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ABSTRACT
Let E be the conditional expectation operator with respect to a σ -
finite subalgebra A of �. This paper is concerned with the study of
a conditional type operator Tu,v on L2(�) of the form Tu,v = EMuE +
EMvQ, where u and v are measurable functions and Q= I−E. We dis-
cuss matrix theoretic characterizations of several properties of Tu,v
with an application-oriented approach.
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1. Introduction and preliminaries

LetH be a Hilbert space with inner product 〈·, ·〉 and let B(H) be the set of linear bounded
operators onH. We useR(T) and N (T), respectively, to denote the range space and the
null space of T ∈ B(H). For an operator T ∈ B(H), the adjoint of T is denoted by T∗. T
is self-adjoint if T∗ = T and T is normal if T∗T = TT∗. We write T ≥ 0 if T is a positive
operator, meaning that 〈Tx, x〉 ≥ 0 for all x ∈ H. An orthogonal projection is an operator
P ∈ B(H) such that P2 = P = P∗. Let CR(H) be the set of all bounded linear operators
on H with closed range. For T ∈ B(H), the Moore–Penrose inverse of T, denoted by T†,
is the unique operator T† ∈ CR(H) that satisfies the equations TT†T = T, T†TT† = T†,
(TT†)∗ = TT† and (T†T)∗ = T†T. We recall that T† exists if and only if T has closed
range. The Drazin inverse of T ∈ B(H), denoted by TD, is the unique solution to the equa-
tions Tk+1S = Tk, STS= S, TS= ST, for some k ∈ N. The minimal such k is called the
index, denoted by ind(T), ofT.When k=1, theDrazin inverse reduces to the group inverse
and it is denoted by T#. Recall that asc(T) (des(T)), the ascent (descent) of T ∈ B(H), is
the smallest non-negative integer n such that N (Tn) = N (Tn+1) (R(Tn) = R(Tn+1)).
If no such n exists, then asc(T) = ∞ (des(T) = ∞). For T ∈ B(H), TD exists if and only
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if T has finite ascent and descent. In this case, ind(T) = asc(T) = des(T) = n. For other
important properties of T† and TD, see e.g. [1–5].

Let (X,�,μ) be a complete σ -finite measure space and letA be a sub-σ -finite algebra
of �. The linear space of all complex-valued �-measurable functions on X is denoted by
L0(�). All statements about equality, inclusion and disjointness are to be understood to
hold up to a set of μ-measure 0. We use the notation of [6] which is a basic reference. The
support of a measurable function f ∈ L0(�) is defined by σ(f ) = {x ∈ X : f (x) �= 0}. For
a sub-sigma algebraA ⊆ �, the conditional expectation operator associated withA andμ

is the mapping f → EAμ f , defined for all μ-measurable non-negative f where EAμ f , by the
Radon–Nikodym theorem, is the unique finite-valuedA-measurable function satisfying∫

A
f dμ =

∫
A
EAμ (f )dμ, ∀A ∈ A.

For simplicity, set EAμ = E. Let u ∈ L0(�) be real valued and consider the set Bu = {x ∈
X : E(u+)(x) = E(u−)(x) = ∞}, where u+ = max{f , 0} and u− = max{−f , 0}. The func-
tion u is said to be conditionable with respect to A if μ(Bu) = 0. Put E(u) = E(u+) −
E(u−). If u = u1 + iu2 ∈ L0(�), then u is said to be conditionable if u1 and u2 are con-
ditionable. In this case, we set E(u) = E(u1) + iE(u2). This defines a linear operator E :
D(E) → L0(A) ⊆ L0(�), where the domainD(E) of E is defined byD(E) = {f ∈ L0(�) :
f is conditionable}. It follows thatD(E) contains {Lp(�) : 1 ≤ p ≤ ∞} ∪ {f ∈ L0(�) : f ≥
0} (see [6,7]). A conditional expectation operator E on L2(�) is an orthogonal projection
onto L2(A). A detailed discussion and verification of most of the properties may be found
in [6,8–10]. Those properties of E used in our discussion are summarized below. In all
cases, we assume that f , g, fg ∈ D(E).

(i) If g isA-measurable, then E(fg) = E(f )g.
(ii) σ(|E(f )|) ⊆ σ(E(|f |)) and χSf = f whenever σ(f ) ⊆ S ∈ �.
(iii) (conditional Hölder inequality) |E(fg)| ≤ (E(|f |p))1/p(E(|g|q))1/q, where f , g ∈

L0(�) are finite valued functions and 1/p + 1/q = 1. The case p=2 is called the
conditional Cauchy–Schwarz inequality.

For u ∈ L0(�), the multiplication operator Mu : L2(�) → L0(�) is defined as Muf =
uf . It is a classical fact that Mu ∈ B(L2(�)) if and only if u ∈ L∞(�), and in this case,
‖Mu‖ = ‖u‖∞ [11]. Conditional expectation type operators are closely related to the
multiplication operators, integral and averaging operators and to the operators called con-
ditional type which has been introduced in [8,12]. Conditional operators and various types
of generalized inverses have been widely used in practice. For u and v in L0(�), we discuss
matrix theoretic characterizations of Tu,v = EMuE + EMvQ on L2(�), where Q= I−E.

