

Weighted Pullback Transforms on Riemann Surfaces

M. R. Jabbarzadeh¹ · B. Minayi1

Received: 29 July 2022 / Accepted: 4 May 2023 © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023

Abstract

In this paper, using properties of the conditional expectation operators we give an explicit formula for the adjoint of a bounded weighted pullback transform uC_{φ} with analytic symbol φ and measurable weight u on the measurable differential form spaces for Riemann surfaces. Also, some properties of these transforms are discussed.

Keywords Riemann surfaces · Differential forms · Weighted composition operators · Multiplication operators

Mathematics Subject Classification Primary 47B38; Secondary 30F30

1 Introduction and Preliminaries

A two dimensional manifold *M* is a connected Haussdorf topological space such that every x in M has a neighborhood homeomorphic to an open disc in the plane. If *M* is a two dimensional manifold, a complex chart on *M* is a homeomorphism $\alpha: U_{\alpha} \to \alpha(U_{\alpha})$ of an open subset $U_{\alpha} \subset M$ onto an open subset $\alpha(U_{\alpha}) \subset \mathbb{C}$. Two charts α and β are analytically compatible if transition map

$$
\tau_{\alpha\beta} = \beta \circ \alpha^{-1} : \alpha(U_{\alpha} \cap U_{\beta}) \to \beta(U_{\alpha} \cap U_{\beta})
$$

is biholomorphic. A complex atlas on *M* is a collection of analytically equivalent compatible charts $A = \{(\alpha, U_{\alpha})\}$ whose domains cover *M*, i.e. $M = \bigcup_{\alpha} U_{\alpha}$. Two complex atlases A_1 and A_2 are analytically equivalent if $A_1 \cup A_2$ is a complex atlas. An analytic structure on a two dimensional manifold *M* is an equivalence class of

Communicated by Tushar Das.

B M. R. Jabbarzadeh mjabbar@tabrizu.ac.ir B. Minayi b.minayi@tabrizu.ac.ir

¹ Faculty of Mathematical Sciences, University of Tabriz, P. O. Box: 5166615648, Tabriz, Iran

analytically equivalent atlases. A Riemann surface is a two dimensional manifold with an analytic structure. A 0-form on *M* is a complex valued function on *M*. A 1-form ω on *M* is an ordered assignment of two functions f^{α} and g^{α} to each local coordinate chart (α, U_{α}) on *M* such that the expression $f^{\alpha} d\alpha + g^{\alpha} d\overline{\alpha}$ is invariant under coordinate changes. A 2-form Ω on *M* is an assignment of a function f^{α} to each local coordinate α such that the expression $f^α dα ∧ d\barα$ is invariant under coordinate changes. For $k \in \{0, 1, 2\}$, we let $\Lambda^k(M)$ denote the vector space of *k*-forms. Note that $\Lambda^k(M) = 0$, for all $k > 3$.

Since *M* locally looks like an open subset of \mathbb{C} , it is clear that measurability can be lifted up from $\mathbb C$ to M using local charts. Let $(\mathbb C, \mathcal M_{\mathbb C}, A)$ be a Lebesque measure space. A subset $B \subseteq M$ is said to be Lebesque measurable, if for every $b \in B$ there is a local chart (α, U_{α}) with $b \in U_{\alpha}$ such that $\alpha(B \cap U_{\alpha}) \in \mathcal{M}_{\mathbb{C}}$. This approach is independent of coordinate system. Put $\Sigma_M = \{ B \subseteq M : B \text{ is Lebesgue measurable} \}.$ It is easy to see that Σ_M is a σ -algebra over *M* and contains the Borel σ -algebra $\mathcal{B}(M)$. Let $M = \mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$. Using the trivial chart (id, M), $\Sigma_{\mathbb{D}} = \mathcal{M}_{\mathbb{D}} =$ ${B \cap \mathbb{D}: B \in \mathcal{M}_{\mathbb{C}}\}$ is a σ -algebra restricted to \mathbb{D} . Note that the change of variable formula is in disagreement with the change of chart formula, so the Lebesque measure and hence the Lebesque integral on $\bigcup_{\alpha} U_{\alpha}$ can not be lifted to *M* in general. However, we can also speak about measures on Σ_M of Lebesque sets on *M* (e.g. see [\[10](#page-15-0)]). We say that $f : M \to \mathbb{C}$ is measurable if and only if $f^{-1}(\mathcal{M}_{\mathbb{C}}) \subseteq \Sigma_M$. So, $f : M \to \mathbb{C}$ is measurable if and only if $f^{\alpha} = f_{|U_{\alpha}} : (U_{\alpha}, \Sigma_{U_{\alpha}}) \to \mathbb{C}$ is measurable, for all α . Equivalently, *f* is measurable if and only if $f^{\alpha} \circ \alpha^{-1} : (\alpha(U_{\alpha}), \mathcal{M}_{\alpha(U_{\alpha})}) \to \mathbb{C}$ is measurable, for all α . In particular, $A \in \Sigma_M$ has measure zero if for every local chart (α, U_{α}) of *M*, the set $\alpha(A \cap U_{\alpha})$ has measure zero. Since the change of coordinates maps between charts are diffeomorphisms, then the null sets remain null under coordinate change. A measurable 1-form with respect to local chart (α, U_{α}) is an expression ω of the form $\omega = f^{\alpha} d\alpha + g^{\alpha} d\bar{\alpha}$, where f^{α} , g^{α} : $(U_{\alpha}, \Sigma_{U_{\alpha}}) \to \mathbb{C}$ are measurable.

A weighted pullback transform on measurable differential form spaces is an operator induced by pullback with a analytic transformation of the underlying Riemann surfaces, followed by a multiplication (see section 2 for precise definitions). The pullback transforms (composition operators) on Riemann surfaces were first studied by Mihaila [\[11](#page-15-1)]; she obtained some results on pullback transforms on Riemann surfaces and posed some problems on these operators. Then Cao [\[3,](#page-15-2) [4](#page-15-3)] characterized invertibility and Fredholmness of pullback and Toeplitz transforms on measurable and analytic differential forms for Riemann surfaces. Boundedness criteria and the adjoint of a weighted pullback transform has been given in [\[10](#page-15-0)]. In the next section, we provide another one which is complete and written in terms of conditional expectation operators different than that used in [\[10](#page-15-0)]. Also, some properties of these transforms are discussed.

