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1. Introduction and preliminaries

Let H be a Hilbert space with inner product (-, -) and let B(H) be the set of linear bounded
operators on H. We use R(T) and N (T), respectively, to denote the range space and the
null space of T € B(H). For an operator T € B(H), the adjoint of T is denoted by T*. T
is self-adjoint if T* = T and T is normal if T*T = TT*. We write T > 0 if T is a positive
operator, meaning that (Tx,x) > 0 for all x € H. An orthogonal projection is an operator
P € B(H) such that P = P = P*. Let CR(H) be the set of all bounded linear operators
on H with closed range. For T € B(H), the Moore-Penrose inverse of T, denoted by ',
is the unique operator T* € CR(H) that satisfies the equations TT'T = T, T'TT" = T7,
(TTH* = TT" and (TTT)* = TTT. We recall that T" exists if and only if T has closed
range. The Drazin inverse of T € B(H), denoted by TP, is the unique solution to the equa-
tions Tkt1S = Tk, STS=S, TS=ST, for some k € N. The minimal such k is called the
index, denoted by ind(T), of T. When k =1, the Drazin inverse reduces to the group inverse
and it is denoted by T%. Recall that asc(T) (des(T)), the ascent (descent) of T € B(H), is
the smallest non-negative integer # such that A'(T") = N (T"*!) (R(T") = R(T"*)).
If no such # exists, then asc(T) = oo (des(T) = 00). For T € B(H), TP exists if and only
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if T has finite ascent and descent. In this case, ind(T) = asc(T) = des(T) = n. For other
important properties of TT and TP, see e.g. [1-5].

Let (X, X, 1) be a complete o -finite measure space and let A be a sub-o -finite algebra
of ¥. The linear space of all complex-valued ¥-measurable functions on X is denoted by
L9(2). All statements about equality, inclusion and disjointness are to be understood to
hold up to a set of ;t-measure 0. We use the notation of [6] which is a basic reference. The
support of a measurable function f € L°(X) is defined by o (f) = {x € X : f(x) # 0}. For
a sub-sigma algebra A C ¥, the conditional expectation operator associated with A and
is the mapping f — Elff, defined for all 1-measurable non-negative f where E;ff, by the
Radon-Nikodym theorem, is the unique finite-valued .A-measurable function satisfying

/fd,u:/E;f(f)d/L, VA € A
A A

For simplicity, set Eﬁl = E. Let u € L°(X) be real valued and consider the set B, = {x €
X : E(u")(x) = E(u™)(x) = oo}, where u™ = max{f,0} and u~ = max{—f, 0}. The func-
tion u is said to be conditionable with respect to A if u(B,) = 0. Put E(u) = E(u™) —
E@w™). If u = uy + iup € L°(X), then u is said to be conditionable if u; and u, are con-
ditionable. In this case, we set E(u) = E(u1) + iE(u). This defines a linear operator E :
D(E) — L°(A) C L°(Z), where the domain D(E) of E is defined by D(E) = {f € L°(Z) :
f is conditionable}. It follows that D(E) contains {LP(X) : 1 < p < oo} U{f € L(%) f =
0} (see [6,7]). A conditional expectation operator E on L?(X) is an orthogonal projection
onto L?(A). A detailed discussion and verification of most of the properties may be found
in [6,8-10]. Those properties of E used in our discussion are summarized below. In all
cases, we assume that f, g, fg € D(E).

(i) Ifgis.A-measurable, then E(fg) = E(f)g.
(ii)) o(IE(H)]) S o (E(|f])) and xsf = f whenevero(f) C S € X.
(iii) (conditional Holder inequality) |E(fg)| < (E(|fIP))/P(E(|g|1))"/4, where f,g €
LO(Z) are finite valued functions and 1/p + 1/q = 1. The case p=2 is called the
conditional Cauchy-Schwarz inequality.

