

Linear and Multilinear Algebra

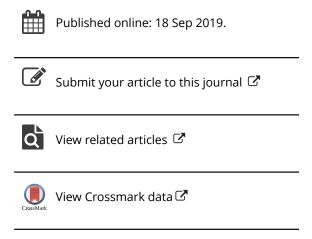
ISSN: 0308-1087 (Print) 1563-5139 (Online) Journal homepage: https://www.tandfonline.com/loi/glma20

On the dilation of a conditional operator

M. R. Jabbarzadeh & H. Emamalipour

To cite this article: M. R. Jabbarzadeh & H. Emamalipour (2019): On the dilation of a conditional operator, Linear and Multilinear Algebra, DOI: <u>10.1080/03081087.2019.1664385</u>

To link to this article: https://doi.org/10.1080/03081087.2019.1664385



On the dilation of a conditional operator

M. R. Jabbarzadeh and H. Emamalipour

Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran

ABSTRACT

Let E be the conditional expectation operator with respect to a σ finite subalgebra A of Σ . This paper is concerned with the study of a conditional type operator $T_{u,v}$ on $L^2(\Sigma)$ of the form $T_{u,v} = EM_uE +$ $EM_{\nu}Q$, where u and v are measurable functions and Q = I - E. We discuss matrix theoretic characterizations of several properties of $T_{u,v}$ with an application-oriented approach.

ARTICLE HISTORY

Received 28 November 2018 Accepted 29 July 2019

COMMUNICATED BY

Ngai-Ching Wong

KEYWORDS

47B25.

Conditional expectation; multiplication operator; generalized inverse: Moore-Penrose inverse: Drazin inverse

2010 MATHEMATICS SUBJECT CLASSIFICATIONS Primary 47B20; Secondary

1. Introduction and preliminaries

Let \mathcal{H} be a Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and let $\mathcal{B}(\mathcal{H})$ be the set of linear bounded operators on \mathcal{H} . We use $\mathcal{R}(T)$ and $\mathcal{N}(T)$, respectively, to denote the range space and the null space of $T \in B(\mathcal{H})$. For an operator $T \in B(\mathcal{H})$, the adjoint of T is denoted by T^* . T is self-adjoint if $T^* = T$ and T is normal if $T^*T = TT^*$. We write $T \ge 0$ if T is a positive operator, meaning that $\langle Tx, x \rangle > 0$ for all $x \in \mathcal{H}$. An orthogonal projection is an operator $P \in \mathcal{B}(\mathcal{H})$ such that $P^2 = P = P^*$. Let $CR(\mathcal{H})$ be the set of all bounded linear operators on \mathcal{H} with closed range. For $T \in B(\mathcal{H})$, the Moore–Penrose inverse of T, denoted by T^{\dagger} , is the unique operator $T^{\dagger} \in CR(\mathcal{H})$ that satisfies the equations $TT^{\dagger}T = T$, $T^{\dagger}TT^{\dagger} = T^{\dagger}$, $(TT^{\dagger})^* = TT^{\dagger}$ and $(T^{\dagger}T)^* = T^{\dagger}T$. We recall that T^{\dagger} exists if and only if T has closed range. The Drazin inverse of $T \in B(\mathcal{H})$, denoted by T^D , is the unique solution to the equations $T^{k+1}S = T^k$, STS = S, TS = ST, for some $k \in \mathbb{N}$. The minimal such k is called the index, denoted by $\operatorname{ind}(T)$, of T. When k=1, the Drazin inverse reduces to the group inverse and it is denoted by $T^{\#}$. Recall that asc(T) (des(T)), the ascent (descent) of $T \in B(\mathcal{H})$, is the smallest non-negative integer n such that $\mathcal{N}(T^n) = \mathcal{N}(T^{n+1})$ ($\mathcal{R}(T^n) = \mathcal{R}(T^{n+1})$). If no such *n* exists, then $\operatorname{asc}(T) = \infty$ (des $(T) = \infty$). For $T \in B(\mathcal{H})$, T^D exists if and only

if T has finite ascent and descent. In this case, ind(T) = asc(T) = des(T) = n. For other important properties of T^{\dagger} and T^{D} , see e.g. [1–5].

Let (X, Σ, μ) be a complete σ -finite measure space and let \mathcal{A} be a sub- σ -finite algebra of Σ . The linear space of all complex-valued Σ -measurable functions on X is denoted by $L^0(\Sigma)$. All statements about equality, inclusion and disjointness are to be understood to hold up to a set of μ -measure 0. We use the notation of [6] which is a basic reference. The support of a measurable function $f \in L^0(\Sigma)$ is defined by $\sigma(f) = \{x \in X : f(x) \neq 0\}$. For a sub-sigma algebra $\mathcal{A}\subseteq \Sigma$, the conditional expectation operator associated with \mathcal{A} and μ is the mapping $f \to E_{\mu}^{\mathcal{A}} f$, defined for all μ -measurable non-negative f where $E_{\mu}^{\mathcal{A}} f$, by the Radon–Nikodym theorem, is the unique finite-valued A-measurable function satisfying

$$\int_{A} f d\mu = \int_{A} E_{\mu}^{\mathcal{A}}(f) d\mu, \quad \forall A \in \mathcal{A}.$$

For simplicity, set $E_{\mu}^{\mathcal{A}} = E$. Let $u \in L^0(\Sigma)$ be real valued and consider the set $B_u = \{x \in X : E(u^+)(x) = E(u^-)(x) = \infty\}$, where $u^+ = \max\{f, 0\}$ and $u^- = \max\{-f, 0\}$. The function u is said to be conditionable with respect to A if $\mu(B_u) = 0$. Put $E(u) = E(u^+)$ $E(u^{-})$. If $u = u_1 + iu_2 \in L^0(\Sigma)$, then u is said to be conditionable if u_1 and u_2 are conditionable. In this case, we set $E(u) = E(u_1) + iE(u_2)$. This defines a linear operator E: $\mathcal{D}(E) \to L^0(\mathcal{A}) \subseteq L^0(\Sigma)$, where the domain $\mathcal{D}(E)$ of E is defined by $\mathcal{D}(E) = \{ f \in L^0(\Sigma) : \mathcal{D}(E) \in \mathcal{D}(E) \}$ f is conditionable}. It follows that $\mathcal{D}(E)$ contains $\{L^p(\Sigma): 1 \leq p \leq \infty\} \cup \{f \in L^0(\Sigma): f \geq p \leq \infty\}$ 0} (see [6,7]). A conditional expectation operator E on $L^2(\Sigma)$ is an orthogonal projection onto $L^2(A)$. A detailed discussion and verification of most of the properties may be found in [6,8-10]. Those properties of E used in our discussion are summarized below. In all cases, we assume that $f, g, fg \in \mathcal{D}(E)$.

- (i) If g is A-measurable, then E(fg) = E(f)g.
- (ii) $\sigma(|E(f)|) \subseteq \sigma(E(|f|))$ and $\chi_S f = f$ whenever $\sigma(f) \subseteq S \in \Sigma$.
- (iii) (conditional Hölder inequality) $|E(fg)| \le (E(|f|^p))^{1/p} (E(|g|^q))^{1/q}$, where $f, g \in$ $L^0(\Sigma)$ are finite valued functions and 1/p + 1/q = 1. The case p = 2 is called the conditional Cauchy-Schwarz inequality.

For $u \in L^0(\Sigma)$, the multiplication operator $M_u : L^2(\Sigma) \to L^0(\Sigma)$ is defined as $M_u f =$ uf. It is a classical fact that $M_u \in B(L^2(\Sigma))$ if and only if $u \in L^{\infty}(\Sigma)$, and in this case, $||M_u|| = ||u||_{\infty}$ [11]. Conditional expectation type operators are closely related to the multiplication operators, integral and averaging operators and to the operators called conditional type which has been introduced in [8,12]. Conditional operators and various types of generalized inverses have been widely used in practice. For u and v in $L^0(\Sigma)$, we discuss matrix theoretic characterizations of $T_{u,v} = EM_uE + EM_vQ$ on $L^2(\Sigma)$, where Q = I - E.

In the next section, first we review some basic results on EM_u and state some general assumptions. Then we obtain the Drazin and Moore–Penrose inverses of $T_{u,v}$ under certain conditions. In addition, we study several other properties of $T_{u,v}$ with an applicationoriented approach.