In the next section, first we review some basic results on EMu and state some general
assumptions. Thenwe obtain theDrazin andMoore–Penrose inverses ofTu,v under certain
conditions. In addition, we study several other properties of Tu,v with an application-
oriented approach.

2. Characterizations

We begin this section with a simple fact which will be applied in the sequel.
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Lemma 2.1: Let f ∈ L∞(A). Then

‖f ‖∞ = sup
{

1
μ(A)

∫
A

|f |dμ, A ∈ A, 0 < μ(A) < ∞
}
. (1)

Proof: Denote the right side of (1) by α. For arbitrary ε > 0, take B = {|f | > ‖f ‖∞ − ε}.
SinceA is σ -finite, there is A0 ⊆ B with 0 < μ(A0) < ∞ such that

α ≥ 1
μ(A0)

∫
A0

|f |dμ ≥ ‖f ‖∞ − ε.

The converse is obvious. �

It is worth noting that L∞(�) is invariant under E. Indeed, by Lemma 2.1 and
(ii), ‖E(f )‖∞ ≤ ‖E(|f |)‖∞ ≤ ‖f ‖∞ < ∞ for all f ∈ L∞(�). Specially, if A = {∅,X}
and μ(X) < ∞, then E(f ) = 1/μ(X)

∫
X f dμ, for all f ∈ L1(�) and hence μ(X)|E(f )| ≤∫

X |f |dμ = ‖f ‖1 for all f ∈ L1(�). Thus, E(L1(�)) ⊆ L∞(�). Let A and B be sub-σ -
algebras of � such that A ⊆ B ⊆ �. For u ∈ L0(B) with uD(EB) ⊆ D(EB), define Tu :
Lp(B) → Lp(A) as Tu(f ) = EAB (uf ), where EAB is the conditional expectation operator
from Lp(B) onto Lp(A).

Proposition 2.2: Let u ∈ L0(B), E = EAB , 1 < p < ∞ and let q be the conjugate component
to p. Then Tu ∈ B(Lp(B), Lp(A)) if and only if E(|u|q) ∈ L∞(A). In this case, the adjoint
operator T∗

u : Lq(A) → Lq(B) is given by T∗
u(g) = ug and ‖Tu‖ = ‖E(|u|q)‖1/q∞ .

Proof: The proof is given in [12, Proposition 2.1]. For the sake of completeness, we give
the details here. Let E(|u|q) ∈ L∞(A). Then for each f ∈ (Lp(B)), we have∫

X
|E(uf )|pdμ ≤

∫
X
(E(|u|q))

p
q E(|f |p)dμ

≤ ‖E(|u|q)‖
p
q
∞

∫
X

|f |pdμ = ‖E(|u|q)‖
p
q
∞‖f ‖pp.

It follows that

‖Tu‖ = sup
‖f ‖p≤1

‖Tu(f )‖p = sup
‖f ‖p≤1

(

∫
X

|E(uf )|pd) 1
p ≤ ‖E(|u|q)‖

1
q
∞.

Thus T∗
u is bounded. Since the mapping g �→ Fg : Fg(f ) = ∫

X fgdμ is an isometry from
Lq(A) onto (Lp(A))∗, so for each g ∈ Lq(A) and B ∈ B we have

(T∗
uFg)(χB) = Fg(TuχB) =

∫
X
E(uχB)gdμ

=
∫
X
(uχB)gdμ = Fug(χB).

After identifying g with Fg we obtain T∗
u(g) = ug. Now, let Tu be bounded and let A ∈ A

with 0 < μ(A) < ∞. Then∫
A
E(|u|q)dμ =

∫
A

|u|qdμ =
∫
X

|T∗
u(χA)|qdμ ≤ ‖Tu‖qμ(A).
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It follows from Lemma 2.1 that

‖E(|u|q)‖
1
q
∞ =

{
sup

1
μ(A)

∫
A
E(|u|q)dμ, A ∈ A, 0 < μ(A) < ∞

} 1
q

≤ ‖Tu‖.

This completes the proof. �

Let p=1 and let f ∈ L1(B). If u ∈ L∞(B), then ‖Tu(f )‖1 ≤ ‖E(|uf |)‖1 = ‖uf ‖1 ≤
‖u‖∞‖f ‖1. Conversely, if ‖Tu‖ < ∞, then ‖uf ‖1 = ‖E(|uf |)‖1 = ‖E(sgn(uf )uf )‖1 =
‖Tu(sgn(uf )f )‖1 ≤ ‖Tu‖ ‖f ‖1. Then Mu ∈ B(L1(B)), and hence u ∈ L∞(B). Conse-
quently, Tu ∈ B(L1(B), L1(A)) if and only if u ∈ L∞(B), and in this case ‖Tu‖ = ‖u‖∞.
By a similar argument and using the fact that (L1)∗ = L∞, one can obtain that Tu ∈
B(L∞(B), L∞(A)) if and only if E(|u|) ∈ L∞(A) [6].