For u € L°(Z), the multiplication operator M, : L>(¥) — L°(X) is defined as M,,f =
uf. It is a classical fact that M, € B(L*(X)) if and only if u € L°°(X), and in this case,
Myl = llulloo [11]. Conditional expectation type operators are closely related to the
multiplication operators, integral and averaging operators and to the operators called con-
ditional type which has been introduced in [8,12]. Conditional operators and various types
of generalized inverses have been widely used in practice. For u and v in L°(X), we discuss
matrix theoretic characterizations of T,,, = EM,E + EM,Q on L?>(%), where Q=I—E.

In the next section, first we review some basic results on EM,, and state some general
assumptions. Then we obtain the Drazin and Moore-Penrose inverses of T),, under certain
conditions. In addition, we study several other properties of T, with an application-
oriented approach.

2. Characterizations

We begin this section with a simple fact which will be applied in the sequel.
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Lemma 2.1: Let f € L°°(A). Then
1
flloe = sup {—/ Fldi A € A, 0 < u(A) < oo}. 1)
w(A) Ja

Proof: Denote the right side of (1) by «. For arbitrary ¢ > 0, take B = {|f| > ||f|lcc — €}-
Since A is o -finite, there is Ag € Bwith 0 < w(Ag) < oo such that

1
d 0o — E.
M(AO)/AOVI w > If Il €

The converse is obvious. [ |

o=

It is worth noting that L°°(X) is invariant under E. Indeed, by Lemma 2.1 and
(i), 1EP oo < IE(fDlloo < Iflloo < 00 for all f € L(S). Specially, if A= {#,X)
and n(X) < oo, then E(f) = 1/u(X) fod/L, forall f € L'(X) and hence wXIE()| <
Jx [flde = [Iflly for all f € L'(X). Thus, E(L}(X)) € L®(X). Let A and B be sub-o-
algebras of ¥ such that A € B C X. Foru € L9(B) with uD(EP) € D(EP), define T, :
LP(B) — LP(A) as Tu(f) = Eé(uf), where Eé is the conditional expectation operator
from LP(13) onto LP(A).

Proposition 2.2: Letu € L°(B), E = Eé, 1 < p < oo and let q be the conjugate component
to p. Then Ty, € B(LP(B), LP(A)) if and only if E(|u|1) € L*°(A). In this case, the adjoint
operator T, : L1(A) — L1U(B) is given by T, (g) = ug and || T,| = ||E(|u|q)||ééq.

Proof: The proof is given in [12, Proposition 2.1]. For the sake of completeness, we give
the details here. Let E(|u|9) € L°°(A). Then for each f € (L (B)), we have

P
fXIE(uf)IPdM =< /X(E(Iulq))qE(Lflp)dM

P P
< IIE(Iqu)Ilgo/ [fiPdp = IIE(Iulq)Ilgoltfllg-
X
It follows that

1 1
ITull = sup ITu()llp = sup (| [Ewf)Pd)? < [E(ul?)] 5.
Ifllp<1 Iflp<1 /X

Thus T; is bounded. Since the mapping g > Fg : Fo(f) = [y fgdu is an isometry from
Li(A) onto (LP(A))*, so for each g € L1(A) and B € B we have

(TiFg)(xs) = Fo(Tuxs) = /X E(uxp)gdu

= /X (uxp)gdp = Fug(xB)-

After identifying g with F, we obtain T} (g) = ug. Now, let T, be bounded and let A € A
with 0 < (A) < oo. Then

/ E(ulf)dy = / jultdu = f T Geolidu < I Tull T (A).
A A X
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It follows from Lemma 2.1 that

1

! /E(|u|q)du, Ac A0 < puA) < oo}q < ITull-
Hw(A) Ja

1
IE(ulDI5% = {SUP
This completes the proof. |

Let p=1 and let f € L'(B). If u € L®(B), then | Tu()ll < IE(ufDI = lufl <
lulloollf 1. Conversely, if [IT,]| < oo, then [luflli = IE(ufDll = [E(sgn(ufuf)l =
| Tu(sgnh))f) Il < ITull lIfIl1. Then M, € B(L'(B)), and hence u € L>°(B). Conse-
quently, T,, € B(L'(B), L' (A)) if and only if u € L°(B), and in this case || T,|| = ||u/|co-
By a similar argument and using the fact that (L!)* = L°°, one can obtain that T, €
B(L*°(B),L*°(A)) if and only if E(|u|) € L°(A) [6].