2. Characterizations

We begin this section with a simple fact which will be applied in the sequel.

Lemma 2.1: Let $f \in L^{\infty}(A)$. Then

$$||f||_{\infty} = \sup \left\{ \frac{1}{\mu(A)} \int_{A} |f| d\mu, \ A \in \mathcal{A}, \ 0 < \mu(A) < \infty \right\}. \tag{1}$$

Proof: Denote the right side of (1) by α . For arbitrary $\varepsilon > 0$, take $B = \{|f| > ||f||_{\infty} - \varepsilon\}$. Since A is σ -finite, there is $A_0 \subseteq B$ with $0 < \mu(A_0) < \infty$ such that

$$\alpha \ge \frac{1}{\mu(A_0)} \int_{A_0} |f| \mathrm{d}\mu \ge ||f||_{\infty} - \varepsilon.$$

The converse is obvious.

It is worth noting that $L^{\infty}(\Sigma)$ is invariant under E. Indeed, by Lemma 2.1 and (ii), $||E(f)||_{\infty} \le ||E(|f|)||_{\infty} \le ||f||_{\infty} < \infty$ for all $f \in L^{\infty}(\Sigma)$. Specially, if $A = \{\emptyset, X\}$ and $\mu(X) < \infty$, then $E(f) = 1/\mu(X) \int_X f d\mu$, for all $f \in L^1(\Sigma)$ and hence $\mu(X)|E(f)| \le$ $\int_X |f| d\mu = ||f||_1$ for all $f \in L^1(\Sigma)$. Thus, $E(L^1(\Sigma)) \subseteq L^{\infty}(\Sigma)$. Let \mathcal{A} and \mathcal{B} be sub- σ -algebras of Σ such that $\mathcal{A} \subseteq \mathcal{B} \subseteq \Sigma$. For $u \in L^0(\mathcal{B})$ with $u\mathcal{D}(E^{\mathcal{B}}) \subseteq \mathcal{D}(E^{\mathcal{B}})$, define T_u : $L^p(\mathcal{B}) \to L^p(\mathcal{A})$ as $T_u(f) = E_{\mathcal{B}}^{\mathcal{A}}(uf)$, where $E_{\mathcal{B}}^{\mathcal{A}}$ is the conditional expectation operator from $L^p(\mathcal{B})$ onto $L^p(\mathcal{A})$.

Proposition 2.2: Let $u \in L^0(\mathcal{B})$, $E = E_{\mathcal{B}}^{\mathcal{A}}$, 1 and let <math>q be the conjugate component to p. Then $T_u \in B(L^p(\mathcal{B}), L^p(\mathcal{A}))$ if and only if $E(|u|^q) \in L^{\infty}(\mathcal{A})$. In this case, the adjoint operator $T_u^*: L^q(\mathcal{A}) \to L^q(\mathcal{B})$ is given by $T_u^*(g) = ug$ and $||T_u|| = ||E(|u|^q)||_{\infty}^{1/q}$.

Proof: The proof is given in [12, Proposition 2.1]. For the sake of completeness, we give the details here. Let $E(|u|^q) \in L^{\infty}(\mathcal{A})$. Then for each $f \in (L^p(\mathcal{B}))$, we have

$$\begin{split} \int_{X} |E(uf)|^{p} \mathrm{d}\mu &\leq \int_{X} (E(|u|^{q}))^{\frac{p}{q}} E(|f|^{p}) \mathrm{d}\mu \\ &\leq \|E(|u|^{q})\|_{\infty}^{\frac{p}{q}} \int_{X} |f|^{p} \mathrm{d}\mu = \|E(|u|^{q})\|_{\infty}^{\frac{p}{q}} \|f\|_{p}^{p}. \end{split}$$

It follows that

$$||T_u|| = \sup_{\|f\|_p \le 1} ||T_u(f)||_p = \sup_{\|f\|_p \le 1} \left(\int_X |E(uf)|^p d \right)^{\frac{1}{p}} \le ||E(|u|^q)||_{\infty}^{\frac{1}{q}}.$$

Thus T_u^* is bounded. Since the mapping $g \mapsto F_g : F_g(f) = \int_X fg d\mu$ is an isometry from $L^q(\mathcal{A})$ onto $(L^p(\mathcal{A}))^*$, so for each $g \in L^q(\mathcal{A})$ and $B \in \mathcal{B}$ we have

$$(T_u^* F_g)(\chi_B) = F_g(T_u \chi_B) = \int_X E(u \chi_B) g d\mu$$
$$= \int_X (u \chi_B) g d\mu = F_{ug}(\chi_B).$$

After identifying g with F_g we obtain $T_u^*(g) = ug$. Now, let T_u be bounded and let $A \in \mathcal{A}$ with $0 < \mu(A) < \infty$. Then

$$\int_{A} E(|u|^{q}) d\mu = \int_{A} |u|^{q} d\mu = \int_{X} |T_{u}^{*}(\chi_{A})|^{q} d\mu \le ||T_{u}||^{q} \mu(A).$$

It follows from Lemma 2.1 that

$$||E(|u|^q)||_{\infty}^{\frac{1}{q}} = \left\{ \sup \frac{1}{\mu(A)} \int_A E(|u|^q) d\mu, \ A \in \mathcal{A}, 0 < \mu(A) < \infty \right\}^{\frac{1}{q}} \le ||T_u||.$$

This completes the proof.

Let p=1 and let $f \in L^1(\mathcal{B})$. If $u \in L^{\infty}(\mathcal{B})$, then $||T_u(f)||_1 \leq ||E(|uf|)||_1 = ||uf||_1 \leq ||u||_{\infty}||f||_1$. Conversely, if $||T_u|| < \infty$, then $||uf||_1 = ||E(|uf|)||_1 = ||E(\operatorname{sgn}(uf)uf)||_1 = ||T_u(\operatorname{sgn}(uf)f)||_1 \leq ||T_u|| ||f||_1$. Then $M_u \in B(L^1(\mathcal{B}))$, and hence $u \in L^{\infty}(\mathcal{B})$. Consequently, $T_u \in B(L^1(\mathcal{B}), L^1(\mathcal{A}))$ if and only if $u \in L^{\infty}(\mathcal{B})$, and in this case $||T_u|| = ||u||_{\infty}$. By a similar argument and using the fact that $(L^1)^* = L^{\infty}$, one can obtain that $T_u \in B(L^{\infty}(\mathcal{B}), L^{\infty}(\mathcal{A}))$ if and only if $E(|u|) \in L^{\infty}(\mathcal{A})$ [6].

For $p \in (1, \infty)$ with the conjugate component q, put $\mathcal{K}_q(\mathcal{B}) = \{u \in L^0(\mathcal{B}) : E(|u|^q) \in L^\infty(\mathcal{A})\}$. Then $L^\infty(\mathcal{B}) \subseteq \mathcal{K}_q(\mathcal{B})$. By Proposition 2.2, $T_u \in \mathcal{B}(L^p(\mathcal{B}), L^p(\mathcal{A}))$ if and only if $u \in \mathcal{K}_q(\mathcal{B})$. Let $\alpha \in \mathbb{C}$ and $u, v \in \mathcal{K}_q(\mathcal{B})$. Then by the conditional Hölder inequality, we have $E(|\alpha u + v|^q)^{1/q} \le |\alpha|E(|u|^q)^{1/q} + E(|v|^q)^{1/q}$. Thus $\mathcal{K}_q(\mathcal{B})$ is a linear subspace of $L^0(\mathcal{B})$. For $u \in \mathcal{K}_q(\mathcal{B})$, set $\|u\|_{\mathcal{K}_q} = \|E(|u|^q)\|_\infty^{1/q}$. Then $\|\|\mathcal{K}_q$ is a norm on $\mathcal{K}_q(\mathcal{B})$ and the mapping $u \mapsto T_u$ is an isometry from $(\mathcal{K}_q(\mathcal{B}), \|\cdot\|_{\mathcal{K}_q})$ onto $\mathcal{B}_p := \{T_u : u \in \mathcal{K}_q(\mathcal{B})\}$. Since \mathcal{B}_p is a weakly closed subspace of $\mathcal{B}(L^p(\mathcal{B}), L^p(\mathcal{A}))$ [6, Theorem 3.2.1], we see that $(\mathcal{K}_q(\mathcal{B}), \|\cdot\|_{\mathcal{K}_q})$ is a Banach space. In addition, if $w \in L^0(\mathcal{B})$, $u \in \mathcal{K}_q(\mathcal{B})$ and $|w| \le |u|$, the monotonicity of E implies that $w \in \mathcal{K}_q(\mathcal{B})$. So $\mathcal{K}_q(\mathcal{B})$ is an ordered ideal. Now, let $u, w \in \mathcal{K}_2(\mathcal{B})$. It follows from the conditional Cauchy–Schwarz inequality that $E(|T_u(w)|^2) = |E(uw)|^2 \le E(|u|^2)E(|w|^2) \in L^\infty(\mathcal{A})$, and so $T_u(w) \in \mathcal{K}_2(\mathcal{B})$. Hence $\mathcal{K}_2(\mathcal{B})$ is an invariant subspace for \mathcal{B}_p .

