type of geodesically convex function

Definition 4.1 ([3]): A function F : B(H)+ → R is defined in the set B(H)+ of posi-
tive operators on a finite-dimensional Hilbert space H, where dimH = n is said to be
n-geodesically convex if

F(A�vB) ≤ F(A)∇vF(B), for any v ∈ [0, 1]. (15)

If inequality (15) holds for every n, then the function F is called geodesically convex.

The functions F(A) = tr(eA), F(A) = tr(Aα),α ≥ 1, λ1(eA) and λ1(Aα),α ≥ 1 are exam-
ples of geodesically convex functions. For more results and examples, see [20].

Bourin and Hiai [6, Proposition 3.5] showed that for every A, B>0, v ∈ [0, 1] and k =
1, 2, . . . , n,

k∏
j=1

λj(A�vB) ≤
⎧⎨
⎩

k∏
j=1

λj(A)

⎫⎬
⎭ �v

⎧⎨
⎩

k∏
j=1

λj(B)

⎫⎬
⎭ (16)

and
n∏

j=n+1−k

λj(A�vB) ≥
⎧⎨
⎩

n∏
j=n+1−k

λj(A)

⎫⎬
⎭ �v

⎧⎨
⎩

n∏
j=n+1−k

λj(B)

⎫⎬
⎭ . (17)

It is deduced from inequality (16) that F(A) = ∏k
j=1 λj(A) and F(A) = det(A) are also

geodesically convex functions. In this section, we investigate the geodesically convex-
ity properties of some new functions involved with operator functions and achieve a
generalization of the above Minkowski-type inequalities, simultaneously.

It is shown in [20, Theorem 2.3] if h is an increasing convex function on (0,∞), then∑k
j=1 h(λj(A)) is geodesically convex. In the following, we give a corresponding result for

increasing geometrically convex functions on (0,∞).

Lemma 4.2: Let g be an increasing geometrically convex function on (0,∞). Then the
function F(A) = ∑k

j=1 g(λj(A)), k = 1, 2, . . . , n, is a geodesically convex function.

Proof: First, note that inequality (16) is equivalent to the following one:

k∏
j=1

λj(A�vB) ≤
k∏

j=1
λj(A)vλj(B)1−v =

k∏
j=1

λj(Av)λj(B1−v). (18)

Also, since g(t) is a geometrically convex function, g(et) is a convex function due to the
following inequality

g(ex∇vy) = g(e(1−v)x evy) = g(ex�v ey) ≤ g(ex)�vg(ey) ≤ g(ex)∇vg(ey).

Now, by applying a classical result on the function g [14, Proposition 4.1.6] and inequal-
ity (18), we have

k∑
j=1

g
(
λj(A�vB)

) ≤
k∑

j=1
g
(
λ1−v
j (A)λvj (B)

)
.
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Hence, we can write

k∑
j=1

g
(
λj(A�vB)

) ≤
k∑

j=1
g
(
λ1−v
j (A)λvj (B)

)

≤
k∑

j=1

(
g(λj(A))

)1−v g
(
(λj(B))

)v (geometrical convexity of g)

≤
⎧⎨
⎩

k∑
j=1

g
(
λj(A)

)⎫⎬⎭ �v

⎧⎨
⎩

k∑
j=1

g
(
λj(B)

)⎫⎬⎭ (Cauchy–Schwarz inequality)

≤
⎧⎨
⎩

k∏
j=1

g
(
λj(A)

)⎫⎬⎭∇v

⎧⎨
⎩

k∏
j=1

g
(
λj(B)

)⎫⎬⎭ , (AM-GM inequality).

�

In the sequel, we present some results involving operator functions.

Lemma 4.3 ([11]): Let g be a nonnegative operator monotone decreasing function on (0,∞)

and 0 < sA ≤ B ≤ tA for some constants 0 < s ≤ t. Then, for all v ∈ [0, 1]

g(A�vB) ≤ μ(s, t)(g(A)�vg(B)).