2 Main Results

First we review some basic results on pullback transforms and state some general assumptions. Let us start by recalling the definitions and fixing the notation in case

 $M = N = \mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$. Take $L^2(\mathbb{D}, \mathcal{M}_{\mathbb{D}}, A) = L^2(\mathbb{D})$ and set $\Lambda_2^1(\mathbb{D}) =$ ${\omega = f dz + g d\overline{z} : f, g \in L^2(\mathbb{D})}.$ Then ${\Lambda_2^1(\mathbb{D})}$ is a vector space of measurable 1-forms on the Riemann surface \mathbb{D} . For $z = x + iy$ and $\omega = f dz + gd\overline{z} \in \Lambda^1_2(\mathbb{D})$, we have $\overline{dz} = d\overline{z} = dx - i dy$ and $^*\omega := -if dz + ig d\overline{z}$. So, $\overline{\omega} = \overline{g} dz + \overline{f} d\overline{z}$ and $^*\overline{\omega} = -i\overline{g} dz + i\overline{f} d\overline{z}$. Set $dx \wedge dy = dx dy = dA$. Then $dz \wedge d\overline{z} = -2i dx dy$ and hence $\omega \wedge^* \overline{\omega} = i(|f|^2 + |g|^2)dz \wedge d\overline{z} = 2(|f|^2 + |g|^2)dx dy$. For $\omega_i = f_i dz + g_i d\overline{z} \in \Lambda_2^1(\mathbb{D})$, set $\langle \omega_1, \omega_2 \rangle = \int_{\mathbb{D}} \omega_1 \wedge^* \overline{\omega_2} = \int_{\mathbb{D}} 2(f_1 \overline{f_2} + g_1 \overline{g_2}) dx dy$. Then $\Lambda_2^1(\mathbb{D})$ is an inner product space with the induced norm given by $\|\omega\|_{\mathbb{D}}^2 = 2||f||^2_{L^2(\mathbb{D})} + 2||g||^2_{L^2(\mathbb{D})}$. Now let $\{\omega_n\} = \{f_n dz + g_n d\overline{z}\}\$ be a Cauchy sequence in $\Lambda_2^1(\mathbb{D})$. Then

$$
\max\{\|f_n - f_m\|_{L^2(\mathbb{D})}^2, \|g_n - g_m\|_{L^2(\mathbb{D})}^2\} \le \int_{\mathbb{D}} 2(|f_n - f_m|^2 + |g_n - g_m|^2) dxdy \to 0.
$$

Hence there are $f, g \in L^2(\mathbb{D})$ such that $\max\{\|f_n - f\|_{L^2(\mathbb{D})}^2, \|g_n - g\|_{L^2(\mathbb{D})}^2\} \to 0.$ Set $\omega = fdz + gd\overline{z}$. Then $\omega \in \Lambda_2^1(\mathbb{D})$ and $\|\omega_n - \omega\|_{\mathbb{D}} \to 0$. Thus, $(\Lambda_2^1(\mathbb{D}), \|\ \|_{\mathbb{D}})$ is a Hilbert space (see [\[6\]](#page-15-4)). We remark that $\Lambda_2^1(\mathbb{D}) \cong L^2(\mathbb{D}) \times L^2(\mathbb{D})$ with the natural norm $||(f, g)||^2 = 2||f||^2_{L^2(\mathbb{D})} + 2||g||^2_{L^2(\mathbb{D})}$. The Bergman space $L^2_a(\mathbb{D})$ is the set of analytic functions on D, square integrable with respect to Lebesque area measure *A*, i.e. $L_a^2(\mathbb{D}) = L^2(\mathbb{D}) \cap H(\mathbb{D})$, where $H(\mathbb{D})$ denote the class of functions analytic in the unit disc D . It is a closed subspace of $L^2(D)$ and hence is a Hilbert space with inner product $\langle f, g \rangle = 1/\pi \int_{\mathbb{D}} f(z) \bar{g}(z) dA(z)$ (see [\[15](#page-15-5)]). Since for each $f \in L^2_a(\mathbb{D})$, $||fdz||_{\mathbb{D}} = 2\pi ||f||_{L^2_a(\mathbb{D})},$ so $\Lambda^1_{2,a}(\mathbb{D}) := \{ fdz : f \in L^2_a(\mathbb{D}) \} \cong L^2_a(\mathbb{D})$ (see [\[11\]](#page-15-1)) and hence is an Hilbert space.

Suppose $\varphi : \mathbb{D} \to \mathbb{D}$ is an analytic and nonconstant function. For $w \in \varphi(\mathbb{D})$, let $c(w, \varphi)$ denote the countable collection of zeros of $\varphi(z) - w$ including multiplicities, i.e. $c(w, \varphi) = \{\xi \in \mathbb{D} : \varphi(\xi) = w\}$. Let *W* and *g* be two non-negative measurable functions defined on D . By the area formula [\[5,](#page-15-6) Theorem 2.32], we have

$$
\int_{\mathbb{D}} g(\varphi(z)) W(z) |\varphi'(z)|^2 dA(z) = \int_{\varphi(\mathbb{D})} g(w) N_{\varphi}(W)(w) dA(w), \tag{2.1}
$$

where $N_{\varphi}(f)$: $\mathbb{D} \to \mathbb{C} \cup \{\infty\}$ is the generalized counting function defined by $N_{\varphi}(f)(w) = {\Sigma f(\xi) : \xi \in c(w, \varphi)}$ for all $f \in L^{0}(\mathbb{D})$, the space of all finitevalued measurable functions on \mathbb{D} . If $c(w, \varphi) = \emptyset$, then we take $N_{\varphi}(f)(w) = 0$. Then the support of $N_{\varphi}(f)$ is $\varphi(\mathbb{D})$ and so $\chi_{\varphi(\mathbb{D})}N_{\varphi}(f) = N_{\varphi}(f)$. For $f \in L^{0}(\mathbb{D})$, set $g = |f|^2$ in [\(2.1\)](#page-2-0). Then

$$
\int_{\mathbb{D}} W|f \circ \varphi|^2 |\varphi'|^2 dA = \int_{\mathbb{D}} N_{\varphi}(W)|f|^2 dA.
$$

Set $N_{\varphi}(1) = N_{\varphi} = #\{z \in \mathbb{D} : \varphi(z) = w\}$ where the number of *z* above is counted with appropriate multiplicity. If we take $W = 1$, then we have

$$
\int_{\mathbb{D}} |f \circ \varphi|^2 |\varphi'|^2 dA = \int_{\mathbb{D}} N_{\varphi} |f|^2 dA. \tag{2.2}
$$

Suppose $\psi : \mathbb{D} \to \mathbb{D}$ is an analytic and invertible. Then $c(\psi^{-1}(w), \varphi) = c(w, \psi \circ \varphi)$ φ) for all $\omega \in \varphi(\mathbb{D})$, and so $(N_{\varphi}(f))_{\psi} := N_{\varphi}(f) \circ \psi^{-1} = N_{\psi \circ \varphi}(f)$ for all nonnegative function on D. Moreover, $N_{\varphi}(f \circ \varphi) = f N_{\varphi}$. In particular, let $f(w, a_0)$ be a Green function on $\mathbb D$ where a_0 is some fixed point. Then $N_{\varphi}(f(a_0))$ is called the Nevanlinna counting function on $\mathbb{D}\backslash\{\varphi(a_0)\}\$ (see [\[14\]](#page-15-7)).