Set $\mathcal{B} = \Sigma$ and take $\mathcal{K} = \mathcal{K}_2(\Sigma)$. For $w, u \in \mathcal{D}(E)$, the mapping $T : L^2(\Sigma) \supseteq \mathcal{D}(T) \to L^2(\Sigma)$ given by T(f) = wE(uf) for $f \in \mathcal{D}(T) = \{f \in L^2(\Sigma) : T(f) \in L^2(\Sigma)\}$ is well-defined and linear. Such an operator is called a Lambert (weighted) conditional operator induced by the pair (w, u). Set $a = \sqrt{E(|w|^2)}$ and $b = \sqrt{E(|u|^2)}$. It is easy to check that $\|M_w E M_u f\|_2 = \|M_a E M_u f\|_2 = \|E M_{au} f\|_2$ for all $f \in L^2(\Sigma)$. Then Proposition 2.2 implies that $T = M_w E M_u$ is bounded in $L^2(\Sigma)$ if and only if $au \in \mathcal{K}$. In this case, $\|T\| = \|ab\|_{\infty}$ ([13]).

Recall that $L^2(\Sigma) = \mathcal{R}(E) \oplus \mathcal{N}(E)$, where $\mathcal{R}(E) = L^2(\mathcal{A})$ and $\mathcal{N}(E) = \{f - Ef : f \in L^2(\Sigma)\}$. Put Q = I - E. So each element of $L^2(\Sigma)$ can be written as $f = f_1 + f_2 = E(f) + Q(f)$ such that $E(f_1) = f_1$ and $E(f_2) = 0$. Let $f \in L^0(\Sigma)$. Since $E(|f|^2) = E((f_1 + f_2)(f_1 + f_2)) = |f_1|^2 + E(|f_2|^2)$, we see that $\max\{|f_1|, E(|f_2|^2)^{1/2}\} \leq E(|f|^2)^{1/2}$. Hence for $f \in L^\infty(\Sigma)$, we have

$$\max\{\|f_1\|_{\mathcal{K}_2}, \|f_2\|_{\mathcal{K}_2}\} = \max\{\|f_1\|_{\infty}, \|E(|f_2|^2)^{1/2}\|_{\infty}\} \le \|f\|_{\mathcal{K}_2}.$$

Let $f, g \in L^0(\Sigma)$. Then it may happen that $f_2g_2 \in L^0(A)$ or $f_2g_2 \in \mathcal{N}(E)$. In general, $f_2g_2 = (f_2g_2)_1 - (f_2g_2)_2$.

Example 2.3: (a) Let X = [-1,1], let $d\mu = \frac{dx}{2}$, let Σ be the Lebesgue measurable sets, and let $\mathcal{A} = \{\emptyset, X\}$. Then $E(f) = \frac{1}{2} \int_{-1}^{1} f(x) dx$, for all $f \in L^{2}([-1,1])$. Put f(x) = x and $g(x) = 1 - 3x^{2}$. Then E(f) = E(g) = E(fg) = 0. Therefore, $f_{2} = f$, $g_{2} = g$, and $f_{2}g_{2} = fg$ are in $\mathcal{N}(E)$.

(b) Let X = [0, 1], let $d\mu = \frac{dx}{2}$, let Σ be the Lebesgue sets, and let \mathcal{A} be the sigma subalgebra of Σ consisting of sets symmetric about the point $\frac{1}{2}$. It is easy to check that $f_1(x) = \frac{f(x) + f(1-x)}{2}$ and $f_2(x) = \frac{f(x) - f(1-x)}{2}$, for all $f \in L^2([0,1])$. So, $L^2(A) = \{f \in L^2([0,1]) : f(A) = \{f \in L^2$ $L^{2}([0,1]): f(x) = f(1-x)$. Set $f(x) = g(x) = x - \frac{1}{2}$. Then $f, g \in \mathcal{N}(E)$, but (fg)(x) = f(1-x). $(x-\tfrac{1}{2})^2 \in L^2(\mathcal{A}).$

The matrix representation of $T = M_w E M_u$ with respect to the decomposition $L^2(\Sigma) =$ $L^2(\mathcal{A}) \oplus \mathcal{N}(E)$ is

$$T = \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix} = \begin{bmatrix} M_{w_1 u_1} & EM_{w_1 u_2} \\ M_{w_2 u_1} & M_{w_2} EM_{u_2} \end{bmatrix}$$
(2)

(see [14]). Note that

$$||ab||_{\infty} = ||E(|w|^2)E(|u|^2)||_{\infty}^{\frac{1}{2}} = ||(|w_1|^2 + E(|w_2|^2))(|u_1|^2 + E(|u_2|^2))||_{\infty}^{\frac{1}{2}}$$

$$\leq \sqrt{||T_{11}||^2 + ||T_{12}||^2 + ||T_{21}||^2 + ||T_{22}||^2}.$$

Definition 2.4: Let $u, v \in \mathcal{K} = \mathcal{K}_2(\Sigma)$. An operator $T_{u,v}$ is called a conditional dilation of $T_u = EM_u$ if $T_{u,v} = EM_uE + EM_vQ$, where Q = I - E. In particular, $T_{u,u} = T_u$ whenever u = v.

Note that $T_{u,v} = M_{E(u-v)}E + EM_v$. Since any $f \in L^2(\Sigma)$ can be written uniquely as f = I $f_1 + f_2$, where $f_1 = Ef \in L^2(\mathcal{A})$ and $f_2 = f - E(f) \in \mathcal{N}(E)$, it ensures that for any $u, v \in \mathcal{K}$,

$$T_{u,v}(f) = E((u_1 + u_2)f_1) + E((v_1 + v_2)f_2)$$

$$= u_1f_1 + E(v_2f_2) = M_{u_1}f_1 + EM_{v_2}f_2 = \begin{bmatrix} M_{u_1} & EM_{v_2} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} f_1 \\ f_2 \end{bmatrix}.$$

Let $r, s \in \mathcal{K}$ and $\alpha \in \mathbb{F}$. Then

$$\alpha T_{u,v} + T_{r,s} = \begin{bmatrix} M_{\alpha u_1 + r_1} & EM_{\alpha v_2 + s_2} \\ 0 & 0 \end{bmatrix},$$

$$(T_{u,v})(T_{r,s}) = \begin{bmatrix} M_{u_1 r_1} & EM_{u_1 s_2} \\ 0 & 0 \end{bmatrix}.$$

In the following, we collect some elementary algebraic properties of the conditional dilation operators.

Proposition 2.5: Let $u, v, r, s \in \mathcal{K}$, $n \in \mathbb{N}$ and $\alpha \in \mathbb{F}$. The following hold.

- (a) $\alpha T_{u,v} + T_{r,s} = T_{\alpha u+r,\alpha v+s}$
- (b) $(T_{u,v})(T_{r,s}) = T_{rE(u),sE(u)}$.
- (c) $T_{u,v}^n = M_{(E(u))^{n-1}} T_{u,v}$.
- (d) $(T_{u,v}^n)^* = M_{(E(\bar{u}))^{n-1}} \{ M_{(E(\bar{u}-\bar{v})+\bar{v})} E \}.$

Using Proposition 2.5(c), $||T_{u,v}^n|| \le ||E(u)||_{\infty}^{n-1} ||T_{u,v}||$. It follows that $r(T_{u,v}) \le ||E(u)||_{\infty}$, where $r(T_{u,v})$ is the spectral radius of $T_{u,v}$. Using [15, Theorem 2.8.], we have $\operatorname{sp}(T_{u,v}) \cup$ quently, $r(T_{u,v}) = ||E(u)||_{\infty}$.