For p € (1,00) with the conjugate component g, put Ky(B) = {u € Lo%B) : E(lu]9) €
L>®(A)}. Then L*®(B) € K4(B). By Proposition 2.2, T, € B(LF(B), L (A)) if and only
if u € Kg(B). Let @ € C and u,v € Ky(B). Then by the conditional Holder inequality,
we have E(jau + v|1)"/9 < |a|E(Jul1)"/9 + E(|v|1)!/4. Thus Kq(B) is a linear subspace of
L%(B). For u e Kq(B), set |lullk, = ||E(|u|q)||(1>éq. Then || [k, is a norm on Kg(B) and
the mapping u - T is an isometry from (ICy(B), || - llx,) onto By :={Ty, : u € Kq(B)}.
Since BB, is a weakly closed subspace of B(LF(B),LF(A)) [6, Theorem 3.2.1], we see that
(Kg(B)s |l - llc,) is a Banach space. In addition, if w € L°%(B),u e Kq(B)and |w| < |ul, the
monotonicity of E implies that w € KCy(B). So Ky(B) is an ordered ideal. Now, let u, w €
IC2(B). 1t follows from the conditional Cauchy-Schwarz inequality that E(|T, w)|?) =
|E(uw)|? < E(Ju|*)E(Jw|?) € L*°(A), and so T,,(w) € K,(B). Hence K»(B) is an invariant
subspace for B).

Set B = ¥ and take K = K5(X). For w, u € D(E), the mapping T : L*(£) 2 D(T) —
L*(X) given by T(f) = wE(uf) for f € D(T) = {f € L*(2) : T(f) € L*(X)} is well-
defined and linear. Such an operator is called a Lambert (weighted) conditional operator
induced by the pair (w, u). Set a = /E(|w|?) and b = /E(|u|?). It is easy to check that
|MyEM,fl2 = |MaEMfll2 = ||[EMy,f|l; forallf € L>(X). Then Proposition 2.2 implies
that T = M,,EM,, is bounded in L?(X) if and only if au € K. In this case, || T|| = ||ab|| o
([13]).

Recall that L2(2) = R(E) ® N (E), where R(E) = L*(A) and N(E) = {f —Ef : f €
L*(X)}. Put Q=I—E. So each element of L?>(X) can be written as f=hA+fH=
E(f) + Q(f) such that E(f;) = f; and E(f,) = 0. Let f € L°(Z). Since E(|f|*) = E((fy +
B + ) = [Al> + E(/]%), we see that max({|fi], E(|f2|*)"/?} < E(|f|*)"/?. Hence for
f € L*°(X), we have

max{|fi ll1c,» If2ll1c,} = max{||fi lloo> IE(IH) 2 lloe} < I lic,-

Letf,g € L°(X). Then it may happen that f,g, € L°(A) or g, € N'(E). In general, g =
(28201 — (f282)2.

Example 2.3: (a) Let X = [—1,1], let du = de’ let ¥ be the Lebesgue measurable sets,
and let A = {#, X}. Then E(f) = %filf(x)dx, forall f € L*([—-1,1]). Put f(x) = x and

g(x) =1 — 3x%. Then E(f) = E(g) = E(fg) = 0. Therefore, /» = f, g = g, and o> = fg
are in N (E).
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(b) Let X = [0,1], let du = de, let ¥ be the Lebesgue sets, and let A be the sigma
subalgebra of ¥ consisting of sets symmetric about the point % It is easy to check

that fi(x) = w and fo(x) = w, forall f e L2([0,1]). So, L2(A) = {f €
L2([0,1]) f(x) =f1 —x)}. Set f(x) =g(x) =x— % Then f,g € N(E), but (fg)(x) =
(x— D? e L*(A).