The space $L^{\infty}(\mathbb{D})$ is the set of all essentially bounded functions on \mathbb{D} . For an analytic self-map $\varphi : \mathbb{D} \to \mathbb{D}$, the pullback transform $C_{\varphi} : \Lambda_2^1(\mathbb{D}) \to \Lambda_2^1(\mathbb{D})$ defined as $C_{\varphi}(\omega) = \varphi^*(\omega)$, where $\varphi^*(\omega) = (f \circ \varphi)d\varphi + (g \circ \varphi)d\bar{\varphi}$ is the pullback of the form $\omega = fdz + gd\overline{z} \in \Lambda_2^1(\mathbb{D})$. Since $d\varphi = \varphi'dz$ and $d\overline{\varphi} = \overline{d\varphi} = \overline{\varphi'}d\overline{z}$, then $C_{\varphi}(\omega) = (f \circ \varphi) \varphi' dz + (g \circ \varphi) \varphi' d\bar{z}$. Using [2.2](#page-2-1) we obtain that

$$
||C_{\varphi}(\omega)||_{\mathbb{D}}^{2} = 2\int_{\mathbb{D}} (|f \circ \varphi|^{2} + |g \circ \varphi|^{2}) |\varphi'|^{2} dA = 2\int_{\mathbb{D}} (|f|^{2} + |g|^{2}) N_{\varphi} dA. (2.3)
$$

Thus, for some $k > 0$,

$$
C_{\varphi} \in B(\Lambda_2^1(\mathbb{D})) \iff \|C_{\varphi}(\omega)\|_{\mathbb{D}} \le k \|\omega\|_{\mathbb{D}}, \ \forall \omega \in \Lambda_2^1(\mathbb{D})
$$

$$
\iff k^2 \|\omega\|_{\mathbb{D}}^2 - \|C_{\varphi}(\omega)\|_{\mathbb{D}}^2 \ge 0
$$

$$
\iff 2 \int_{\mathbb{D}} (|f|^2 + |g|^2)(k^2 - N_{\varphi}) dA \ge 0
$$

$$
\iff N_{\varphi} \le k^2 \iff N_{\varphi} \in L^{\infty}(\mathbb{D}).
$$

In this case $||C_{\varphi}(\omega)||_{\mathbb{D}} \le ||N_{\varphi}||_{\infty}^{1/2} ||\omega||_{\mathbb{D}}$, and hence $||C_{\varphi}||_{\mathbb{D}} \le ||N_{\varphi}||_{\infty}^{1/2}$. Also,

$$
\langle C_{\varphi}^{*} C_{\varphi}(\omega), \omega \rangle = \langle C_{\varphi}(\omega), C_{\varphi}(\omega) \rangle = \| C_{\varphi}(\omega) \|_{\mathbb{D}}^{2} = 2 \int_{\mathbb{D}} (|f|^{2} + |g|^{2}) N_{\varphi} dA
$$

$$
= \int_{\mathbb{D}} (\sqrt{N_{\varphi}} \omega) \wedge^{*} (\sqrt{N_{\varphi}} \omega) = \langle \sqrt{N_{\varphi}} \omega, \sqrt{N_{\varphi}} \omega \rangle = \langle N_{\varphi} \omega, \omega \rangle.
$$

Since $C^*_{\varphi}C_{\varphi}$ is self-adjoint, then $C^*_{\varphi}C_{\varphi}(\omega) = N_{\varphi}\omega$ for all $\omega \in \Lambda_2^1(\mathbb{D})$. Using [\(2.3\)](#page-3-0), $\|C_{\varphi}(\omega)\|_{\mathbb{D}} = \|\omega\|_{\mathbb{D}}$ if and only if $N_{\varphi} = 1$ on \mathbb{D} . But $N_{\varphi} = 1$ if and only if φ is a bijection. The support of $f \in L^0(\mathbb{D})$ is defined by $\sigma(f) = \{x \in \mathbb{D} : f(x) \neq 0\}.$ In our case, $\sigma (f dz + g d\overline{z}) = \sigma(f) \cup \sigma(g)$. It is worth nothing that $\sigma(N_\varphi) = \varphi(\mathbb{D})$ and $\sigma(N_\varphi) = \mathbb{D}$ if and only if φ is onto. Let $K = \mathbb{D}\backslash\varphi(\mathbb{D})$. Using [\(2.3\)](#page-3-0), $C_\varphi(\omega) = 0$ if and only if $\sigma(\omega) \subseteq K$ for all $\omega \in \Lambda_2^1(\mathbb{D})$. It follows that $\mathcal{N}(C_{\varphi}) \cong \Lambda_2^1(K)$ and hence $\mathcal{R}(C^*_{\varphi}) = \Lambda_2^1(K)^{\perp} \cong \Lambda_2^1(\varphi(\overline{\mathbb{D}}))$. So, C_{φ} is one-to-one if and only if $A(K) = 0$ and C_{φ} is partial isometry if and only of $N_{\varphi} = 1$ on $\varphi(\mathbb{D})$. Note that $||C_{\varphi}(fdz)||_{\mathbb{D}}^2 = 2 \int_{\mathbb{D}} |f|^2 N_{\varphi} dA$ for all $f \in L^2_a(\mathbb{D})$. So, C_{φ} is bounded if and only if N_{φ} is bounded. In particular, if we take $\varphi(z) = z^n$, then $||C_{\varphi}||^2 = ||C_{\varphi}^* C_{\varphi}|| = ||M_n|| = n$ and hence $||C_{\varphi}|| = \sqrt{n}$ (see [\[11,](#page-15-1) p.26]).

Now we show that the measure $A \circ \varphi^{-1}$ defined by $A \circ \varphi^{-1}(K) = A(\varphi^{-1}(K))$, for all $K \in \mathcal{M}_{\mathbb{D}}$, is absolutely continuous with respect to *A*. For this, let $A(K) = 0$ but *A*($\varphi^{-1}(K)$) \neq 0 for some *K* ∈ *M*_D. Since φ is a non-constant analytic self-map on D, so there exists a collection of disjoint open sets ${V_i}$ such that $A(□ \cup V_i) = 0$ and φ _{*|V_i*} is one-to-one. So, *A*(*V_i* ∩ $\varphi^{-1}(K)$) ≠ 0, for some *i* ∈ N. Set *F* = *V_i* ∩ $\varphi^{-1}(K)$. Then $F = \varphi^{-1}(F')$ for some $F' \subseteq K$. Note that $\varphi_{|F}$ is one-to-one and so $|\varphi'| > 0$ on *F*. Thus, $\int_{V_i} \chi_F |\phi'|^2 dA = \int_F |\phi'|^2 dA > 0$. Since $\phi(F) \subseteq F' \subseteq K$ and $A(K) = 0$, then $A(\varphi(V_i) \cap \varphi(F)) \leq A(K) = 0$. Then by the area formula we obtain that

$$
0 < \int_{V_i \cap \varphi^{-1}(F')} |\varphi'|^2 dA = \int_{V_i} \chi_F |\varphi'|^2 dA
$$

=
$$
\int_{\varphi(V_i)} \chi_F \circ \varphi^{-1} dA = \int_{\varphi(V_i) \cap \varphi(F)} dA = 0.
$$

But this is a contradiction. These observations establish the following result.

Proposition 2.1 *Let* C_φ : $\Lambda_2^1(\mathbb{D}) \to \Lambda_2^1(\mathbb{D})$ *be the pullback transform induced by a non-constant analytic self-map* ϕ *on the unit disc* D*. Then the following statements hold:*

(a) [\[11](#page-15-1), Theorem 2.1] C_{φ} *is bounded if and only if* $N_{\varphi} \in L^{\infty}(\mathbb{D})$ *, and in this case* $\|C_{\varphi}\|_{\mathbb{D}}^2 \leq \|N_{\varphi}\|_{\infty}.$

(b) [\[11](#page-15-1), Corollary 2.1] $C^*_{\varphi} C_{\varphi} = M_{N_{\varphi}}$, the multiplication operator induced by N_{φ} . $\mathcal{N}(C_{\varphi}) \cong \Lambda^1_2(K)$ *, where* $K = \mathbb{D}\backslash\varphi(\mathbb{D})$ *.*

(d) C_{φ} *is an isometry if and only if* $N_{\varphi} = 1$ *on* \mathbb{D} *.*

(e) C_{φ} *is a partial isometry if and only if* $N_{\varphi} = 1$ *on* $\varphi(\mathbb{D})$ *.*