For p ∈ (1,∞) with the conjugate component q, put Kq(B) = {u ∈ L0(B) : E(|u|q) ∈
L∞(A)}. Then L∞(B) ⊆ Kq(B). By Proposition 2.2, Tu ∈ B(Lp(B), Lp(A)) if and only
if u ∈ Kq(B). Let α ∈ C and u, v ∈ Kq(B). Then by the conditional Hölder inequality,
we have E(|αu + v|q)1/q ≤ |α|E(|u|q)1/q + E(|v|q)1/q. Thus Kq(B) is a linear subspace of
L0(B). For u ∈ Kq(B), set ‖u‖Kq = ‖E(|u|q)‖1/q∞ . Then ‖ ‖Kq is a norm on Kq(B) and
the mapping u �→ Tu is an isometry from (Kq(B), ‖ · ‖Kq) onto Bp := {Tu : u ∈ Kq(B)}.
Since Bp is a weakly closed subspace of B(Lp(B), Lp(A)) [6, Theorem 3.2.1], we see that
(Kq(B), ‖ · ‖Kq) is a Banach space. In addition, ifw ∈ L0(B), u ∈ Kq(B) and |w| ≤ |u|, the
monotonicity of E implies that w ∈ Kq(B). So Kq(B) is an ordered ideal. Now, let u,w ∈
K2(B). It follows from the conditional Cauchy–Schwarz inequality that E(|Tu(w)|2) =
|E(uw)|2 ≤ E(|u|2)E(|w|2) ∈ L∞(A), and soTu(w) ∈ K2(B). HenceK2(B) is an invariant
subspace for Bp.

Set B = � and takeK = K2(�). For w, u ∈ D(E), the mapping T : L2(�) ⊇ D(T) →
L2(�) given by T(f ) = wE(uf ) for f ∈ D(T) = {f ∈ L2(�) : T(f ) ∈ L2(�)} is well-
defined and linear. Such an operator is called a Lambert (weighted) conditional operator
induced by the pair (w, u). Set a =

√
E(|w|2) and b =

√
E(|u|2). It is easy to check that

‖MwEMuf ‖2 = ‖MaEMuf ‖2 = ‖EMauf ‖2 for all f ∈ L2(�). Then Proposition 2.2 implies
that T = MwEMu is bounded in L2(�) if and only if au ∈ K. In this case, ‖T‖ = ‖ab‖∞
([13]).

Recall that L2(�) = R(E) ⊕ N (E), where R(E) = L2(A) and N (E) = {f − Ef : f ∈
L2(�)}. Put Q= I−E. So each element of L2(�) can be written as f = f1 + f2 =
E(f ) + Q(f ) such that E(f1) = f1 and E(f2) = 0. Let f ∈ L0(�). Since E(|f |2) = E((f1 +
f2)(f̄1 + f̄2)) = |f1|2 + E(|f2|2), we see that max{|f1|,E(|f2|2)1/2} ≤ E(|f |2)1/2. Hence for
f ∈ L∞(�), we have

max{‖f1‖K2 , ‖f2‖K2} = max{‖f1‖∞, ‖E(|f2|2)1/2‖∞} ≤ ‖f ‖K2 .

Let f , g ∈ L0(�). Then it may happen that f2g2 ∈ L0(A) or f2g2 ∈ N (E). In general, f2g2 =
(f2g2)1 − (f2g2)2.

Example 2.3: (a) Let X = [−1, 1], let dμ = dx
2 , let � be the Lebesgue measurable sets,

and let A = {∅,X}. Then E(f ) = 1
2
∫ 1
−1 f (x)dx, for all f ∈ L2([−1, 1]). Put f (x) = x and

g(x) = 1 − 3x2. Then E(f ) = E(g) = E(fg) = 0. Therefore, f2 = f , g2 = g, and f2g2 = fg
are inN (E).
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(b) Let X = [0, 1], let dμ = dx
2 , let � be the Lebesgue sets, and let A be the sigma

subalgebra of � consisting of sets symmetric about the point 1
2 . It is easy to check

that f1(x) = f (x)+f (1−x)
2 and f2(x) = f (x)−f (1−x)

2 , for all f ∈ L2([0, 1]). So, L2(A) = {f ∈
L2([0, 1]) : f (x) = f (1 − x)}. Set f (x) = g(x) = x − 1

2 . Then f , g ∈ N (E), but (fg)(x) =
(x − 1

2 )
2 ∈ L2(A).

The matrix representation of T = MwEMu with respect to the decomposition L2(�) =
L2(A) ⊕ N (E) is

T =
[
T11 T12
T21 T22

]
=

[
Mw1u1 EMw1u2
Mw2u1 Mw2EMu2

]
(2)

(see [14]). Note that

‖ab‖∞ = ‖E(|w|2)E(|u|2)‖ 1
2
∞ = ‖(|w1|2 + E(|w2|2))(|u1|2 + E(|u2|2))‖ 1

2
∞

≤
√

‖T11‖2 + ‖T12‖2 + ‖T21‖2 + ‖T22‖2.

Definition 2.4: Let u, v ∈ K = K2(�). An operator Tu,v is called a conditional dilation of
Tu = EMu if Tu,v = EMuE + EMvQ, where Q= I−E. In particular, Tu,u = Tu whenever
u= v.