The matrix representation of T = M,,EM,, with respect to the decomposition L?(X) =
LA @ N(E) is

T = [Tll T12:| — [Mwlul EMWluz :| (2)
T21 T22 Mqul MWZEMMZ

(see [14]). Note that
1 1
lablloo = IE(Aw)E(u>)12 = [(Iw1]* + E(w21*) (u1]* + E(Juz?))1|Z
< VT2 + 1 T2l + 1 Ta1 12 4 [ T2l

Definition 2.4: Letu,v € K = K,(X). An operator T, , is called a conditional dilation of
T, = EM, if T,,, = EM,E + EM,Q, where Q=I—E. In particular, T,,,, = T,, whenever
u=v.

Note that Ty, = Mg(,—vE + EM,.. Since any f € L>(X) can be written uniquely as f =
fi + fo,where fi = Ef € L*(A) andf, = f — E(f) € N (E), it ensures that for any u, v € K,

Tuyv(f) = E((u1 + u2)f1) + E((vi +v2)f2)

= Lilfl +E(V2f2) = Mu1f1 + EMvsz — |:]Vgu1 E]\(;IVZ] B1i| )

2

Letr,s € Kand o € F. Then

(xTu,V + Tr,s - [Mab(l)l—‘rrl EMa(;/ZJ’_SZ] >

0 0

(Tu) (T = [M EM} .

In the following, we collect some elementary algebraic properties of the conditional
dilation operators.

Proposition 2.5: Let u,v,r,s € K, n € Nand o € F. The following hold.

@) aTyy + Trs = Tautravts

(b) (Tu,v)(Tr,S) = TrE(u),sE(u)-

(c) TZ’V = M(E(u))n—l Tyy.

(d) (Th,)* = Mgy M Ea—v+v E}

Using Proposition 2.5(c), | T}, , || < ||E(u)||’gg1 | Tyl It follows that r(T,,) < [|E(4)]co»
where r(Ty,,) is the spectral radius of T),,. Using [15, Theorem 2.8.], we have sp(T,,,) U
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{0} = sp(Ty) U {0} = ess range{E(u)} U {0}, where sp(T,) is the spectrum of T,,. Conse-
quently, 7(Tyy) = |E(4) | co-

Theorem 2.6: Let u,v € K and let T,,,, # 0. Then the following hold.

(a) T,y is self-adjoint if and only if E(u) is real valued and v, € LO(A).
(b) T,y is positive if and only if E(u) > 0 and v, € LO(A).

(¢) Ty is an orthogonal projection if and only if T,,,, = E.

(d) Ty is normal if and only if v is an A-measurable function.

(¢) Ty, is quasinormal if and only if T is normal.

Proof: (a) Using the matrix representation of T, with respect to the decomposition
L*(2) = L*(A) ® N(E), we have

M M;,
Tu,v = T;:,v — |: . EMV2j| :|: “ 0

- 0
0 0 Ms, 0:|<:>u1—u1 and ve L°(A).

So Ty, is self-adjoint if and only if T}, , = T, 0 with E(u) = E(u).

(b) Using (a), T,y = Oifand onlyif T, , = EM,E > 0 with &4; = u;. But fX u|E(f)|2du
= (M,Ef,Ef) = (EM,Ef,f) = Oifand only if u > 0.

(c) We see from (a) and Proposition 2.5(c) that Tj; , = T}, = ﬁ,v ifandonlyif Ty, =
EM,E = (EM,E)* = Mgu)EM,E if and only if E(u) = 1. Thus T,, is an orthogonal
projection if and only if T, , = E.

() Tup Ty = T Ty = | a8 T EMar O]z[Mlullz MﬁlEMvz]
S v 0

i 0 My, M;,EM,,
EM‘V2|2 = 0;
Mz EM,, = 0;
— { T 1, =0 velA.
My, =0;
My, EM,, = 0.

(e) Direct computation shows that (Tj; , T,,,,) Ty,y = Ty, (T}, , Tuy) if and only if

|:Mu1|u1|2 EM|141|2V2 ] _ |:MM12M1 +M|V2|2”1 EM|”1|2V2 +EM|V2|2EMV2]
0

Mu%izz My, EMy, v, 0
My, 12y, = 05
EM,, 2:EM,, = 0;

— Ira*=2 = vy =0 veIlA).
Mu%?/z = 0;

Proposition 2.7: Let u,v € K. Then the following hold.