(f) $\vec{A} \circ \varphi^{-1}$ *is absolutely continuous with respect to A on* \mathbb{D} *.*

Let *M* and *N* be Riemann surfaces. A continuous map $\varphi : M \to N$ is said to be analytic if for any chart α on *M* and for any chart β on *N* with $\varphi(U_{\alpha}) \subset U_{\beta}$, the function $\varphi_{\alpha\beta} = \beta \circ \varphi \circ \alpha^{-1} : \alpha(U_{\alpha}) \to \beta(U_{\beta})$ is analytic. Throughout the paper $\varphi : M \to N$ will be an analytic map, $\mathcal{A} = \{(\alpha, U_{\alpha})\}, \mathcal{B} = \{(\beta, U_{\beta})\}, M = \bigcup_{\alpha} U_{\alpha}$ and $N = \bigcup_{\beta} U_{\beta}$. Let $\mathcal{M}_{\beta(U_{\beta})}$ be the Lebesque σ -algebra in $\beta(U_{\beta})$, f^{β} , g^{β} , $F^{\beta} \in L^{0}(U_{\beta})$, $\omega \in \Lambda^1(N), \Omega \in \Lambda^2(N), \omega^{\beta} = \omega_{|U_{\beta}} = f^{\beta} d\beta + g^{\beta} d\overline{\beta}, \Omega^{\beta} = \Omega_{|U_{\beta}} = F^{\beta} d\beta \wedge d\overline{\beta}.$ Take

$$
L^{p}(\beta(U_{\beta})) = L^{p}(\beta(U_{\beta}), \mathcal{M}_{\beta(U_{\beta})}, A_{|\mathcal{M}_{\beta(U_{\beta})}});
$$

$$
f_{\beta}^{\beta} = f^{\beta} \circ \beta^{-1} \in L^{0}(\beta(U_{\beta}));
$$

$$
*_{\omega^{\beta}} = -if^{\beta}d\beta + ig^{\beta}d\overline{\beta}
$$

and $\varphi^*(\omega^{\beta}) = (f^{\beta} \circ \varphi) d\beta \circ \varphi + (g^{\beta} \circ \varphi) d\overline{\beta} \circ \varphi$. Then

$$
\omega^{\beta} \wedge^* \overline{\omega^{\beta}} = i(|f^{\beta}|^2 + |g^{\beta}|^2) d\beta \wedge d\overline{\beta};
$$

\n
$$
\omega^{\beta}_{\beta} = (f^{\beta} \circ \beta^{-1}) d\beta \circ \beta^{-1} + (g^{\beta} \circ \beta^{-1}) d\overline{\beta} \circ \beta^{-1} = f^{\beta}_{\beta} dz + g^{\beta}_{\beta} d\overline{z};
$$

\n
$$
\Omega^{\beta}_{\beta} = (F^{\beta} \circ \beta^{-1}) d(\beta \wedge d\overline{\beta}) \circ \beta^{-1} = F^{\beta}_{\beta} dz \wedge d\overline{z};
$$

\n
$$
\int_{U_{\beta}} \Omega^{\beta} = \int_{\beta(U_{\beta})} \Omega^{\beta}_{\beta} = \int_{\beta(U_{\beta})} F^{\beta}_{\beta} dz \wedge d\overline{z} = \int_{\beta(U_{\beta})} -2i F^{\beta}_{\beta} dA.
$$

A triangle on *M* is a Jordan domain together with a homeomorphism onto a triangle in C. A two dimensional manifold is called triangulable if there are countable triangles $\{\Delta_{\alpha}\}\$ on *M* such that $\cup \Delta_{\alpha} = M$, for $\alpha \neq \beta$, int $\Delta_{\alpha} \cap \text{int}\Delta_{\beta} = \emptyset$ and for each $p \in M$ there is a neighborhoods *V* of *p* such that that set $\{\alpha : \Delta_{\alpha} \cap V \neq \emptyset\}$ is finite. By subdividing a triangulation it is always possible to have each triangle contained in the domain of a chart [\[11](#page-15-1), p. 24]. It is known that a connected surface is triangulable if and only if it admits a countable base. In particular, every Riemann surface is triangulable (see [\[13](#page-15-8)]). Since there might exist several charts containing a given triangle, using the axiom of choice, we pick one of them and then we restrict it to the interior of the triangle. So, for $\Delta_{\alpha} \subset U'_{\alpha}$, $U_{\alpha} := \text{int} \Delta_{\alpha} \cap U'_{\alpha}$ is the restriction of U'_{α} to the interior of Δ_{α} . For brevity, we consider the following standing assumption.

 \triangle -property: We say that triangulations $\{\triangle_{\alpha}\}\$ of *M* and $\{\triangle_{\beta}\}\$ of *N* have \triangle -property if each triangle Δ_{α} is contained in the domain of some chart on *M* and each triangle Δ_{β} is contained in the domain of some chart on *N* and for every α , there is a β such that $\varphi(\Delta_{\alpha}) \subseteq \Delta_{\beta}$, $U_{\alpha} = \text{int}\Delta_{\alpha}$, $U_{\beta} = \text{int}\Delta_{\beta}$ and so $\{\alpha : \alpha \in \mathcal{A}\} = \{(\alpha, \beta) : \alpha \in \mathcal{A}\}$ $\mathcal{A}, \varphi(\Delta_{\alpha}) \subseteq \Delta_{\beta}$.

The space $\Lambda_2^1(N)$ of measurable 1-forms on the Riemann surface N defined as $\Lambda_2^1(N) = {\omega \in \Lambda^1(N) : \omega^\beta = f^\beta d\beta + g^\beta d\overline{\beta}, \ f^\beta_\beta, g^\beta_\beta \in L^2(\beta(U_\beta))}, \text{ for all } \beta \in \mathcal{B}}.$ Consider triangulation $\{\Delta_\beta\}_{\beta \in \mathcal{B}}$ of *N* with Δ -property. Let $\omega_1, \omega_2 \in \Lambda_2^1(N)$ and $\omega_i^{\beta} = f_i^{\beta} d\beta + g_i^{\beta} d\bar{\beta}$, for $\beta \in \mathcal{B}$. Set $\langle \omega_1, \omega_2 \rangle_N = \int_N \omega_1 \wedge^* \overline{\omega_2}$. Then we have

$$
\langle \omega_1, \omega_2 \rangle_N = \int_{\cup \triangle_\beta} \omega_1 \wedge^* \overline{\omega_2} = \sum_{\beta \in \mathcal{B}} \int_{\triangle_\beta} \omega_1^\beta \wedge^* \overline{\omega_2^\beta}
$$

\n
$$
= \sum_{\beta \in \mathcal{B}} \int_{\triangle_\beta} (f_1^\beta \overline{f_2^\beta} + g_1^\beta \overline{g_2^\beta}) i d\beta \wedge d\overline{\beta}
$$

\n
$$
= \sum_{\beta \in \mathcal{B}} \int_{\beta(\triangle_\beta)} \left\{ (f_1)^\beta_\beta \overline{(f_2)^\beta_\beta} + (g_1)^\beta_\beta \overline{(g_2)^\beta_\beta} \right\} i d z \wedge d\overline{z}
$$

\n
$$
= \sum_{\beta \in \mathcal{B}} 2 \int_{\beta(\triangle_\beta)} \left\{ (f_1)^\beta_\beta \overline{(f_2)^\beta_\beta} + (g_1)^\beta_\beta \overline{(g_2)^\beta_\beta} \right\} dA.
$$