Theorem 4.4: Let g be a nonnegative operator monotone decreasing function on (0,∞) and
0 < sA ≤ B ≤ tA for some scalars s, t > 0. Then for all v ∈ [0, 1] and k = 1, 2, . . . , n,

k∏
j=1

λj(g(A�vB)) ≤ μk (s, t)

⎛
⎝
⎧⎨
⎩

k∏
j=1

λj(g(A))

⎫⎬
⎭ �v

⎧⎨
⎩

k∏
j=1

λj(g(B))

⎫⎬
⎭
⎞
⎠ .

Proof: We compute

k∏
j=1

λj(g(A�vB)) ≤
k∏

j=1
λj
(
μ(s, t)

(
g(A)�vg(B)

))
(by Lemma 4.3)

= μk(s, t)
k∏

j=1
λj(g(A)�vg(B))

≤ μk(s, t)

⎛
⎝
⎧⎨
⎩

k∏
j=1

λj(g(A))

⎫⎬
⎭ �v

⎧⎨
⎩

k∏
j=1

λj(g(B))

⎫⎬
⎭
⎞
⎠ (by (16)).

�

Corollary 4.5: Let g be a nonnegative operator monotone decreasing function on (0,∞) and
0 < sA ≤ B ≤ tA for some scalars s, t>0. Then for all ν ∈ [0, 1]

det g(A�vB) ≤ μn(s, t)
(
det g(A)�v det g(B)

)
.



14 V. KALEIBARY ET AL.

Remark 4.6: According to Theorem 4.4, by letting F(A) = ∏k
j=1 λj(g(A)) where g is an

operator monotone decreasing function on (0,∞), we have

F(A�vB) ≤ μk(s, t) (F(A)∇vF(B)) .

This inequality gives a variant of the geodesically convexity property of (15) for the
function F(A) = ∏k

j=1 λj(g(A)). Further, it provides an extension of a Minkowski-type
inequality (16) to the operator functions.

In the next, we will see an extension of a Minkowski-type inequality (17).

Theorem 4.7: Let f be an operator monotone function on (0,∞) and 0 < sA ≤ B ≤ tA for
some scalars s, t > 0. Then for all v ∈ [0, 1] and k = 1, 2, . . . , n,

n∏
j=n+1−k

λj(f (A�vB)) ≥ μk(s, t)

⎛
⎝
⎧⎨
⎩

n∏
j=n+1−k

λj(f (A))

⎫⎬
⎭ �v

⎧⎨
⎩

n∏
j=n+1−k

λj(f (B))

⎫⎬
⎭
⎞
⎠ .

Proof: Since f is operator monotone on (0,∞), so 1/f is operator monotone decreasing
on (0,∞) and we can apply Theorem 4.4 for g = 1/f as follows:

k∏
j=1

λj
(
(f (A�vB))−1) ≤ μk(s, t)

⎧⎨
⎩

k∏
j=1

λj
(
(f (A))−1)

⎫⎬
⎭ �v

⎧⎨
⎩

k∏
j=1

λj
(
(f (B))−1)

⎫⎬
⎭ ,

and hence
n∏

j=n+1−k

(
λj
(
f (A�vB)

))−1

≤ μk(s, t)

⎧⎨
⎩

n∏
j=n+1−k

(
λj
(
f (A)

))−1

⎫⎬
⎭ �v

⎧⎨
⎩

n∏
j=n+1−k

(
λj
(
f (B)

))−1

⎫⎬
⎭ .

By using the property X−1�vY−1 = (X�vY)−1 and reversing the inequality, we get the
desired result. �

Corollary 4.8: Let f be an operator monotone function on (0,∞) and 0 < sA ≤ B ≤ tA for
some scalars s, t > 0. Then for all v ∈ [0, 1]

det f (A�vB) ≥ μn(s, t)
(
det f (A)�v det f (B)

)
.

Remark 4.9: The appeared constant μ(s, t) = max{S(s), S(t)} in all the results of the pre-
ceding sections can be replaced by max{K(s)R,K(t)R}, where K(h) = (h+1)2

4h , h > 0 is the
Kantorovich constant and R = max{v, 1 − v}, with no ordering between them (see [11]).
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