(@) N(Tuplppea) = GLAA)NE NI2(A).
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() N(Tupln@) = GL2 (AN NN (E).
(c) Tyuy=0ifand onlyifu; = 0 and voN'(E) € N (E).
(d) N(Tup) = N(Tuplrzcay) ® N (Tuplne) = N(EME) NN (EM,Q).

Proof: The proof of (a) and (b) are similar. We prove (a) only. Put Ty = T,,,|;2( 4y and
Ty = Tuy|NE)- Then for each g € L*(A), we have

f e @LAA))* NIX(A) < (g, EM,Ef) = (g,EM,f) = (Eg, uf)
= (g, uf) = (g.f) = 0 < f € N(T0).

Thus N (T1) = {f € L*(A) : f L al*(A)}.
(¢) Tyy =0 if and only if EM,E = T,,E =0 and EM,Q = T,,,Q = 0. But this is
equivalent to uf; = 0 and E(u,f,) = 0, forall f = f; + f» € L>(X). This yields the result.
(d) N(Tuy) = N (Tup) N L2 (A) & N (Ty) NN(E) = N(T1) @ N(T3). More-

over,

N(EMLE) =N ([MOI SD = {(mL*(A)* NL*(A)} & N(E);

NEM,Q =N ([g E](V)ID = I2(A) @ (BLAA) NN (B)
and
a ([ Be]) = @zt nan e Ayt n )
It follows that N (T,,,) = N (EM,E) N N (EM, Q). [ |

Let T € B(H) have closed range. We recall that the unique operator S € B(L*(%))
satisfying

(DTST=T, (2)STS=S, ) (T)* =TS, (4) (ST)* = ST,

is called the Moore-Penrose inverse of T and is denoted by TT. Let T{i,...,j} denote the
set of all operators S satisfying condition (k) for all labels k in the list {7, . . ., j}. In this case,
SeT{i...,jlisan {i,...,j}-inverse of T and is denoted by TG-) Note that T(H234 =
TT. For other important properties of T, see [2,3].

Let a = E(Ju|?) € L*°(A) be bounded away from zero on X. Set S = MzE. Then S €

B(L*(%)) and T;ST; = (EM,)(MzE)(EM,) = EM,, = T,. It follows that T; has closed
range. Also, itis easy to check that T satisfies the other three equations above. Thus § = TlI

Recall that T, = T} + T>, where T} = (EM,,)E and T, = (EM,)Q. Let ¢ = |u1|? and
d = E(|v2|?) be bounded away from zero X. Then the block matrices of T} and TI with
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respect to the decomposition L2(A) @& N (E) are

M 0 T M, 0
=" T =T .
! |: 0 0:| 1 |: 0 ():|
0 EM 0 0
T, = [0 0Vzi| , and Tg = |:Mv2 0i| .

Mi 0
— 2c
S=1m ol

2d

Similarly,
Now, put

Since (M"MI‘Z + EMTV2|2 )\LZ(A) = I, then
T2 2d

oo [Ma EM,] MO0 T o0
TTL0 0 Ms, O |0 0]
2d
Thus Ty, S is self-adjoint and T, , STy, = T),,. Also, we have

o Ly M%IEMVZ )
YT Mugs, M%EMVZ :

2d

|

It follows that

ST, S = |:A|L2(.A) 0:| ,
’ B|L2(.A) 0

where
Az = My + M EM,2) 124 = Miy s
4c 2c 2d 2c

B\LZ(_A) = (M\“l\z‘_’z —I—MQEMm)lLZ(A)
4cd 2d 2d

= {M{l(M‘ul‘z +EMM)}|L2(A) = Msy,.
2d 2c 2d 2d

Consequently, ST,,,S = S. Note that ST, in (3) is not self-adjoint. But, if c=d then
(8Ty)* = ST,y These observations establish the following result.