The space $\Lambda_2^1(N)$ which satisfy the following

$$
\|\omega\|_N^2 = \int_N \omega \wedge^* \overline{\omega} = \sum_{\beta \in \mathcal{B}} 2 \int_{\beta(\Delta_\beta)} \left\{ |f_\beta^{\beta}|^2 + |g_\beta^{\beta}|^2 \right\} dA < \infty
$$

is a Hilbert space with inner product $\langle \omega_1, \omega_2 \rangle = \int_N \omega_1 \wedge^* \overline{\omega_2} = \sum_\beta \langle \omega_1^\beta, \omega_2^\beta \rangle_{\triangle_\beta}$ (see [\[6](#page-15-4)]). Since $\{(f_i)_{\beta}^{\beta}, (g_i)_{\beta}^{\beta}\} \subset L^2(\beta(U_{\beta}))$, then $\langle \omega_1^{\beta}, \omega_2^{\beta} \rangle_{\Delta_{\beta}} < \infty$ for all $\beta \in \mathcal{B}$. So, if *B* is finite, then $||\omega||_N < \infty$ for all $\omega \in \Lambda_2^1(N)$. So we have the following result.

Proposition 2.2 *Let* $\{\Delta_{\beta}\}_{{\beta \in \mathcal{B}}}$ *be a triangulation of N* with Δ -property. Then $\Lambda_2^1(N) \cong$ $\bigoplus_{\beta} \Lambda_2^1(\beta(\Delta_{\beta}))$, $\|\omega\|_N^2 = \sum_{\beta} \|\omega^{\beta}\|_{\Delta_{\beta}}^2 = \sum_{\beta} \|\omega^{\beta}_{\beta}\|_{\beta(\Delta_{\beta})}^2$ and

$$
\|\omega_{\beta}^{\beta}\|_{\beta(\Delta_{\beta})}^2 = \int_{\beta(\Delta_{\beta})} 2(|f_{\beta}^{\beta}|^2 + |g_{\beta}^{\beta}|^2) dA,
$$

for all $\omega \in \Lambda_2^1(N)$ *.*

Now, let $\omega \in \Lambda_2^1(N)$. Using \triangle -property, we take $(\omega \circ \varphi)_{\alpha} = \omega^{\beta} \circ \varphi \circ \alpha^{-1}$. Since

$$
(f^{\beta} \circ \varphi)_{\alpha} = f^{\beta} \circ \varphi \circ \alpha^{-1} = (f^{\beta} \circ \beta^{-1}) \circ (\beta \circ \varphi \circ \alpha^{-1}) = f^{\beta}_{\beta} \circ \varphi_{\alpha\beta};
$$

\n
$$
(g^{\beta} \circ \varphi)_{\alpha} = g^{\beta} \circ \varphi \circ \alpha^{-1} = g^{\beta}_{\beta} \circ \varphi_{\alpha\beta};
$$

\n
$$
d(\beta \circ \varphi)_{\alpha} = d(\beta \circ \varphi \circ \alpha^{-1}) = d\varphi_{\alpha\beta} = \varphi'_{\alpha\beta} dz;
$$

\n
$$
d(\bar{\beta} \circ \varphi)_{\alpha} = \overline{d(\beta \circ \varphi)_{\alpha}} = \overline{\varphi'_{\alpha\beta} dz} = \overline{\varphi'_{\alpha\beta}} d\bar{z},
$$

then

$$
[C_{\varphi}(\omega)]^{\alpha}_{\alpha} = [\omega \circ \varphi]^{\alpha}_{\alpha} = (\omega^{\beta} \circ \varphi)_{\alpha} = [(f^{\beta}d\beta) \circ \varphi + (g^{\beta}d\bar{\beta}) \circ \varphi]_{\alpha}
$$

$$
= (f^{\beta} \circ \varphi)_{\alpha}d(\beta \circ \varphi)_{\alpha} + (g^{\beta} \circ \varphi)_{\alpha}d(\bar{\beta} \circ \varphi)_{\alpha}
$$

$$
= (f^{\beta} \circ \varphi_{\alpha\beta})\varphi'_{\alpha\beta}dz + (g^{\beta} \circ \varphi_{\alpha\beta})\overline{\varphi'_{\alpha\beta}}d\bar{z}.
$$

It follows that

$$
||C_{\varphi}(\omega)||_{M}^{2} = \int_{\cup\Delta_{\alpha}} C_{\varphi}(\omega) \wedge^{*} \overline{C_{\varphi}(\omega)} = \sum_{\alpha \in \mathcal{A}} \int_{\Delta_{\alpha}} (\omega \circ \varphi)^{\alpha} \wedge^{*} \overline{(\omega \circ \varphi)^{\alpha}}
$$

\n
$$
= \sum_{\alpha \in \mathcal{A}} \int_{\alpha(\Delta_{\alpha})} [\omega \circ \varphi]_{\alpha}^{\alpha} \wedge^{*} \overline{[\omega \circ \varphi]_{\alpha}^{\alpha}}
$$

\n
$$
= \sum_{\{(\alpha,\beta):\alpha \in \mathcal{A}, \ \varphi(\Delta_{\alpha}) \subseteq \Delta_{\beta}\}} 2 \int_{\alpha(\Delta_{\alpha})} \left\{ |f^{\beta}_{\beta} \circ \varphi_{\alpha\beta}|^{2} + |g^{\beta}_{\beta} \circ \varphi_{\alpha\beta}|^{2} \right\} |\varphi'_{\alpha\beta}|^{2} dA
$$

\n
$$
= \sum_{\beta \in \mathcal{B}} \sum_{\alpha \in \mathcal{A}_{\beta}} 2 \int_{\alpha(\Delta_{\alpha})} \left\{ (|f^{\beta}_{\beta}|^{2} + |g^{\beta}_{\beta}|^{2}) \circ \varphi_{\alpha\beta} \right\} |\varphi'_{\alpha\beta}|^{2} dA,
$$

where $A_{\beta} = {\alpha \in \mathcal{A} : \varphi(\Delta_{\alpha}) \subseteq \Delta_{\beta}}.$

We now introduce conditional expectations as another application of the Radon– Nikodym theorem. Let (X, Σ, μ) be a complete σ -finite measure space. For any complete σ -finite subalgebra $C \subseteq \Sigma$ the Hilbert space $L^2(X, \mathcal{C}, \mu_{|\mathcal{C}})$ is abbreviated to $L^2(\mathcal{C})$ where $\mu_{|\mathcal{C}|}$ is the restriction of μ to \mathcal{C} . For each non-negative $f \in L^0(\Sigma)$, the linear space of all complex-valued Σ -measurable functions on *X*, or $f \in L^2(\Sigma)$, by the Radon–Nikodym theorem, there exists a unique *C*-measurable function $E^{\mathcal{C}}(f)$ =

 $E(f \mid C)$ such that $\int_A f d\mu = \int_A E^C(f) d\mu$, where *A* is any *C*-measurable set for which $\int_A f d\mu$ exists. Now associated with every complete σ -finite subalgebra $\mathcal{C} \subseteq \Sigma$, the mapping $E^C: L^2(\Sigma) \to L^2(\mathcal{C})$ uniquely defined by the assignment $f \mapsto E^C(f)$, is called the conditional expectation operator with respect to *C*. The mapping E^C is a linear orthogonal projection onto $L^2(\mathcal{C})$. Note that $\mathcal{D}(E^{\mathcal{C}})$, the domain of $E^{\mathcal{C}}$, contains $\bigcup_{p\geq 1}$ *LP*(Σ) ∪ { $f \in L^0(\Sigma)$: $f \geq 0$ }. For more details on the properties of E^C see $\overline{[7, 12]}$ $\overline{[7, 12]}$ $\overline{[7, 12]}$ $\overline{[7, 12]}$ $\overline{[7, 12]}$. Conditional expectation operator plays a crucial role in our considerations. Those properties of E^C used in our discussion are summarized below. In all cases we assume that *f*, *g*, *fg* \in *D*(*E*^{*C*}) and *p* \geq 1. \circ If *g* is *C*-measurable then $E^{C}(fg) = E^{C}(f)g$. \circ $|E^{\mathcal{C}}(f)|^p \leq E^{\mathcal{C}}(|f|^p).$

 \circ If $f > 0$ then $E^C(f) > 0$.