Note that Tu,v = ME(u−v)E + EMv. Since any f ∈ L2(�) can be written uniquely as f =
f1 + f2, where f1 = Ef ∈ L2(A) and f2 = f − E(f ) ∈ N (E), it ensures that for any u, v ∈ K,

Tu,v(f ) = E((u1 + u2)f1) + E((v1 + v2)f2)

= u1f1 + E(v2f2) = Mu1 f1 + EMv2 f2 =
[
Mu1 EMv2
0 0

] [
f1
f2

]
.

Let r, s ∈ K and α ∈ F. Then

αTu,v + Tr,s =
[
Mαu1+r1 EMαv2+s2

0 0

]
,

(Tu,v)(Tr,s) =
[
Mu1r1 EMu1s2
0 0

]
.

In the following, we collect some elementary algebraic properties of the conditional
dilation operators.

Proposition 2.5: Let u, v, r, s ∈ K, n ∈ N and α ∈ F. The following hold.

(a) αTu,v + Tr,s = Tαu+r,αv+s.
(b) (Tu,v)(Tr,s) = TrE(u),sE(u).
(c) Tn

u,v = M(E(u))n−1Tu,v.
(d) (Tn

u,v)
∗ = M(E(ū))n−1{M(E(ū−v̄)+v̄)E}.

UsingProposition 2.5(c), ‖Tn
u,v‖ ≤ ‖E(u)‖n−1∞ ‖Tu,v‖. It follows that r(Tu,v) ≤ ‖E(u)‖∞,

where r(Tu,v) is the spectral radius of Tu,v. Using [15, Theorem 2.8.], we have sp(Tu,v) ∪
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{0} = sp(Tu) ∪ {0} = ess range{E(u)} ∪ {0}, where sp(Tu) is the spectrum of Tu. Conse-
quently, r(Tu,v) = ‖E(u)‖∞.

Theorem 2.6: Let u, v ∈ K and let Tu,v �= 0. Then the following hold.

(a) Tu,v is self-adjoint if and only if E(u) is real valued and v2 ∈ L0(A).
(b) Tu,v is positive if and only if E(u) ≥ 0 and v2 ∈ L0(A).
(c) Tu,v is an orthogonal projection if and only if Tu,v = E.
(d) Tu,v is normal if and only if v is anA-measurable function.
(c) Tu,v is quasinormal if and only if T is normal.

Proof: (a) Using the matrix representation of Tu,v with respect to the decomposition
L2(�) = L2(A) ⊕ N (E), we have

Tu,v = T∗
u,v ⇐⇒

[
Mu1 EMv2
0 0

]
=

[
Mū1 0
Mv̄2 0

]
⇐⇒ ū1 = u1 and v ∈ L0(A).

So Tu,v is self-adjoint if and only if Tu,v = Tu,0 with E(u) = E(ū).
(b) Using (a), Tu,v ≥ 0 if and only if Tu,v = EMuE ≥ 0 with ū1 = u1. But

∫
X u|E(f )|2dμ

= 〈MuEf ,Ef 〉 = 〈EMuEf , f 〉 ≥ 0 if and only if u ≥ 0.
(c) We see from (a) and Proposition 2.5(c) that T∗

u,v = Tu,v = T2
u,v if and only if Tu,v =

EMuE = (EMuE)2 = ME(u)EMuE if and only if E(u) = 1. Thus Tu,v is an orthogonal
projection if and only if Tu,v = E.

(d) Tu,vT∗
u,v = T∗

u,vTu,v ⇐⇒
[
M|u1|2 + EM|v2|2 0

0 0

]
=

[
M|u1|2 Mū1EMv2
Mu1v̄2 Mv̄2EMv2

]

⇐⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

EM|v2|2 = 0;
Mū1EMv2 = 0;
Mu1v̄2 = 0;
Mv̄2EMv2 = 0.

⇐⇒ v2 = 0 ⇐⇒ v ∈ L0(A).

(e) Direct computation shows that (T∗
u,vTu,v)Tu,v = Tu,v(T∗

u,vTu,v) if and only if
[
Mu1|u1|2 EM|u1|2v2
Mu21v̄2

Mv̄2EMu1v2

]
=

[
M|u1|2u1 + M|v2|2u1 EM|u1|2v2 + EM|v2|2EMv2

0 0

]

⇐⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M|v2|2u1 = 0;
EM|v2|2EMv2 = 0;
Mu21v̄2

= 0;
Mv̄2EMu1v2 = 0.

⇐⇒ v2 = 0 ⇐⇒ v ∈ L0(A).

�

Proposition 2.7: Let u, v ∈ K. Then the following hold.

(a) N (Tu,v|L2(A)) = (ūL2(A))⊥ ∩ L2(A).
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(b) N (Tu,v|N (E)) = (v̄L2(A))⊥ ∩ N (E).
(c) Tu,v = 0 if and only if u1 = 0 and v2N (E) ⊆ N (E).
(d) N (Tu,v) = N (Tu,v|L2(A)) ⊕ N (Tu,v|N (E)) = N (EMuE) ∩ N (EMvQ).

Proof: The proof of (a) and (b) are similar. We prove (a) only. Put T1 = Tu,v|L2(A) and
T2 = Tu,v|N (E). Then for each g ∈ L2(A), we have

f ∈ (ūL2(A))⊥ ∩ L2(A) ⇐⇒ 〈g,EMuEf 〉 = 〈g,EMuf 〉 = 〈Eg, uf 〉
= 〈g, uf 〉 = 〈ūg, f 〉 = 0 ⇐⇒ f ∈ N (T1).