 $\{0\} = \operatorname{sp}(T_u) \cup \{0\} = \operatorname{ess\ range}\{E(u)\} \cup \{0\}, \text{ where } \operatorname{sp}(T_u) \text{ is the spectrum of } T_u. \text{ Conse-}$

Theorem 2.6: Let $u, v \in K$ and let $T_{u,v} \neq 0$. Then the following hold.

- (a) $T_{u,v}$ is self-adjoint if and only if E(u) is real valued and $v_2 \in L^0(A)$.
- (b) $T_{u,v}$ is positive if and only if $E(u) \ge 0$ and $v_2 \in L^0(A)$.
- (c) $T_{u,v}$ is an orthogonal projection if and only if $T_{u,v} = E$.
- (d) $T_{u,v}$ is normal if and only if v is an A-measurable function.
- (c) $T_{u,v}$ is quasinormal if and only if T is normal.

Proof: (a) Using the matrix representation of $T_{u,v}$ with respect to the decomposition $L^2(\Sigma) = L^2(\mathcal{A}) \oplus \mathcal{N}(E)$, we have

$$T_{u,v} = T_{u,v}^* \Longleftrightarrow \begin{bmatrix} M_{u_1} & EM_{v_2} \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} M_{\bar{u}_1} & 0 \\ M_{\bar{v}_2} & 0 \end{bmatrix} \Longleftrightarrow \bar{u}_1 = u_1 \text{ and } v \in L^0(\mathcal{A}).$$

So $T_{u,v}$ is self-adjoint if and only if $T_{u,v} = T_{u,0}$ with $E(u) = E(\bar{u})$.

- (b) Using (a), $T_{u,v} \ge 0$ if and only if $T_{u,v} = EM_uE \ge 0$ with $\bar{u}_1 = u_1$. But $\int_X u|E(f)|^2 d\mu = \langle M_uEf, Ef \rangle = \langle EM_uEf, f \rangle \ge 0$ if and only if $u \ge 0$.
- (c) We see from (a) and Proposition 2.5(c) that $T_{u,v}^* = T_{u,v} = T_{u,v}^2$ if and only if $T_{u,v} = EM_uE = (EM_uE)^2 = M_{E(u)}EM_uE$ if and only if E(u) = 1. Thus $T_{u,v}$ is an orthogonal projection if and only if $T_{u,v} = E$.

$$(d) \ T_{u,v} T_{u,v}^* = T_{u,v}^* T_{u,v} \Longleftrightarrow \begin{bmatrix} M_{|u_1|^2} + E M_{|v_2|^2} & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} M_{|u_1|^2} & M_{\bar{u}_1} E M_{v_2} \\ M_{u_1\bar{v}_2} & M_{\bar{v}_2} E M_{v_2} \end{bmatrix}$$

$$\iff \begin{cases} E M_{|v_2|^2} = 0; \\ M_{\bar{u}_1} E M_{v_2} = 0; \\ M_{u_1\bar{v}_2} = 0; \\ M_{\bar{v}_2} E M_{v_2} = 0. \end{cases} \iff v_2 = 0 \iff v \in L^0(\mathcal{A}).$$

(e) Direct computation shows that $(T_{u,v}^*T_{u,v})T_{u,v} = T_{u,v}(T_{u,v}^*T_{u,v})$ if and only if

$$\begin{bmatrix} M_{u_{1}|u_{1}|^{2}} & EM_{|u_{1}|^{2}v_{2}} \\ M_{u_{1}^{2}\bar{v}_{2}} & M_{\bar{v}_{2}}EM_{u_{1}v_{2}} \end{bmatrix} = \begin{bmatrix} M_{|u_{1}|^{2}u_{1}} + M_{|v_{2}|^{2}u_{1}} & EM_{|u_{1}|^{2}v_{2}} + EM_{|v_{2}|^{2}}EM_{v_{2}} \\ 0 & 0 \end{bmatrix}$$

$$\iff \begin{cases} M_{|v_{2}|^{2}u_{1}} = 0; \\ EM_{|v_{2}|^{2}}EM_{v_{2}} = 0; \\ M_{u_{1}^{2}\bar{v}_{2}} = 0; \\ M_{\bar{v}_{2}}EM_{u_{1}v_{2}} = 0. \end{cases} \iff v_{2} = 0 \iff v \in L^{0}(\mathcal{A}).$$

Proposition 2.7: Let $u, v \in \mathcal{K}$. Then the following hold.

(a)
$$\mathcal{N}(T_{u,v}|_{L^2(\mathcal{A})}) = (\bar{u}L^2(\mathcal{A}))^{\perp} \cap L^2(\mathcal{A}).$$

- (b) $\mathcal{N}(T_{u,v}|_{\mathcal{N}(E)}) = (\bar{v}L^2(\mathcal{A}))^{\perp} \cap \mathcal{N}(E).$
- (c) $T_{u,v} = 0$ if and only if $u_1 = 0$ and $v_2 \mathcal{N}(E) \subseteq \mathcal{N}(E)$.
- (d) $\mathcal{N}(T_{u,v}) = \mathcal{N}(T_{u,v}|_{L^2(\mathcal{A})}) \oplus \mathcal{N}(T_{u,v}|_{\mathcal{N}(E)}) = \mathcal{N}(EM_uE) \cap \mathcal{N}(EM_vQ).$

Proof: The proof of (a) and (b) are similar. We prove (a) only. Put $T_1 = T_{u,v}|_{L^2(A)}$ and $T_2 = T_{u,v}|_{\mathcal{N}(E)}$. Then for each $g \in L^2(\mathcal{A})$, we have

$$f \in (\bar{u}L^{2}(\mathcal{A}))^{\perp} \cap L^{2}(\mathcal{A}) \iff \langle g, EM_{u}Ef \rangle = \langle g, EM_{u}f \rangle = \langle Eg, uf \rangle$$
$$= \langle g, uf \rangle = \langle \bar{u}g, f \rangle = 0 \iff f \in \mathcal{N}(T_{1}).$$

Thus $\mathcal{N}(T_1) = \{ f \in L^2(\mathcal{A}) : f \perp \bar{u}L^2(\mathcal{A}) \}.$

- (c) $T_{u,v} = 0$ if and only if $EM_uE = T_{u,v}E = 0$ and $EM_vQ = T_{u,v}Q = 0$. But this is equivalent to $u_1f_1 = 0$ and $E(u_2f_2) = 0$, for all $f = f_1 + f_2 \in L^2(\Sigma)$. This yields the result.
- (d) $\mathcal{N}(T_{u,v}) = (\mathcal{N}(T_{u,v}) \cap L^2(\mathcal{A})) \oplus (\mathcal{N}(T_{u,v}) \cap \mathcal{N}(E)) = \mathcal{N}(T_1) \oplus \mathcal{N}(T_2)$. Moreover,

$$\mathcal{N}(EM_uE) = \mathcal{N}\left(\begin{bmatrix} M_{u_1} & 0\\ 0 & 0 \end{bmatrix}\right) = \{(\bar{u}_1L^2(\mathcal{A}))^{\perp} \cap L^2(\mathcal{A})\} \oplus \mathcal{N}(E);$$

$$\mathcal{N}(EM_vQ) = \mathcal{N}\left(\begin{bmatrix} 0 & EM_{v_2}\\ 0 & 0 \end{bmatrix}\right) = L^2(\mathcal{A}) \oplus \{(\bar{v}_2L^2(\mathcal{A}))^{\perp} \cap \mathcal{N}(E)\}$$

and

$$\mathcal{N}\left(\begin{bmatrix} M_{u_1} & EM_{v_2} \\ 0 & 0 \end{bmatrix}\right) = \{(\bar{u}_1L^2(\mathcal{A}))^{\perp} \cap L^2(\mathcal{A})\} \oplus \{(\bar{v}_2L^2(\mathcal{A}))^{\perp} \cap \mathcal{N}(E)\}.$$

It follows that $\mathcal{N}(T_{u,v}) = \mathcal{N}(EM_uE) \cap \mathcal{N}(EM_vQ)$.