 $\circ |E^C(fg)|^2 \le (E^C(|f|^2))(E^C(|g|^2)).$

Let G_1 and G_2 be an open and connected sets in $\mathbb C$ and let $\varphi : G_1 \to G_2$ be a nonconstant analytic function. Still proceeding as in the proof of Proposition [2.1\(](#page-4-0)f), one establishes that $A \circ \varphi^{-1}$ is absolutely continuous with respect to A , i.e., $A(\varphi^{-1}(K)) = 0$ for all $K \in \mathcal{M}_G$ with $A(K) = 0$. Let $h_\omega = A \circ \varphi^{-1}/dA$ be the Radon–Nikodym derivative. Consider the σ -finite algebra $\mathcal{C}(\varphi) = \varphi^{-1}(\mathcal{M}_{G_2})$ of G_1 and take $E^{\mathcal{C}(\varphi)} =$ $E(.) | C(\varphi) \rangle = E_{\varphi}$. It is known that for each non-negative G_1 -measurable function f or for each $f \in L^2(G_1)$, there exists a G_2 -measurable function g such that $E_\omega(f) = g \circ \varphi$. Moreover, *g* is uniquely determined in $\sigma(h_\varphi)$, the support of h_φ . Therefore, even though φ is not invertible, the expression $g = E_{\varphi}(f) \circ \varphi^{-1}$ is well defined, whenever $\sigma(g) \subseteq \sigma(h_{\varphi})$ (see [\[1](#page-15-11)]). Recall that for $0 \le f \in L^{0}(G_{2})$ and $0 \le W \in L^{0}(G_{1})$ we have

$$
\int_{G_1} W(z) f(\varphi(z)) |\varphi'(z)|^2 dA(z) = \int_{\varphi(G_1)} \left\{ \sum_{z \in c(w, \varphi)} W(z) \right\} f(w) dA(w).
$$

Set $G_0 = \{z \in G_1 : \varphi'(z) \neq 0\}$ Then G_0 is countable and so $G_0 = G_1$ a.e. [A]. For $0 \le g \in L^0(G_1)$, put $W(z) = \chi_{G_0} g(z) |\varphi'(z)|^{-2}$. Then we have that

$$
\int_{G_1} g(z) f(\varphi(z)) dA(z) = \int_{\varphi(G_1)} \left\{ \sum_{z \in c(w, \varphi) \cap G_0} \frac{g(z)}{|\varphi'(z)|^2} \right\} f(w) dA(w). \quad (2.4)
$$

On the other hand, by the change of variable formula in the measure theory setting, we have $([8])$ $([8])$ $([8])$

$$
\int_{G_1} g(f \circ \varphi) dA = \int_{G_1} E_{\varphi}(g)(f \circ \varphi) dA = \int_{\varphi(G_1)} \{E_{\varphi}(g) \circ \varphi^{-1}\} f dA \circ \varphi^{-1}
$$

$$
= \int_{\varphi(G_1)} \left\{ h_{\varphi} E_{\varphi}(g) \circ \varphi^{-1} \right\} f dA.
$$

Now, for each $A \in \mathcal{M}_{G_1}$, take $f = \chi_A$ and set $J_{\varphi}[g] = h_{\varphi} E_{\varphi}(g) \circ \varphi^{-1}$. Using [\(2.4\)](#page-7-0) we get that

$$
\int_A \left\{ J_{\varphi}[g](w) - \sum_{z \in c(w,\varphi) \cap G_0} \frac{g(z)}{|\varphi'(z)|^2} \right\} \chi_{\varphi(G_1)} dA(w) = 0.
$$

It follows that

$$
J_{\varphi}[g](w) = \sum_{z \in c(w, \varphi) \cap G_0} \frac{g(z)}{|\varphi'(z)|^2}, \ (w \in \varphi(G_1)).
$$

If N_{φ} (.) is bounded on $\varphi(G_1)$, then $J_{\varphi}[g]$ is finite-valued. Note that $J_{\varphi}[1] = h$ and $c(w, \varphi) = \emptyset$ for $w \in G_2 \setminus \varphi(G_1)$. Also, if $B \subseteq G_2 \setminus \varphi(G_1)$ is in \mathcal{M}_{G_2} , then $\varphi^{-1}(B) \cap G_1 = \emptyset$ and hence $\int_B h dA = \int_B dA \circ \varphi^{-1} = A(\varphi^{-1}(B) \cap G_1) = 0$. Thus, $\sigma(J_{\omega}[g]) \subseteq \sigma(h) \subseteq \varphi^{-1}(G_1)$. These observations establish the following result.

Theorem 2.3 *Let* G_1 *and* G_2 *be an open and connected sets in* \mathbb{C} *,* φ : $G_1 \rightarrow G_2$ *be a* non-constant analytic function and let $G_0 = \{z \in G_1 : \varphi'(z) \neq 0\}$. Then for each $0 \leq g \in L^0(G_1)$ *we have*

$$
J_{\varphi}[g](w) = \begin{cases} \sum_{z \in c(w, \varphi) \cap G_0} \frac{g(z)}{|\varphi'(z)|^2} & w \in \varphi(G_1) \\ 0 & w \notin G_2 \setminus \varphi(G_1), \end{cases}
$$

where $J_{\varphi}[g] = h_{\varphi} E_{\varphi}(g) \circ \varphi^{-1}$. In particular, $J_{\varphi}[\varphi']^2] = N_{\varphi}(\chi_{G_0})$ and

$$
h(w) = \begin{cases} \sum_{z \in c(w, \varphi) \cap G_0} \frac{1}{|\varphi'(z)|^2} & w \in \varphi(G_1) \\ 0 & w \notin G_2 \backslash \varphi(G_1). \end{cases}
$$

Let $E_{\varphi}(L_a^2(\mathbb{D})) \subseteq L_a^2(\mathbb{D})$. Then by [\[2,](#page-15-13) Theorem 2], non-negativity of $f \in L_a^2(\mathbb{D})$ is not required as mentioned in Theorem [2.3](#page-8-0) for $J_{\varphi}[f]$.