Theorem 2.8: Let Ty, € B(L*(2)), and ¢ = |u1|%. If d = E(|v2|?) is bounded away from

zero on X, then
Mz O
T(L2.3) _ 2
u,v Mﬁ 0 *
7d

Moreover, if c=d then Ty, = T3>
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Let T; € B(L?(X)) and let |E(u)| > 8 on X, for some 8 > 0. Letn > 2 andf € N(T?).
Then (E(u))" 'E(uf) = 0, and so T1f = E(uf) = 0. Thus N'(T}) = N (T1). Now, let g €
R(T1). Then g = T1f for some f L*(%) and

2

% du = <= If115
It follows that
— n—1
g =Ew) = 5o ))n —— ((B)"'E(uf)
— n—1 f n
= (E(w)) E(u—(E(u))”—l) € R(TY).

Consequently, ind(T}) = asc(T;) = des(T;) = 1. Put S = EM o . Then S € B(L*(X)),
(Ew)?
ST1S=S,T1S= EMﬁ = ST} and

TS = ((E(u))kEMuXEM = (Ew)*'EM, = TF.

Consequently, TID =S= Tf.
Suppose u; = E(u) is bounded away from zero on its support. Take A = o (41) and put

My EMyp
S = “ ul s
0 0

where ”1 [ug | sgn(up). This implies that

[M,, EM,,s
STu,v = XA )03712 = Tu,vS;
0 0
(M, EMy;, | [Mxa EMy,s,
STu,S=| ™ A i 2| =
| 0 0 0 0
Tk-‘rls — Mullﬁ-l EMVzu’f M)Ii? EMXI:%VZ
i 0 0 0 0
_ | Mk EMvzu'f_li| =TF, keN
0 0

Thus S = TE’ , is the Drazin inverse of T}, ,,. Moreover, if u; is bounded away from zero on
X, then by Proposition 2.5(c) and (d) we have

N(Tllj,v) = N(ullcilTu,v) = N(Tu,v)§
R(Ts,v) = N(T;:,I:/)J_ = N(T:;,V)J_ = R(Tu,v)’

for all k € N. Thus, ind(T,,,) =1 and so szv = T*. These observations establish the
following result.
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Proposition 2.9: Let u; be bounded away from zero on A = o (u1). Then

M  EM
TD — uy )
u,v 1 .

0 0

Moreover, if lu1| > a on X for some « > 0, then TL]?V = T#,

Let w,w € L%(X), u,v € L*(X) and let {au, bv} C K, where a = \/E(|w|?) and b =
VE(W|?). Put 7, = M,EM,E + M, EM,Q. The conditional type operator 7,,, is a
generalization of T),,. Indeed, if w =w' =1, then 7, = T},,. Using (2), the matrix
representation of 7,,,, with respect to the decomposition L?(X) = L2(A) @ N (E) is

Ty = My EMy,u, r o + MW/lw EMW’IVZ 0 0
u,v Mw2u1 MW2EMu2 0 0 M., MW/ZEMV2 0o I

whHvy
_ MWlul EMw’lvz
My, MW/ZEMVZ .
Now, let K = E(Ju|?)E(Jw|?) € L>®(X) and suppose K is bounded away from zero on its
support. It follows that M,,EM,, € B(L*(X)) has closed range and (M, EM,)" =M i EM;,

[16]. Using (2), the matrix representation of M,,EM,, is

Mus  EMuw, }
K K .

M, EM,)" =
S

Setc = |u1]®> > 0,b = |w1|*> > 0and d = E(|w2]*) > 0. Then we have

M 0
7Ty .= M,EM,E = Wit
1 w u |:MW2u1 0
and
! 0 0
Note that

1
2b

I
’1’17(1’2’4) . |: 2
| =

is not self-adjoint. But, if b =d, then we have

Miw, EMaw
’]ET = [ %bcl %bcz} .

0 0
In a similar way, we have

0 EM,
w, V2
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and

2mn

T(1,2,4) _ 0 0
2 - nyl;,z MLEMW/Z ’

2em

where e = |w}|> > 0, m = E(Jv2|*) > 0 and n = E(|w}|?) > 0. Moreover, if e =n, then

I 0 0
2 = Mﬁ/lg,z Mzz—szM’V_Vlz :

2em

Theorem 2.10: The following assertions hold.