Let $T \in B(H)$ have closed range. We recall that the unique operator $S \in B(L^2(\Sigma))$ satisfying

(1)
$$TST = T$$
, (2) $STS = S$, (3) $(TS)^* = TS$, (4) $(ST)^* = ST$,

is called the Moore-Penrose inverse of T and is denoted by T^{\dagger} . Let $T\{i, \ldots, j\}$ denote the set of all operators S satisfying condition (k) for all labels k in the list $\{i, \ldots, j\}$. In this case, $S \in T\{i, ..., j\}$ is an $\{i, ..., j\}$ -inverse of T and is denoted by $T^{(i, ..., j)}$. Note that $T^{(1,2,3,4)} = T^{(i,...,j)}$ T^{\dagger} . For other important properties of T^{\dagger} , see [2,3].

Let $a = E(|u|^2) \in L^{\infty}(\mathcal{A})$ be bounded away from zero on X. Set $S = M_{\underline{u}}E$. Then $S \in$ $B(L^2(\Sigma))$ and $T_1ST_1 = (EM_u)(M_{\underline{u}}E)(EM_u) = EM_u = T_1$. It follows that T_1 has closed range. Also, it is easy to check that T_1 satisfies the other three equations above. Thus $S = T_1^{\mathsf{T}}$. Recall that $T_{u,v} = T_1 + T_2$, where $T_1 = (EM_u)E$ and $T_2 = (EM_v)Q$. Let $c = |u_1|^2$ and $d = E(|v_2|^2)$ be bounded away from zero X. Then the block matrices of T_1 and T_1^{\dagger} with respect to the decomposition $L^2(A) \oplus \mathcal{N}(E)$ are

$$T_1 = \begin{bmatrix} M_{u_1} & 0 \\ 0 & 0 \end{bmatrix}, \quad T_1^{\dagger} = \begin{bmatrix} M_{\frac{\bar{u}_1}{c}} & 0 \\ 0 & 0 \end{bmatrix}.$$

Similarly,

$$T_2 = \begin{bmatrix} 0 & EM_{\nu_2} \\ 0 & 0 \end{bmatrix}$$
, and $T_2^{\dagger} = \begin{bmatrix} 0 & 0 \\ M_{rac{ar{
u}_2}{d}} & 0 \end{bmatrix}$.

Now, put

$$S = \begin{bmatrix} M_{\frac{\bar{u}_1}{2c}} & 0 \\ M_{\frac{\bar{v}_2}{2c}} & 0 \end{bmatrix}.$$

Since $(M_{\frac{\overline{|u_1|^2}}{2c}} + EM_{\frac{\overline{|v_2|^2}}{2d}})_{|L^2(\mathcal{A})} = I$, then

$$T_{u,v}S = \begin{bmatrix} M_{u_1} & EM_{v_2} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} M_{\frac{\bar{u}_1}{2c}} & 0 \\ M_{\frac{\bar{v}_2}{2d}} & 0 \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}.$$

Thus $T_{u,v}S$ is self-adjoint and $T_{u,v}ST_{u,v} = T_{u,v}$. Also, we have

$$ST_{u,v} = \begin{bmatrix} \frac{1}{2}I & M_{\frac{\bar{u}_1}{2}}EM_{v_2} \\ M_{\frac{u_1\bar{v}_2}{2d}} & M_{\frac{\bar{v}_2}{2d}}EM_{v_2} \end{bmatrix}.$$
 (3)

It follows that

$$ST_{u,v}S = \begin{bmatrix} A_{|L^2(\mathcal{A})} & 0 \\ B_{|L^2(\mathcal{A})} & 0 \end{bmatrix},$$

where

$$\begin{split} A_{|L^{2}(\mathcal{A})} &= (M_{\frac{\bar{u}_{1}}{4c}} + M_{\frac{\bar{u}_{1}}{2c}} EM_{\frac{|\nu_{2}|^{2}}{2d}})_{|L^{2}(\mathcal{A})} = M_{\frac{\bar{u}_{1}}{2c}}; \\ B_{|L^{2}(\mathcal{A})} &= (M_{\frac{|u_{1}|^{2}\bar{\nu}_{2}}{4cd}} + M_{\frac{\bar{\nu}_{2}}{2d}} EM_{\frac{|\nu_{2}|^{2}}{2d}})_{|L^{2}(\mathcal{A})} \\ &= \{M_{\frac{\bar{\nu}_{2}}{2d}} (M_{\frac{|u_{1}|^{2}}{2c}} + EM_{\frac{|\nu_{2}|^{2}}{2d}})\}_{|L^{2}(\mathcal{A})} = M_{\frac{\bar{\nu}_{2}}{2d}}. \end{split}$$

Consequently, $ST_{u,v}S = S$. Note that $ST_{u,v}$ in (3) is not self-adjoint. But, if c = d then $(ST_{u,v})^* = ST_{u,v}$. These observations establish the following result.

Theorem 2.8: Let $T_{u,v} \in B(L^2(\Sigma))$, and $c = |u_1|^2$. If $d = E(|v_2|^2)$ is bounded away from zero on X, then

$$T_{u,v}^{(1,2,3)} = \begin{bmatrix} M_{\frac{\bar{u}_1}{2c}} & 0 \\ M_{\frac{\bar{v}_2}{2d}} & 0 \end{bmatrix}.$$

Moreover, if c = d then $T_{u,v}^{\dagger} = T_{u,v}^{(1,2,3)}$.

Let $T_1 \in B(L^2(\Sigma))$ and let $|E(u)| \ge \delta$ on X, for some $\delta > 0$. Let $n \ge 2$ and $f \in \mathcal{N}(T_1^n)$. Then $(E(u))^{n-1}E(uf) = 0$, and so $T_1f = E(uf) = 0$. Thus $\mathcal{N}(T_1^n) = \mathcal{N}(T_1)$. Now, let $g \in \mathbb{R}$ $\mathcal{R}(T_1)$. Then $g = T_1 f$ for some $f \in L^2(\Sigma)$ and

$$\int_{X} \left| \frac{f}{(E(u))^{n-1}} \right|^{2} \mathrm{d}\mu \le \frac{1}{\delta^{n-1}} \|f\|_{2}^{2}.$$

It follows that

$$g = E(uf) = \frac{1}{(E(u))^{n-1}} ((E(u))^{n-1} E(uf))$$
$$= (E(u))^{n-1} E(u \frac{f}{(E(u))^{n-1}}) \in \mathcal{R}(T_1^n).$$

Consequently, ind $(T_1) = \operatorname{asc}(T_1) = \operatorname{des}(T_1) = 1$. Put $S = EM_{\frac{u}{(T_1)}}$. Then $S \in B(L^2(\Sigma))$, $ST_1S = S$, $T_1S = EM_{\frac{u}{E(u)}} = ST_1$ and

$$T_1^{k+1}S = ((E(u))^k EM_u)(EM_{\frac{u}{(E(u))^2}}) = (E(u))^{k-1} EM_u = T_1^k.$$

Consequently, $T_1^D = S = T_1^*$.