Example 2.4 Let $G_1 = \mathbb{D}, \{\alpha, \beta, \gamma\} \subset \mathbb{R}, \varphi(z) = \alpha z^2 + \beta z + \gamma$ and let $G_2 = \varphi(\mathbb{D})$. Then for each $w \in \varphi(\mathbb{D})$, $c(w^n, \varphi) = \{w, -\frac{\beta + \alpha w}{\alpha}\}\$ and $c(w, \varphi) = \{w_1, w_2\} =$ $\{\frac{-\beta-\sqrt{\beta^2-4\alpha(\gamma-w)}}{2\alpha}, \frac{-\beta+\sqrt{\beta^2-4\alpha(\gamma-w)}}{2\alpha}\}.$ Then by [\[2](#page-15-13), Theorem 2] and Theorem [2.3](#page-8-0) we obtain

$$
E_{\varphi}(f)(w) = \frac{1}{2} f(w) + \frac{1}{2} f\left(-\frac{\beta + \alpha w}{\alpha}\right);
$$

$$
h(w) = \frac{2}{|\beta^2 - 4\alpha(\gamma - w)|^2}
$$

and $(E_{\varphi}(f) \circ \varphi^{-1})(w) = \frac{1}{2} \{ f(w_1) + f(w_2) \}.$ Consequently,

$$
J_{\varphi}[f](w) = \frac{1}{|\beta^2 - 4\alpha(\gamma - w)|^2} \{f(w_1) + f(w_2)\}, \quad f \in L^2_a(\mathbb{D}), \ w \in \varphi(\mathbb{D}).
$$

Boundedness of pullback transforms on between differential form spaces for Rie-mann surfaces has been characterised in [\[11](#page-15-1), Theorem 2.2]. In [\[10](#page-15-0), Theorem 2.2], we studied bounded operators of the form $\omega \mapsto u(\omega \circ \varphi)$ for $\omega \in \Lambda_2^1(N)$. In the following, the boundedness of weighted pullback transforms acting between two different measurable differential form spaces are characterized using some properties of conditional expectation operators.

Theorem 2.5 *Let M and N be Riemann surfaces,* $u \in \Lambda^0(M)$ *and let* $\varphi : M \to N$ *be an analytic map with* \triangle -property. Then the weighted pullback transform $\mathfrak{u}C_{\varphi}$: $\Lambda_2^1(N) \to \Lambda_2^1(M)$ *is bounded if and only if* $N_\varphi(|u^2|)$ *is essentially bounded. In this case* $||uC_{\varphi}||_M^2 \leq ||N_{\varphi}(|u|^2)||_{\infty}$.

Proof Let $\omega \in \Lambda_2^1(N)$. Then for each $\alpha \in \mathcal{A}$ we have

$$
[uC_{\varphi}(\omega)]^{\alpha}_{\alpha} = (u^{\alpha}(\omega^{\beta} \circ \varphi))_{\alpha} = u^{\alpha}_{\alpha}(\omega^{\beta} \circ \varphi)_{\alpha}
$$

$$
= u^{\alpha}_{\alpha} (f^{\beta}_{\beta} \circ \varphi_{\alpha\beta}) \varphi'_{\alpha\beta} dz + u^{\alpha}_{\alpha} (g^{\beta}_{\beta} \circ \varphi_{\alpha\beta}) \overline{\varphi'_{\alpha\beta}} d\overline{z}
$$

Let $A_\beta = \{ \alpha \in \mathcal{A} : \varphi(\Delta_\alpha) \subseteq \Delta_\beta \}$. Then by the change of variable formula we have

$$
\|uC_{\varphi}(\omega)\|_{M}^{2} = \sum_{\alpha \in \mathcal{A}} \int_{\alpha(\Delta_{\alpha})} [u(\omega \circ \varphi)]_{\alpha}^{\alpha} \wedge^{*} \overline{[u(\omega \circ \varphi)]_{\alpha}^{\alpha}}\n= 2 \sum_{\beta \in \mathcal{B}} \sum_{\alpha \in \mathcal{A}_{\beta}} \int_{\alpha(\Delta_{\alpha})} \left\{ |f_{\beta}^{\beta}|^{2} + |g_{\beta}^{\beta}|^{2} \right\} (\varphi_{\alpha\beta}(z)) |u_{\alpha}^{\alpha}(z) \varphi_{\alpha\beta}^{\prime}(z)|^{2} dA(z)\n= 2 \sum_{\beta \in \mathcal{B}} \sum_{\alpha \in \mathcal{A}_{\beta}} \int_{\varphi_{\alpha\beta}(\alpha(\Delta_{\alpha}))} (|f_{\beta}^{\beta}(w)|^{2} + |g_{\beta}^{\beta}(w)|^{2}) J_{\alpha\beta} [|u_{\alpha}^{\alpha} \varphi_{\alpha\beta}^{\prime}|^{2}] (w) dA(w)\n= 2 \sum_{\beta \in \mathcal{B}} \sum_{\alpha \in \mathcal{A}_{\beta}} \int_{\beta(\Delta_{\beta})} (|f_{\beta}^{\beta}(w)|^{2} + |g_{\beta}^{\beta}(w)|^{2}) \chi_{\varphi_{\alpha\beta}(\alpha(\Delta_{\alpha}))}(w)\times J_{\alpha\beta} [|u_{\alpha}^{\alpha} \varphi_{\alpha\beta}^{\prime}|^{2}] (w) dA(w),
$$

where

$$
J_{\alpha\beta}[\vert u_{\alpha}^{\alpha}\varphi'_{\alpha\beta}\vert^{2}](w) = h_{\alpha\beta}(w) \left\{ E_{\alpha\beta}(\vert u_{\alpha}^{\alpha}\varphi'_{\alpha\beta}\vert^{2}) \circ \varphi_{\alpha\beta}^{-1} \right\}(w);
$$

$$
E_{\alpha\beta} = E(. \mid \varphi_{\alpha\beta}^{-1}(\mathcal{M}_{\beta(\triangle_{\beta})}));
$$

$$
h_{\alpha\beta} = \frac{dA \circ \varphi_{\alpha\beta}^{-1}}{dA}.
$$

Put $c(w, \varphi_{\alpha\beta}) = \{z \in \alpha(\Delta_{\alpha}) : \varphi_{\alpha\beta}'(z) \neq 0, \varphi_{\alpha\beta}(z) = w\}.$ Using Theorem [2.3,](#page-8-0) we have

$$
J_{\alpha\beta}[\vert u_{\alpha}^{\alpha} \varphi'_{\alpha\beta}\vert^{2}](w) = \sum_{z \in c(w, \varphi_{\alpha\beta})} \frac{\vert u_{\alpha}^{\alpha}(z) \vert^{2} \vert \varphi'_{\alpha\beta}(z) \vert^{2}}{\vert \varphi'_{\alpha\beta}(z) \vert^{2}} = \sum_{z \in c(w, \varphi_{\alpha\beta})} \vert u_{\alpha}^{\alpha}(z) \vert^{2}
$$

= $N_{\varphi_{\alpha\beta}}(\vert u_{\alpha}^{\alpha} \vert^{2})(w) = \chi_{\varphi_{\alpha\beta}(\alpha(\Delta_{\alpha}))} N_{\varphi_{\alpha\beta}}(\vert u_{\alpha}^{\alpha} \vert^{2})(w).$