ThusN (T1) = {f ∈ L2(A) : f ⊥ ūL2(A)}.
(c) Tu,v = 0 if and only if EMuE = Tu,vE = 0 and EMvQ = Tu,vQ = 0. But this is

equivalent to u1f1 = 0 and E(u2f2) = 0, for all f = f1 + f2 ∈ L2(�). This yields the result.
(d) N (Tu,v) = (N (Tu,v) ∩ L2(A)) ⊕ (N (Tu,v) ∩ N (E)) = N (T1) ⊕ N (T2). More-

over,

N (EMuE) = N
([

Mu1 0
0 0

])
= {(ū1L2(A))⊥ ∩ L2(A)} ⊕ N (E);

N (EMvQ) = N
([

0 EMv2
0 0

])
= L2(A) ⊕ {(v̄2L2(A))⊥ ∩ N (E)}

and

N
([

Mu1 EMv2
0 0

])
= {(ū1L2(A))⊥ ∩ L2(A)} ⊕ {(v̄2L2(A))⊥ ∩ N (E)}.

It follows thatN (Tu,v) = N (EMuE) ∩ N (EMvQ). �

Let T ∈ B(H) have closed range. We recall that the unique operator S ∈ B(L2(�))

satisfying

(1) TST = T, (2) STS = S, (3) (TS)∗ = TS, (4) (ST)∗ = ST,

is called the Moore–Penrose inverse of T and is denoted by T†. Let T{i, . . . , j} denote the
set of all operators S satisfying condition (k) for all labels k in the list {i, . . . , j}. In this case,
S ∈ T{i, . . . , j} is an {i, . . . , j}-inverse of T and is denoted by T(i,...,j). Note that T(1,2,3,4) =
T†. For other important properties of T†, see [2,3].

Let a = E(|u|2) ∈ L∞(A) be bounded away from zero on X. Set S = Mū
a
E. Then S ∈

B(L2(�)) and T1ST1 = (EMu)(Mū
a
E)(EMu) = EMu = T1. It follows that T1 has closed

range. Also, it is easy to check thatT1 satisfies the other three equations above. Thus S = T†
1 .

Recall that Tu,v = T1 + T2, where T1 = (EMu)E and T2 = (EMv)Q. Let c = |u1|2 and
d = E(|v2|2) be bounded away from zero X. Then the block matrices of T1 and T†

1 with
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respect to the decomposition L2(A) ⊕ N (E) are

T1 =
[
Mu1 0
0 0

]
, T†

1 =
[
Mū1

c
0

0 0

]
.

Similarly,

T2 =
[
0 EMv2
0 0

]
, and T†

2 =
[

0 0
Mv̄2

d
0

]
.

Now, put

S =
[
Mū1

2c
0

Mv̄2
2d

0

]
.

Since (M |̄u1|2
2c

+ EM |̄v2|2
2d

)|L2(A) = I, then

Tu,vS =
[
Mu1 EMv2
0 0

][
Mū1

2c
0

Mv̄2
2d

0

]
=

[
I 0
0 0

]
.

Thus Tu,vS is self-adjoint and Tu,vSTu,v = Tu,v. Also, we have

STu,v =
[ 1

2 I Mū1
2c
EMv2

Mu1 v̄2
2d

M v̄2
2d
EMv2

]
. (3)

It follows that

STu,vS =
[
A|L2(A) 0
B|L2(A) 0

]
,

where

A|L2(A) = (Mū1
4c

+ Mū1
2c
EM |v2|2

2d
)|L2(A) = Mū1

2c
;

B|L2(A) = (M |u1|2 v̄2
4cd

+ Mv̄2
2d
EM |v2|2

2d
)|L2(A)

= {Mv̄2
2d

(M |u1|2
2c

+ EM |v2|2
2d

)}|L2(A) = Mv̄2
2d
.

Consequently, STu,vS = S. Note that STu,v in (3) is not self-adjoint. But, if c=d then
(STu,v)

∗ = STu,v. These observations establish the following result.

Theorem 2.8: Let Tu,v ∈ B(L2(�)), and c = |u1|2. If d = E(|v2|2) is bounded away from
zero on X, then

T(1,2,3)
u,v =

[
Mū1

2c
0

Mv̄2
2d

0

]
.

Moreover, if c=d then T†
u,v = T(1,2,3)

u,v .
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Let T1 ∈ B(L2(�)) and let |E(u)| ≥ δ on X, for some δ > 0. Let n ≥ 2 and f ∈ N (Tn
1 ).

Then (E(u))n−1E(uf ) = 0, and so T1f = E(uf ) = 0. ThusN (Tn
1 ) = N (T1). Now, let g ∈

R(T1). Then g = T1f for some f ∈ L2(�) and∫
X

∣∣∣∣ f
(E(u))n−1

∣∣∣∣
2
dμ ≤ 1

δn−1 ‖f ‖22.

It follows that

g = E(uf ) = 1
(E(u))n−1 ((E(u))n−1E(uf ))

= (E(u))n−1E(u
f

(E(u))n−1 ) ∈ R(Tn
1 ).