Suppose $u_1 = E(u)$ is bounded away from zero on its support. Take $A = \sigma(u_1)$ and put

$$S = \begin{bmatrix} M_{\frac{\chi_A}{u_1}} & EM_{\frac{\chi_A\bar{v}_2}{u_1^2}} \\ 0 & 0 \end{bmatrix},$$

where $u_1^2 = |u_1|^2 \operatorname{sgn}(u_1)$. This implies that

$$ST_{u,v} = \begin{bmatrix} M_{\chi_A} & EM_{\frac{\chi_A\bar{v}_2}{u_1}} \\ 0 & 0 \end{bmatrix} = T_{u,v}S;$$

$$ST_{u,v}S = \begin{bmatrix} M_{\chi_A} & EM_{\frac{\chi_A\bar{v}_2}{u_1}} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} M_{\frac{\chi_A}{u_1}} & EM_{\frac{\chi_A\bar{v}_2}{u_1^2}} \\ 0 & 0 \end{bmatrix} = S;$$

$$T_{u,v}^{k+1}S = \begin{bmatrix} M_{u_1^{k+1}} & EM_{v_2u_1^k} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} M_{\frac{\chi_A}{u_1}} & EM_{\frac{\chi_Av_2}{u_1^2}} \\ 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} M_{u_1^k} & EM_{v_2u_1^{k-1}} \\ 0 & 0 \end{bmatrix} = T_{u,v}^k, \quad k \in \mathbb{N}.$$

Thus $S = T_{u,v}^D$ is the Drazin inverse of $T_{u,v}$. Moreover, if u_1 is bounded away from zero on X, then by Proposition 2.5(c) and (d) we have

$$\mathcal{N}(T_{u,v}^{k}) = \mathcal{N}(u_{1}^{k-1}T_{u,v}) = \mathcal{N}(T_{u,v});$$

$$\mathcal{R}(T_{u,v}^{k}) = \mathcal{N}(T_{u,v}^{*k})^{\perp} = \mathcal{N}(T_{u,v}^{*})^{\perp} = \mathcal{R}(T_{u,v}),$$

for all $k \in \mathbb{N}$. Thus, $\operatorname{ind}(T_{u,v}) = 1$ and so $T_{u,v}^D = T^{\sharp}$. These observations establish the following result.

$$T_{u,v}^D = \begin{bmatrix} M_{\frac{\chi_A}{u_1}} & EM_{\frac{\chi_A\bar{v}_2}{u_1^2}} \\ 0 & 0 \end{bmatrix}.$$

Moreover, if $|u_1| \ge \alpha$ on X for some $\alpha \ge 0$, then $T_{u,v}^D = T^{\#}$.

Let $w, w' \in L^0(\Sigma)$, $u, v \in L^2(\Sigma)$ and let $\{au, bv\} \subset \mathcal{K}$, where $a = \sqrt{E(|w|^2)}$ and $b = \sqrt{E(|w'|^2)}$. Put $\mathcal{T}_{u,v} = M_w E M_u E + M_{w'} E M_v Q$. The conditional type operator $\mathcal{T}_{u,v}$ is a generalization of $T_{u,v}$. Indeed, if w = w' = 1, then $\mathcal{T}_{u,v} = T_{u,v}$. Using (2), the matrix representation of $\mathcal{T}_{u,v}$ with respect to the decomposition $L^2(\Sigma) = L^2(\mathcal{A}) \oplus \mathcal{N}(E)$ is

$$T_{u,v} = \begin{bmatrix} M_{w_1u_1} & EM_{w_1u_2} \\ M_{w_2u_1} & M_{w_2}EM_{u_2} \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} M_{w'_1v_1} & EM_{w'_1v_2} \\ M_{w'_2v_1} & M_{w'_2}EM_{v_2} \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & I \end{bmatrix}$$
$$= \begin{bmatrix} M_{w_1u_1} & EM_{w'_1v_2} \\ M_{w_2u_1} & M_{w'_2}EM_{v_2} \end{bmatrix}.$$

Now, let $K = E(|u|^2)E(|w|^2) \in L^{\infty}(\Sigma)$ and suppose K is bounded away from zero on its support. It follows that $M_wEM_u \in B(L^2(\Sigma))$ has closed range and $(M_wEM_u)^{\dagger} = M_{\frac{\bar{u}}{K}}EM_{\tilde{w}}$ [16]. Using (2), the matrix representation of M_wEM_u is

$$(M_w E M_u)^{\dagger} = \begin{bmatrix} M_{\frac{\bar{u}_1\bar{w}_1}{K}} & E M_{\frac{\bar{u}_1\bar{w}_2}{K}} \\ M_{\frac{\bar{u}_2\bar{w}_1}{K}} & M_{\frac{\bar{u}_2}{K}} E M_{\bar{w}_2} \end{bmatrix}.$$

Set $c = |u_1|^2 > 0$, $b = |w_1|^2 > 0$ and $d = E(|w_2|^2) > 0$. Then we have

$$\mathcal{T}_1 := M_w E M_u E = \begin{bmatrix} M_{w_1 u_1} & 0 \\ M_{w_2 u_1} & 0 \end{bmatrix}$$

and

$$\mathcal{T}_{1}^{(1,2,4)} = \begin{bmatrix} M_{\frac{\tilde{u}_{1}\tilde{w}_{1}}{2bc}} & EM_{\frac{\tilde{u}_{1}\tilde{w}_{2}}{2cd}} \\ 0 & 0 \end{bmatrix}.$$

Note that

$$\mathcal{T}_{1}\mathcal{T}_{1}^{(1,2,4)} = \begin{bmatrix} \frac{I}{2} & EM_{\frac{w_{1}}{2d}}EM_{\bar{w}_{2}} \\ M_{\frac{\bar{w}_{1}w_{2}}{2b}} & 0 \end{bmatrix}$$

is not self-adjoint. But, if b = d, then we have

$$\mathcal{T}_1^{\dagger} = \begin{bmatrix} M_{\frac{\bar{u}_1\bar{w}_1}{2bc}} & EM_{\frac{\bar{u}_1\bar{w}_2}{2bc}} \\ 0 & 0 \end{bmatrix}.$$

In a similar way, we have

$$\mathcal{T}_2 := M_{w'} E M_{v} Q = \begin{bmatrix} 0 & E M_{w'_1 v_2} \\ 0 & M_{w'_2} E M_{v_2} \end{bmatrix}$$

and

$$\mathcal{T}_{2}^{(1,2,4)} = \begin{bmatrix} 0 & 0 \\ M_{\frac{\bar{W}_{1}'\bar{v}_{2}}{2em}} & M_{\frac{\bar{v}_{2}}{2mn}} E M_{\bar{W}_{2}'} \end{bmatrix},$$

where $e = |w_1'|^2 > 0$, $m = E(|v_2|^2) > 0$ and $n = E(|w_2'|^2) > 0$. Moreover, if e = n, then

$$\mathcal{T}_2^{\dagger} = \begin{bmatrix} 0 & 0 \\ M_{\frac{\bar{w}_1'\bar{v}_2}{2em}} & M_{\frac{\bar{v}_2}{2em}} E M_{\bar{w}_2'} \end{bmatrix}.$$

Theorem 2.10: *The following assertions hold.*

- (a) Let $u, v \in \mathcal{K}_2 = \mathcal{K}_2(\Sigma)$. If $u_n \to u$ and $v_n \to v$ in \mathcal{K}_2 -norm and $w_n \to w$ in L^{∞} -norm, then $T_{u_n,v_n} \to T_{u,v}$ in the operator norm.
- (b) Let $a = \sqrt{E(|w|^2)}$, $a' = \sqrt{E(|w'|^2)}$ and let $au_1, a'v_2 \in \mathcal{K}_2$. Then $\mathcal{T}_{u,v} \in B(L^2(\Sigma))$ and $\max\{c,d\} \le \|\mathcal{T}_{u,v}\| \le \sqrt{\|au_1\|_{\mathcal{K}_2}^2 + \|a'v_2\|_{\mathcal{K}_2}^2}, \text{ where }$

$$c = \sqrt{\|w_1 u_1\|_{\infty}^2 + \||u_1|^2 E(|w_2|^2)\|_{\infty}},$$

$$d = \sqrt{\||w_1'|^2 E(|v_2|^2)\|_{\infty} + \|E(|w_2'|^2) E(|v_2|^2)\|_{\infty}}.$$

(c) $L^2(A)$ is a reducing subspace of $T_{u,v}$ if and only if $w\chi_{\sigma(E(u))}$ and $v\chi_{\sigma(E(w'))}$ are A-measurable functions.