(a) Letu,v € Ky = Ky(2). Ifuy, — uandv, — vinKy-norm and w, — win L>-norm,
then 1y, .y, — T,y in the operator norm.

(b) Leta = /E(|w|?), d' = /E(|W|?) and let auy,a'v, € K;. Then T,,,, € B(L*(X)) and

max(c,d} < | Tull < \Jllam |, + la'va |, where

c= w2 + |l PEGwa Pl

d= \/II (Wi PE(v21) |l + IE(WSDE(v2[?) ] -

() L*(A) is a reducing subspace of Ty, if and only if Wxo(Ew) and vXe(Ew)) are
A-measurable functions.
Proof: (a) First note that
||Tu - Tu,v“ = ||E(]VIu,1 - Mu)E + E(Mvn - MV)Q“
< [[EMy,—ull + IEMy,— ||

n-Yn

1 1
= |E(un — uPIIZ + |E(va — vP)IIZ
= Jlun — ullc + va — vl — O,

asn — oo. Put M = sup,, || Ty,,v, [|. Then we have

n>Vn

”,Tun,vr, - 7;,1/” = ||Mwn Tun,vn - MwTu,v”

< Mlwp — wlloo + Myl I Tu,,, — Tupll = 0, asn — oo.

mVn
(b) Since au, a’v € K5, then
17wl < IMyEMy|| + M,y EM, || = |EMay |l + |EMg, |
= |laullxc, + lla'vllx, < oc.

Thus 7,,,, is bounded. Now let f € L?(X). Then we have

My EMEf |2 = /X E(w) [ E@E()) Pdu = /X \E@uE())

< / |law [P [E(D*dp < llau %, 1EQD 5.
X
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In a similar way, we have

IMy EM,Qf 1> = |EMg, Qf |I* = /X |E(a'vQ(N))*du < /X |a'va|*1Q() 1P
< lavaliz, 1R 113
It follows that
1 Tenf 2 < Nlaws i, IEG N2 + lla'v2llx, 1Q() 112

< (lawmll, + lav2 1% B + 1Q(IZ)?

2 2,1
= (laui %, + lav2llE) 2 MIf 12

Hence, ||7,,] < \/||au1||12C2 + ||a/v2||,2C2. Now, let f = fi + f» € L*(X) with |f]l» < 1.
Then we have

My, ufi
T > T 1 — w11 )
1Zuwll = || Zuy [0” H [szulfl
But
||Mw1u1|L2(A)|| = ”M:’Wl |L2(.A)” = ||EM17v1ﬂ1 |L2(.A)||
1
= | EMii, | = |E(win )12 = llwiu ]l
||MW2141|L2(_A)” = ”M:/Zul |N(E)“ = |EMi, i, |N(E)||
'NIE 2 NI
= |EMy,i, || = [|E(Aw2ur| )2 = || lur|“E((w2[9)]2 .
We obtain that

I Zull =
u,v Mqul

M
[ W””]” = \/”Wl”l”go + | lu1PE(1w21?) || -
In a similar way, we have

1
IEM,, I = IEM,/ Il = I W, PE(v2l )12 5
1 ‘./\/-(E) 1 )

1
M, EM = | M, EM,, || = [E(w))E(va )12,

i)

and so

TR | ey
M, EM,,

Consequently, max{c,d} < || 7, ||-

| = \/II (Wi PE(v21) |l + IE(w5 DE(v2|?) |-
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(c) Using the matrix representation of 7,,,, L2(A) is an invariant subspace of 7,,,, if and
only if M,,,,,, = 0 on L?>(A). But in this case, we have

wau; = 0 < (w — EW))E(u) =0
< E(WE(u)) = wE(u)
<= wE(u) € L°(A)
= WioEw) € L°(A).

In a similar way,

Tuy(L2(A) € LH(A) = M5, =
= Wi, =0
& EW)(v—EW)) =0
< vE(w) = E(WE(W))
> vE(w) € L°(A)

= VXo(Ew)) € LO(.A).