Consequently, ind(T1) = asc(T1) = des(T1) = 1. Put S = EM u
(E(u))2

. Then S ∈ B(L2(�)),
ST1S = S, T1S = EM u

E(u)
= ST1 and

Tk+1
1 S = ((E(u))kEMu)(EM u

(E(u))2
) = (E(u))k−1EMu = Tk

1 .

Consequently, TD
1 = S = T#

1 .
Suppose u1 = E(u) is bounded away from zero on its support. Take A = σ(u1) and put

S =
[
M χA

u1
EM χAv̄2

u21
0 0

]
,

where u21 = |u1|2 sgn(u1). This implies that

STu,v =
[
MχA EM χAv̄2

u1
0 0

]
= Tu,vS;

STu,vS =
[
MχA EM χAv̄2

u1
0 0

] [
M χA

u1
EM χAv̄2

u21
0 0

]
= S;

Tk+1
u,v S =

[
Muk+1

1
EMv2uk1

0 0

] [
M χA

u1
EM χAv2

u21
0 0

]

=
[
Muk1

EMv2uk−1
1

0 0

]
= Tk

u,v, k ∈ N.

Thus S = TD
u,v is the Drazin inverse of Tu,v. Moreover, if u1 is bounded away from zero on

X, then by Proposition 2.5(c) and (d) we have

N (Tk
u,v) = N (uk−1

1 Tu,v) = N (Tu,v);

R(Tk
u,v) = N (T∗k

u,v)
⊥ = N (T∗

u,v)
⊥ = R(Tu,v),

for all k ∈ N. Thus, ind(Tu,v) = 1 and so TD
u,v = T#. These observations establish the

following result.
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Proposition 2.9: Let u1 be bounded away from zero on A = σ(u1). Then

TD
u,v =

[
M χA

u1
EM χAv̄2

u21
0 0

]
.

Moreover, if |u1| ≥ α on X for some α ≥ 0, then TD
u,v = T#.

Let w,w′ ∈ L0(�), u, v ∈ L2(�) and let {au, bv} ⊂ K, where a =
√
E(|w|2) and b =√

E(|w′|2). Put Tu,v = MwEMuE + Mw′EMvQ. The conditional type operator Tu,v is a
generalization of Tu,v. Indeed, if w = w′ = 1, then Tu,v = Tu,v. Using (2), the matrix
representation of Tu,v with respect to the decomposition L2(�) = L2(A) ⊕ N (E) is

Tu,v =
[
Mw1u1 EMw1u2
Mw2u1 Mw2EMu2

] [
I 0
0 0

]
+

[
Mw′

1v1 EMw′
1v2

Mw′
2v1 Mw′

2
EMv2

] [
0 0
0 I

]

=
[
Mw1u1 EMw′

1v2
Mw2u1 Mw′

2
EMv2

]
.

Now, let K = E(|u|2)E(|w|2) ∈ L∞(�) and suppose K is bounded away from zero on its
support. It follows thatMwEMu ∈ B(L2(�)) has closed range and (MwEMu)

† = M ū
K
EMw̄

[16]. Using (2), the matrix representation ofMwEMu is

(MwEMu)
† =

[
Mū1w̄1

K
EMū1w̄2

K
Mū2w̄1

K
Mū2

K
EMw̄2

]
.

Set c = |u1|2 > 0, b = |w1|2 > 0 and d = E(|w2|2) > 0. Then we have

T1 := MwEMuE =
[
Mw1u1 0
Mw2u1 0

]

and

T (1,2,4)
1 =

[
Mū1w̄1

2bc
EMū1w̄2

2cd
0 0

]
.

Note that

T1T (1,2,4)
1 =

[ I
2 EMw1

2d
EMw̄2

Mw̄1w2
2b

0

]

is not self-adjoint. But, if b=d, then we have

T †
1 =

[
Mū1w̄1

2bc
EMū1w̄2

2bc
0 0

]
.

In a similar way, we have

T2 := Mw′EMvQ =
[
0 EMw′

1v2
0 Mw′

2
EMv2

]
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and

T (1,2,4)
2 =

[
0 0

Mw̄′
1 v̄2
2em

M v̄2
2mn

EMw̄′
2

]
,

where e = |w′
1|2 > 0,m = E(|v2|2) > 0 and n = E(|w′

2|2) > 0. Moreover, if e=n, then

T †
2 =

[
0 0

Mw̄′
1 v̄2
2em

M v̄2
2em

EMw̄′
2

]
.

Theorem 2.10: The following assertions hold.

(a) Let u, v ∈ K2 = K2(�). If un → u and vn → v inK2-norm andwn → w in L∞-norm,
then Tun,vn → Tu,v in the operator norm.

(b) Let a =
√
E(|w|2), a′ =

√
E(|w′|2) and let au1, a′v2 ∈ K2. Then Tu,v ∈ B(L2(�)) and

max{c, d} ≤ ‖Tu,v‖ ≤
√

‖au1‖2K2
+ ‖a′v2‖2K2

, where

c =
√

‖w1u1‖2∞ + ‖ |u1|2E(|w2|2)‖∞ ,

d =
√

‖ |w′
1|2E(|v2|2)‖∞ + ‖E(|w′

2|2)E(|v2|2)‖∞ .