Proof: (a) First note that

$$||T_{u_{n},v_{n}} - T_{u,v}|| = ||E(M_{u_{n}} - M_{u})E + E(M_{v_{n}} - M_{v})Q||$$

$$\leq ||EM_{u_{n}-u}|| + ||EM_{v_{n}-v}||$$

$$= ||E(|u_{n} - u|^{2})||_{\infty}^{\frac{1}{2}} + ||E(|v_{n} - v|^{2})||_{\infty}^{\frac{1}{2}}$$

$$= ||u_{n} - u||_{\mathcal{K}} + ||v_{n} - v||_{\mathcal{K}} \to 0,$$

as $n \to \infty$. Put $M = \sup_{n} ||T_{u_n, v_n}||$. Then we have

$$\begin{split} \|\mathcal{T}_{u_n,v_n} - \mathcal{T}_{u,v}\| &= \|M_{w_n} T_{u_n,v_n} - M_w T_{u,v}\| \\ &\leq M \|w_n - w\|_{\infty} + \|M_w\| \|T_{u_n,v_n} - T_{u,v}\| \to 0, \quad \text{as } n \to \infty. \end{split}$$

(b) Since $au, a'v \in \mathcal{K}_2$, then

$$||T_{u,v}|| \le ||M_w E M_u|| + ||M_{w'} E M_v|| = ||E M_{au}|| + ||E M_{a'v}||$$
$$= ||au||_{\mathcal{K}_2} + ||a'v||_{\mathcal{K}_2} < \infty.$$

Thus $\mathcal{T}_{u,v}$ is bounded. Now let $f \in L^2(\Sigma)$. Then we have

$$||M_w E M_u E f||^2 = \int_X E(|w|^2) |E(uE(f))|^2 d\mu = \int_X |E(auE(f))|^2 d\mu$$

$$\leq \int_X |au_1|^2 |E(f)|^2 d\mu \leq ||au_1||_{\mathcal{K}_2}^2 ||E(f)||_2^2.$$

In a similar way, we have

$$||M_{w'}EM_{v}Qf||^{2} = ||EM_{a'v}Qf||^{2} = \int_{X} |E(a'vQ(f))|^{2} d\mu \le \int_{X} |a'v_{2}|^{2} |Q(f)|^{2} d\mu$$

$$\le ||a'v_{2}||_{\mathcal{K}_{2}}^{2} ||Q(f)||_{2}^{2}.$$

It follows that

$$\begin{split} \|\mathcal{T}_{u,v}f\|_{2} &\leq \|au_{1}\|_{\mathcal{K}_{2}} \|E(f)\|_{2} + \|a'v_{2}\|_{\mathcal{K}_{2}} \|Q(f)\|_{2} \\ &\leq (\|au_{1}\|_{\mathcal{K}_{2}}^{2} + \|a'v_{2}\|_{\mathcal{K}_{2}}^{2})^{\frac{1}{2}} (\|E(f)\|_{2}^{2} + \|Q(f)\|_{2}^{2})^{\frac{1}{2}} \\ &= (\|au_{1}\|_{\mathcal{K}_{2}}^{2} + \|a'v_{2}\|_{\mathcal{K}_{2}}^{2})^{\frac{1}{2}} \|f\|_{2}. \end{split}$$

Hence, $\|T_{u,v}\| \leq \sqrt{\|au_1\|_{\mathcal{K}_2}^2 + \|a'v_2\|_{\mathcal{K}_2}^2}$. Now, let $f = f_1 + f_2 \in L^2(\Sigma)$ with $\|f\|_2 \leq 1$. Then we have

$$\|\mathcal{T}_{u,v}\| \geq \left\|\mathcal{T}_{u,v} \begin{bmatrix} f_1 \\ 0 \end{bmatrix} \right\| = \left\| \begin{bmatrix} M_{w_1u_1}f_1 \\ M_{w_2u_1}f_1 \end{bmatrix} \right\|.$$

But

$$\begin{split} \|M_{w_1u_1|L^2(\mathcal{A})}\| &= \|M_{w_1u_1|L^2(\mathcal{A})}^*\| = \|EM_{\bar{w}_1\bar{u}_1|L^2(\mathcal{A})}\| \\ &= \|EM_{\bar{w}_1\bar{u}_1}\| = \|E(|w_1u_1|^2)\|_{\infty}^{\frac{1}{2}} = \|w_1u_1\|_{\infty}; \\ \|M_{w_2u_1|L^2(\mathcal{A})}\| &= \|M_{w_2u_1|\mathcal{N}(E)}^*\| = \|EM_{\bar{w}_2\bar{u}_1|\mathcal{N}(E)}\| \\ &= \|EM_{\bar{w}_2\bar{u}_1}\| = \|E(|w_2u_1|^2)\|_{\infty}^{\frac{1}{2}} = \||u_1|^2 E(|w_2|^2)\|_{\infty}^{\frac{1}{2}}. \end{split}$$

We obtain that

$$\|\mathcal{T}_{u,v}\| \ge \left\| \begin{bmatrix} M_{w_1u_1} \\ M_{w_2u_1} \end{bmatrix} \right\| = \sqrt{\|w_1u_1\|_{\infty}^2 + \||u_1|^2 E(|w_2|^2)\|_{\infty}}.$$

In a similar way, we have

$$\begin{split} \|EM_{w_1'v_2|\mathcal{N}(E)}\| &= \|EM_{w_1'v_2}\| = \||w_1'|^2 E(|v_2|^2)\|_{\infty}^{\frac{1}{2}}; \\ \|M_{w_2'}EM_{v_2|\mathcal{N}(E)}\| &= \|M_{w_2'}EM_{v_2}\| = \|E(|w_2'|^2)E(|v_2|^2)\|_{\infty}^{\frac{1}{2}}, \end{split}$$

and so

$$\|\mathcal{T}_{u,v}\| \geq \left\| \begin{bmatrix} EM_{w_1'v_1} \\ M_{w_2'}EM_{v_2} \end{bmatrix} \right\| = \sqrt{\||w_1'|^2 E(|v_2|^2)\|_{\infty} + \|E(|w_2'|^2) E(|v_2|^2)\|_{\infty}}.$$

Consequently, $\max\{c, d\} \leq ||T_{u,v}||$.

(c) Using the matrix representation of $T_{u,v}$, $L^2(A)$ is an invariant subspace of $T_{u,v}$ if and only if $M_{w_2u_1} = 0$ on $L^2(A)$. But in this case, we have

$$w_2 u_1 = 0 \iff (w - E(w))E(u) = 0$$

$$\iff E(wE(u)) = wE(u)$$

$$\iff wE(u) \in L^0(\mathcal{A})$$

$$\iff w\chi_{\sigma(E(u))} \in L^0(\mathcal{A}).$$

In a similar way,

$$T_{u,v}(L^{2}(\mathcal{A})) \subseteq L^{2}(\mathcal{A}) \iff M_{\bar{w}_{1}'\bar{v}_{2}} = 0$$

$$\iff w_{1}'v_{2} = 0$$

$$\iff E(w')(v - E(v)) = 0$$

$$\iff vE(w') = E(vE(w'))$$

$$\iff vE(w') \in L^{0}(\mathcal{A})$$

$$\iff v\chi_{\sigma(E(w'))} \in L^{0}(\mathcal{A}).$$

This completes the proof.

Note that if w = w' = 1, then $w_1 = w'_1 = 1$ and $w_2 = w'_2 = 0$. We have the following corollary.

Corollary 2.11:

- (a) Let $u, v \in \mathcal{K}_2$. If $||u_n u||_{\mathcal{K}} \to 0$ and $||v_n v||_{\mathcal{K}} \to 0$, then $||T_{u_n,v_n} T_{u,v}|| \to 0$.
- (b) Let $u_1, v_2 \in \mathcal{K}_2$. Then $\max\{\|u_1\|_{\mathcal{K}}, \|v_2\|_{\mathcal{K}}\} \le \|T_{u,v}\| \le \sqrt{\|u_1\|_{\mathcal{K}}^2 + \|v_2\|_{\mathcal{K}^2}^2}$
- (c) $L^2(A)$ is a reducing subspace of $T_{u,v}$ if and only if v is A-measurable function, i.e. $T_{u,v} =$ T_u .

Example 2.12: (a) Let $X = \{1, 2\}$, $\Sigma = 2^X$, $\mu(\{1\}) = \mu(\{2\}) = 1/2$ and let $\mathcal{A} = \{\emptyset, X\}$. Then $L^2(\Sigma) \cong \mathbb{C}^2$ and

$$E(f) = \frac{1}{\mu(X)} \int_X f d\mu = \frac{f_1 + f_2}{2}.$$

Put u = (-1, -2) and v = (2, 6). Then

$$EM_{u}E = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{-3}{4} & \frac{-3}{4} \\ \frac{-3}{4} & \frac{-3}{4} \end{bmatrix};$$

$$EM_{v}Q = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 6 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{-1}{2} \\ \frac{-1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}.$$

Thus

$$T_{u,v} = EM_uE + EM_vQ = \begin{bmatrix} \frac{-7}{4} & \frac{1}{4} \\ \frac{-7}{4} & \frac{1}{4} \end{bmatrix}$$
, and $1.75 \le ||T_{u,v}|| = 2.50$.