This completes the proof. u

Note that if w = w’ = 1, then w; = w} = 1 and w, = w), = 0. We have the following
corollary.

Corollary 2.11:

(a) Letu,v e Ky If luy — ullxc = 0and ||v, — v|lxx — O, then || Ty, v, — Tuvll = 0.

(b) Letuy, vy € Ky. Then max{|lusllxc, Ivallic} < I Tunll < /lluallx + lv2lf-

(c) L*>(A)isa reducing subspace of T,y if and only if v is A-measurable function, i.e. Ty, =
T,.

Example 2.12: (a) Let X = {1,2}, © = 2%, u({1}) = n({2}) = 1/2 and let A = {@, X}.
Then L*(X) = C? and
f1 +f2
wX) /f
Putu = (—1,—2) and v = (2,6). Then

EM,E = {

N= = D= =
| I
1

[==J S}

A O
|
1
NlL N —
N — l\)lL
|

|

[

— =

[
Ty

SIE ST ST ST

EM,Q = |:
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Thus
=7 1
T,y = EM,E + EM,Q = [_47 ‘f} , and 175 < ||T,,| = 2.50.
T 1

On the other hand, since u; = (—3/2,—3/2) and v, = v — E(v) = (—2,2), then ||u;||x =
3/2, |Iv2llc = 2. Now, by Corollary 2.11, 2 < ||T,,,| < 2.50.
In this stage, we obtain the {1, 2, 3}-inverse of T,,,. Using Theorem 2.8, we have

T = EMu E+ (I — My E

=EM & #» E+M»E
(2 =24 2d
= M E+ My, E
2c 2d
=M E.

)
(zc+33)

Direct computations show that 2c = (9/2,9/2), 2d = (8,8), u1/2c = (-1/3,-1/3),
V2/2d = (—1/4,1/4) and so 5L + 32 = (=7/12,—-1/12).

[__7 0 :| |: } [__7 __7}
T(L23) _ | 12 _| 24 24
uy -1 -1 -1 |-
0 7 iy

1 =z
TL(1,11;2’3) Tu,v = 7 ESI
48 48

= N~
D= N[—=

Note that

is not self-adjoint. However, if we take u = (—3, —1), we obtain c = d = (4,4) and

-2 0 " -1 =1
Tuy = 50 and TW=|:S 6]

(b)LetX = [—1,1],du = %, ¥ the Lebesgue sets, and A the sigma subalgebra of X con-
sisting of sets symmetric about the origin. Then for f € L?>(X), E(f) is the even part of f. Let

Ty = MosinkEMcosxE + M2EM,2, Q. Since for each f € L2(X), E(f)(x) = W
we have

Tov(f) = 2sinxE(cosx)E(f) + x*E((x* + x)f) — x*E(x* 4+ x)E(f)

R (C)) +2f (=) | 2 +0f™ +2(x2 —0f () 4@ +2f (=)

sin2x + x> sin2x —

=— St

w) = M/2 =0, wpy=2sinx, u;=cosx, and v, =x.

3
ad f(_x))

Also, a = /E(lw]?) = /E(4sin?x) = 2|sinx| and o = E(W|?) =x%, |auli, =
[|sin2x||oo = 1 and ||@'v2]lic, = 1% |lo = 1. Thus, by Theorem 2.10 we have 1 < ||7,,,|| <
V2.
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Let us consider T, = EMcosxE + EM,2, ,Q. Then we have

Tu,v(f) — <M>f+ (Cosx — x)f(—x),

2 2
uy1/2¢ = 1/2cosx and v, /2d = 1/2x. Hence the {1, 2, 3}-inverse of T}, is

1
4cosx

(123) ) — _ 1 _
T (f) = M 0y E(f) = ( R KURSIGEO)

Now, let u = |sinx| + x and v = x% + sinx. Then u; = |sinx|, v, = sinx, and so c = d =
sin?x. It follows that

Tu,v (f) = <

|sinx| 4 sinx |sinx| — sinx
I T A S

)5

and
1 4 sgn(sinx)

4|sinx| (f + /(=)

i) = (a2 E() =
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