(c) L2(A) is a reducing subspace of Tu,v if and only if wχσ(E(u)) and vχσ(E(w′)) are
A-measurable functions.

Proof: (a) First note that

‖Tun,vn − Tu,v‖ = ‖E(Mun − Mu)E + E(Mvn − Mv)Q‖
≤ ‖EMun−u‖ + ‖EMvn−v‖
= ‖E(|un − u|2)‖ 1

2
∞ + ‖E(|vn − v|2)‖ 1

2
∞

= ‖un − u‖K + ‖vn − v‖K → 0,

as n → ∞. PutM = supn ‖Tun,vn‖. Then we have

‖Tun,vn − Tu,v‖ = ‖MwnTun,vn − MwTu,v‖
≤ M‖wn − w‖∞ + ‖Mw‖ ‖Tun,vn − Tu,v‖ → 0, as n → ∞.

(b) Since au, a′v ∈ K2, then

‖Tu,v‖ ≤ ‖MwEMu‖ + ‖Mw′EMv‖ = ‖EMau‖ + ‖EMa′v‖
= ‖au‖K2 + ‖a′v‖K2 < ∞.

Thus Tu,v is bounded. Now let f ∈ L2(�). Then we have

‖MwEMuEf ‖2 =
∫
X
E(|w|2)|E(uE(f ))|2dμ =

∫
X

|E(auE(f ))|2dμ

≤
∫
X

|au1|2|E(f )|2dμ ≤ ‖au1‖2K2
‖E(f )‖22.
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In a similar way, we have

‖Mw′EMvQf ‖2 = ‖EMa′vQf ‖2 =
∫
X

|E(a′vQ(f ))|2dμ ≤
∫
X

|a′v2|2|Q(f )|2dμ

≤ ‖a′v2‖2K2
‖Q(f )‖22.

It follows that

‖Tu,vf ‖2 ≤ ‖au1‖K2‖E(f )‖2 + ‖a′v2‖K2‖Q(f )‖2
≤ (‖au1‖2K2

+ ‖a′v2‖2K2
)
1
2 (‖E(f )‖22 + ‖Q(f )‖22)

1
2

= (‖au1‖2K2
+ ‖a′v2‖2K2

)
1
2 ‖f ‖2.

Hence, ‖Tu,v‖ ≤
√

‖au1‖2K2
+ ‖a′v2‖2K2

. Now, let f = f1 + f2 ∈ L2(�) with ‖f ‖2 ≤ 1.
Then we have

‖Tu,v‖ ≥
∥∥∥∥Tu,v

[
f1
0

]∥∥∥∥ =
∥∥∥∥
[
Mw1u1 f1
Mw2u1 f1

]∥∥∥∥ .
But

‖Mw1u1 |L2(A)‖ = ‖M∗
w1u1 |L2(A)

‖ = ‖EMw̄1ū1 |L2(A)‖

= ‖EMw̄1ū1‖ = ‖E(|w1u1|2)‖ 1
2
∞ = ‖w1u1‖∞ ;

‖Mw2u1 |L2(A)‖ = ‖M∗
w2u1 |N (E)

‖ = ‖EMw̄2ū1 |N (E)‖

= ‖EMw̄2ū1‖ = ‖E(|w2u1|2)‖ 1
2
∞ = ‖ |u1|2E(|w2|2)‖ 1

2
∞ .

We obtain that

‖Tu,v‖ ≥
∥∥∥∥
[
Mw1u1
Mw2u1

]∥∥∥∥ =
√

‖w1u1‖2∞ + ‖ |u1|2E(|w2|2)‖∞ .

In a similar way, we have

‖EMw′
1v2 |N (E)

‖ = ‖EMw′
1v2‖ = ‖ |w′

1|2E(|v2|2)‖ 1
2
∞ ;

‖Mw′
2
EMv2 |N (E)

‖ = ‖Mw′
2
EMv2‖ = ‖E(|w′

2|2)E(|v2|2)‖ 1
2
∞ ,

and so

‖Tu,v‖ ≥
∥∥∥∥∥
[

EMw′
1v1

Mw′
2
EMv2

]∥∥∥∥∥ =
√

‖ |w′
1|2E(|v2|2)‖∞ + ‖E(|w′

2|2)E(|v2|2)‖∞ .

Consequently, max{c, d} ≤ ‖Tu,v‖.
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(c) Using the matrix representation of Tu,v, L2(A) is an invariant subspace of Tu,v if and
only ifMw2u1 = 0 on L2(A). But in this case, we have

w2u1 = 0 ⇐⇒ (w − E(w))E(u) = 0

⇐⇒ E(wE(u)) = wE(u)

⇐⇒ wE(u) ∈ L0(A)

⇐⇒ wχσ(E(u)) ∈ L0(A).

In a similar way,

Tu,v(L2(A)) ⊆ L2(A) ⇐⇒ Mw̄′
1v̄2 = 0

⇐⇒ w′
1v2 = 0

⇐⇒ E(w′)(v − E(v)) = 0

⇐⇒ vE(w′) = E(vE(w′))

⇐⇒ vE(w′) ∈ L0(A)

⇐⇒ vχσ(E(w′)) ∈ L0(A).