On the other hand, since $u_1 = (-3/2, -3/2)$ and $v_2 = v - E(v) = (-2, 2)$, then $||u_1||_{\mathcal{K}} = 3/2$, $||v_2||_{\mathcal{K}} = 2$. Now, by Corollary 2.11, $2 \le ||T_{u,v}|| \le 2.50$.

In this stage, we obtain the $\{1, 2, 3\}$ -inverse of $T_{u,v}$. Using Theorem 2.8, we have

$$\begin{split} T_{u,v}^{(1,2,3)} &= E M_{\frac{\bar{u}_1}{2c}} E + (I-E) M_{\frac{\bar{v}_2}{2d}} E \\ &= E M_{(\frac{\bar{u}_1}{2c} - \frac{\bar{v}_2}{2d})} E + M_{\frac{\bar{v}_2}{2d}} E \\ &= M_{\frac{\bar{u}_1}{2c}} E + M_{\frac{\bar{v}_2}{2d}} E \\ &= M_{(\frac{\bar{u}_1}{2c} + \frac{\bar{v}_2}{2d})} E. \end{split}$$

Direct computations show that 2c = (9/2, 9/2), 2d = (8, 8), $\bar{u}_1/2c = (-1/3, -1/3)$, $\bar{v}_2/2d = (-1/4, 1/4)$ and so $\frac{\bar{u}_1}{2c} + \frac{\bar{v}_2}{2d} = (-7/12, -1/12)$.

$$T_{u,v}^{(1,2,3)} = \begin{bmatrix} \frac{-7}{12} & 0 \\ 0 & \frac{-1}{12} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{-7}{24} & \frac{-7}{24} \\ \frac{-1}{24} & \frac{-1}{24} \end{bmatrix}.$$

Note that

$$T_{u,v}^{(1,2,3)}T_{u,v} = \begin{bmatrix} 1 & \frac{-7}{48} \\ \frac{7}{48} & \frac{-1}{48} \end{bmatrix}$$

is not self-adjoint. However, if we take u = (-3, -1), we obtain c = d = (4, 4) and

$$T_{u,v} = \begin{bmatrix} -2 & 0 \\ -2 & 0 \end{bmatrix}$$
 and $T_{u,v}^{\dagger} = \begin{bmatrix} \frac{-1}{4} & \frac{-1}{4} \\ 0 & 0 \end{bmatrix}$.

(b) Let X=[-1,1], $\mathrm{d}\mu=\frac{\mathrm{d}x}{2}$, Σ the Lebesgue sets, and $\mathcal A$ the sigma subalgebra of Σ consisting of sets symmetric about the origin. Then for $f\in L^2(\Sigma)$, E(f) is the even part of f. Let $\mathcal T_{u,v}=M_{2\mathrm{sin}x}EM_{\mathrm{cos}x}E+M_{x^2}EM_{x^2+x}Q$. Since for each $f\in L^2(\Sigma)$, $E(f)(x)=\frac{f(x)+f(-x)}{2}$, we have

$$T_{u,v}(f) = 2\sin x E(\cos x) E(f) + x^2 E((x^2 + x)f) - x^2 E(x^2 + x) E(f)$$

$$= \sin 2x \frac{f(x) + f(-x)}{2} + x^2 \frac{(x^2 + x)f(x) + (x^2 - x)f(-x)}{2} - x^4 \frac{f(x) + f(-x)}{2}$$

$$= \frac{\sin 2x + x^3}{2} f + \frac{\sin 2x - x^3}{2} f(-x),$$

$$w_1 = w_2' = 0, \quad w_2 = 2\sin x, \quad u_1 = \cos x, \quad \text{and} \quad v_2 = x.$$

Also, $a = \sqrt{E(|w|^2)} = \sqrt{E(4\sin^2 x)} = 2|\sin x|$ and $a' = \sqrt{E(|w'|^2)} = x^4$, $||au_1||_{\mathcal{K}_2} = ||\sin 2x||_{\infty} = 1$ and $||a'v_2||_{\mathcal{K}_2} = ||x^3||_{\infty} = 1$. Thus, by Theorem 2.10 we have $1 \le ||\mathcal{T}_{u,v}|| \le \sqrt{2}$.

Let us consider $T_{u,v} = EM_{\cos x}E + EM_{x^2+x}Q$. Then we have

$$T_{u,v}(f) = \left(\frac{\cos x + x}{2}\right) f + \left(\frac{\cos x - x}{2}\right) f(-x),$$

 $u_1/2c = 1/2\cos x$ and $v_2/2d = 1/2x$. Hence the {1, 2, 3}-inverse of $T_{u,v}$ is

$$T_{u,v}^{(1,2,3)}(f) = M_{\left(\frac{u_1}{2c} + \frac{v_2}{2d}\right)}E(f) = \left(\frac{1}{4\cos x} + \frac{1}{4x}\right)(f + f(-x)).$$

Now, let $u = |\sin x| + x$ and $v = x^2 + \sin x$. Then $u_1 = |\sin x|$, $v_2 = \sin x$, and so c = d = 1 $\sin^2 x$. It follows that

$$T_{u,v}(f) = \left(\frac{|\sin x| + \sin x}{2}\right) f + \left(\frac{|\sin x| - \sin x}{2}\right) f(-x)$$

and

$$T_{u,v}^{\dagger}(f) = M_{\left(\frac{u_1+v_2}{2c}\right)} E(f) = \frac{1+\mathrm{sgn}(\mathrm{sin}x)}{4|\mathrm{sin}x|} (f+f(-x)).$$

Acknowledgments

The authors are very grateful to the referee(s) for careful reading of the paper and for a number of helpful comments and corrections which improved the presentation of this paper.

Disclosure statement

M. R. Jabbarzadeh was supported by a grant from University of Tabriz [grant number S/3480].

References

- [1] Ben-Israel A, Greville TNE. Generalized inverses: theory and applications. 2nd ed. New York: Springer-Verlag; 2003.
- [2] Cvetković Ilić DS, Wei Y. Algebraic properties of generalized inverses. Vol. 52. Singapore: Springer; 2017.
- [3] Harte R. Invertibility and singularity for bounded linear operators. New York: Marcel Dekker;
- [4] Mosić D, Djordjević DS. Weighted pre-orders involving the generalized Drazin inverse. Appl Math Comput. 2015;270:496-504.
- [5] Mosić D, Djordjević DS. Block representations of the generalized Drazin inverse. Appl Math Comput. 2018;331:200-209.
- [6] Herron J. Weighted conditional expectation operators. Oper Matrices. 2011;5:107–118.
- [7] Grobler JJ, de Pagter B. Operators representable as multiplication conditional expectation operators. J Oper Theory. 2002;48:15-40.
- [8] Dodds P, Huijsmans C, de Pagter B. Characterizations of conditional expectation-type operators. Pacific J Math. 1990;141:55-77.
- [9] Lambert A. Localising sets for sigma-algebras and related point transformations. Proc R Soc Edinburgh. 1991;118A:111-118.
- [10] Rao MM. Conditional measure and applications. New York: Marcel Dekker; 1993.
- [11] Conway JB. A course in functional analysis. 96. New York: Springer- Verlag; 1990. Graduate Texts in Mathematics
- [12] Lambert A. L^p multipliers and nested sigma-algebras. Oper Theory Adv Appl. 1998;104: 147-153.

- [13] Estaremi Y, Jabbarzadeh MR. Weighted Lambert type operators on L^p spaces. Oper Matrices. 2013;7:101-116.
- [14] Jabbarzadeh MR, Sharifi MH. Lambert conditional type operators on $L^2(\Sigma)$. Linear Multilinear
- [15] Jabbarzadeh MR. A conditional expectation type operator on L^p spaces. Oper Matrices. 2010;4:445-453.
- [16] Jabbarzadeh MR, Sohrabi Chegeni M. Parallelism between Moore-Penrose inverse and Aluthge transformation of operators. Appl Anal Discrete Math. 2018;12:318–335.