This completes the proof. �

Note that if w = w′ = 1, then w1 = w′
1 = 1 and w2 = w′

2 = 0. We have the following
corollary.

Corollary 2.11:

(a) Let u, v ∈ K2. If ‖un − u‖K → 0 and ‖vn − v‖K → 0, then ‖Tun,vn − Tu,v‖ → 0.

(b) Let u1, v2 ∈ K2. Thenmax{‖u1‖K, ‖v2‖K} ≤ ‖Tu,v‖ ≤
√

‖u1‖2K + ‖v2‖2K.
(c) L2(A) is a reducing subspace of Tu,v if and only if v isA-measurable function, i.e. Tu,v =

Tu.

Example 2.12: (a) Let X = {1, 2}, � = 2X , μ({1}) = μ({2}) = 1/2 and let A = {∅,X}.
Then L2(�) ∼= C2 and

E(f ) = 1
μ(X)

∫
X
fdμ = f1 + f2

2
.

Put u = (−1,−2) and v = (2, 6). Then

EMuE =
[
1
2

1
2

1
2

1
2

] [
−1 0
0 −2

] [
1
2

1
2

1
2

1
2

]
=

[−3
4

−3
4

−3
4

−3
4

]
;

EMvQ =
[
1
2

1
2

1
2

1
2

] [
2 0
0 6

] [
1
2

−1
2

−1
2

1
2

]
=

[
−1 1
−1 1

]
.
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Thus

Tu,v = EMuE + EMvQ =
[−7

4
1
4

−7
4

1
4

]
, and 1.75 ≤ ‖Tu,v‖ = 2.50.

On the other hand, since u1 = (−3/2,−3/2) and v2 = v − E(v) = (−2, 2), then ‖u1‖K =
3/2, ‖v2‖K = 2. Now, by Corollary 2.11, 2 ≤ ‖Tu,v‖ ≤ 2.50.

In this stage, we obtain the {1, 2, 3}-inverse of Tu,v. Using Theorem 2.8, we have

T(1,2,3)
u,v = EMū1

2c
E + (I − E)Mv̄2

2d
E

= EM
(
ū1
2c − v̄2

2d )
E + Mv̄2

2d
E

= Mū1
2c
E + Mv̄2

2d
E

= M
(
ū1
2c + v̄2

2d )
E.

Direct computations show that 2c = (9/2, 9/2), 2d = (8, 8), ū1/2c = (−1/3,−1/3),
v̄2/2d = (−1/4, 1/4) and so ū1

2c + v̄2
2d = (−7/12,−1/12).

T(1,2,3)
u,v =

[−7
12 0
0 −1

12

] [
1
2

1
2

1
2

1
2

]
=

[−7
24

−7
24

−1
24

−1
24

]
.

Note that

T(1,2,3)
u,v Tu,v =

[
1 −7

48
7
48

−1
48

]

is not self-adjoint. However, if we take u = (−3,−1), we obtain c = d = (4, 4) and

Tu,v =
[
−2 0
−2 0

]
and T†

u,v =
[−1

4
−1
4

0 0

]
.

(b) Let X = [−1, 1], dμ = dx
2 ,� the Lebesgue sets, andA the sigma subalgebra of� con-

sisting of sets symmetric about the origin. Then for f ∈ L2(�), E(f ) is the even part of f. Let
Tu,v = M2sinxEMcosxE + Mx2EMx2+xQ. Since for each f ∈ L2(�), E(f )(x) = f (x)+f (−x)

2 ,
we have

Tu,v(f ) = 2sinxE(cosx)E(f ) + x2E((x2 + x)f ) − x2E(x2 + x)E(f )

= sin2x
f (x) + f (−x)

2
+ x2

(x2 + x)f (x) + (x2 − x)f (−x)
2

− x4
f (x) + f (−x)

2

= sin2x + x3

2
f + sin2x − x3

2
f (−x),

w1 = w′
2 = 0, w2 = 2sinx, u1 = cosx, and v2 = x.

Also, a =
√
E(|w|2) =

√
E(4sin2x) = 2|sinx| and a′ =

√
E(|w′|2) = x4, ‖au1‖K2 =

‖sin2x‖∞ = 1 and ‖a′v2‖K2 = ‖x3‖∞ = 1. Thus, by Theorem 2.10 we have 1 ≤ ‖Tu,v‖ ≤√
2.
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Let us consider Tu,v = EMcosxE + EMx2+xQ. Then we have

Tu,v(f ) =
(
cosx + x

2

)
f +

(
cosx − x

2

)
f (−x),

u1/2c = 1/2cosx and v2/2d = 1/2x. Hence the {1, 2, 3}-inverse of Tu,v is

T(1,2,3)
u,v (f ) = M( u1

2c + v2
2d

)E(f ) =
(

1
4cosx

+ 1
4x

)
(f + f (−x)).

Now, let u = |sinx| + x and v = x2 + sinx. Then u1 = |sinx|, v2 = sinx, and so c = d =
sin2x. It follows that

Tu,v(f ) =
( |sinx| + sinx

2

)
f +

( |sinx| − sinx
2

)
f (−x)

and

T†
u,v(f ) = M(

u1+v2
2c

)E(f ) = 1 + sgn(sinx)
4|sinx| (f + f (−x)).
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