Thus

$$
||uC_{\varphi}(\omega)||_{M}^{2} = 2 \sum_{\beta \in \mathcal{B}} \int_{\beta(\Delta_{\beta})} (|f^{\beta}_{\beta}(w)|^{2} + |g^{\beta}_{\beta}(w)|^{2}) \left\{ \sum_{\alpha \in \mathcal{A}_{\beta}} N_{\varphi_{\alpha\beta}}(|u^{\alpha}_{\alpha}|^{2})(w) \right\} dA(w)
$$

in which

$$
\sum_{\alpha \in A_{\beta}} N_{\varphi_{\alpha\beta}}(|u_{\alpha}^{\alpha}|^2)(w) = \sum_{\alpha \in A_{\beta}} \left\{ \sum |u_{\alpha}^{\alpha}(z)|^2 : z \in \alpha(\Delta_{\alpha}), \varphi_{\alpha\beta}(z) = w \right\}
$$

\n
$$
= \sum_{\alpha \in A_{\beta}} \left\{ \sum |u^{\alpha}(\alpha^{-1}(z))|^2 : \alpha^{-1}(z) \in \Delta_{\alpha}, \varphi(\alpha^{-1}(z)) = \beta^{-1}(w) \right\}
$$

\n
$$
= \left\{ \sum |u(x)|^2 : x \in M, \varphi(x) = \beta^{-1}(w) \right\} = N_{\varphi}(|u|^2)(\beta^{-1}(w)) = (N_{\varphi}(|u|^2))_{\beta}(w).
$$

Consequently,

$$
||uC_{\varphi}(\omega)||_{M}^{2} = 2 \sum_{\beta \in \mathcal{B}} \int_{\beta(\Delta_{\beta})} (|f_{\beta}^{\beta}|^{2} + |g_{\beta}^{\beta}|^{2}) (N_{\varphi}(|u|^{2}))_{\beta} dA.
$$

Now, if $N_{\varphi}(|u|^2) \in L^{\infty}(M)$ then

$$
\|uC_{\varphi}(\omega)\|_{M}^{2} \leq \|(N_{\varphi}(|u|^{2}))_{\beta}\|_{\infty} \left\{\sum_{\beta \in \mathcal{B}} 2\int_{\beta(\Delta_{\beta})} (|f_{\beta}^{\beta}|^{2} + |g_{\beta}^{\beta}|^{2})dA\right\}
$$

$$
\leq \|N_{\varphi}(|u|^{2})\|_{\infty} \|\omega\|_{N}^{2},
$$

and so $||uC_{\varphi}||_{M}^{2} \le \inf_{\beta \in \mathcal{B}} ||(N_{\varphi}(|u|^{2}))_{\beta}||_{\infty} \le ||N_{\varphi}(|u|^{2})||_{\infty}$. Conversely, suppose μC_φ is bounded. If *A* and *B* is finite, then for each $\beta \in \mathcal{B}$, $(N_\varphi(|u|^2))_\beta$ is essentially bounded and hence

$$
||N_{\varphi}(|u|^2)||_{\infty} = \max_{\beta \in \mathcal{B}} ||(N_{\varphi}(|u|^2))_{\beta}||_{\infty} < \infty.
$$

Now, let *A* and *B* be countably infinite sets. If $N_{\varphi}(|u|^2) \notin L^{\infty}(M)$, then there exists $\{\beta_n\} \subset \mathcal{B}$ such that $(N_\varphi(|u|^2))_{\beta_n} \geq 2^n$. For each *n*, choose $U_n \subseteq \beta_n(\Delta_{\beta_n})$ with $0 < A(U_n) < \infty$. Let $\omega \in \Lambda_2^1(N)$ be represented by

$$
\omega^{\beta_n} = \frac{(\chi_{U_n} \circ \beta_n) d\beta_n}{\sqrt{N_{\varphi}(|u|^2) A(U_n)}}, \ \ n \ge 1.
$$

Then

$$
\|\omega\|_{N}^{2} = 2 \sum_{n=1}^{\infty} \int_{\beta_{n}(\Delta_{\beta_{n}})} \frac{\chi_{U_{n}} dA}{(N_{\varphi}(|u|^{2}))_{\beta_{n}} A(U_{n})}
$$

$$
\leq 2 \sum_{n=1}^{\infty} \frac{1}{2^{n} A(U_{n})} \int_{U_{n}} dA = \sum_{n=0}^{\infty} \frac{1}{2^{n}} = 2,
$$

and

$$
||uC_{\varphi}(\omega)||_{M}^{2} = 2\sum_{n=1}^{\infty} \int_{\beta_{n}(\Delta_{\beta_{n}})} \frac{\chi_{_{U_{n}}}(N_{\varphi}(|u|^{2}))_{\beta_{n}}dA}{(N_{\varphi}(|u|^{2}))_{\beta_{n}}A(U_{n})} = 2\sum_{n=1}^{\infty} 1 = \infty.
$$

But this is a contradiction. This completes the proof.

Corollary 2.6 (a) [\[11](#page-15-1), Theorem 2.2] *The pullback transform* C_{φ} : $\Lambda_2^1(N) \to \Lambda_2^1(M)$ *is bounded if and only if the counting function* N_{φ} *is bounded.* (b) *If* $M = N = \mathbb{D}$, then $J_{\varphi}(|u\varphi'|^2) = h_{\varphi} E_{\varphi}(|u\varphi'|^2) \circ \varphi^{-1} = N_{\varphi} (\chi_{G_0} |u|^2)$.

Let (β, U_β) be any local chart in *N* and let Σ_β be the σ -algebra generated by ${\beta}^{-1}(K) \cap U_\beta : K \in \mathcal{M}_\mathbb{C}$. Define $\mu_\beta(B) = A(\beta(B))$ for all $B \in \Sigma_\beta$. Thus, $(U_\beta, \Sigma_\beta, \mu_\beta)$ is a non-atomic measure space.

Let $\omega \in \mathcal{N}(uC_{\varphi})$ and $N_{\varphi}(|u|^2) > 0$ on *N*. Then for all $\beta \in \mathcal{B}, (N_{\varphi}(|u|^2))_{\beta} > 0$ on $\beta(\Delta_{\beta})$ and

$$
2\sum_{\beta\in\mathcal{B}}\int_{\beta(\Delta_{\beta})\cap\sigma(\omega^{\beta})}(|f_{\beta}^{\beta}|^{2}+|g_{\beta}^{\beta}|^{2})(N_{\varphi}(|u|^{2}))_{\beta}dA=\|uC_{\varphi}(\omega)\|_{M}^{2}=0.
$$

It follows that $\mu_{\beta}(\beta(\Delta_{\beta}) \cap \sigma(\omega^{\beta})) = 0$, and so $\omega^{\beta} = 0$ for all $\beta \in \mathcal{B}$. Thus, $\omega = 0$. Now, suppose for some $\beta \in \mathcal{B}$ and $B \in \Sigma_{\beta}$ with $0 < \mu_{\beta}(B) = A(\beta(B)) < \infty$, $\chi_B N_\varphi(|u|^2) = 0$. Set $\omega_0 = \chi_B d\beta$ Then $\omega_0 \neq 0$ and $||uC_\varphi(\omega_0)||_M = 0$. Using this and Proposition [2.1](#page-4-0) we have the following corollary.

Corollary 2.7 *Let* $uC_{\varphi} \in B(\Lambda_2^1(N) \Lambda_2^1(M))$ *. Then the followings hold.* (a) Then uC_{φ} is injective if and only if $N_{\varphi}(|\mu|^2) > 0$ on N. (b) uC_{φ} *is an isometry if and only if* $N_{\varphi}(|u|^2) = 1$ *on N*. (c) uC_{φ} *is a partial isometry if and only if* $N_{\varphi}(|u|^2) = 1$ *on* $\varphi(N)$ *.*

Now, we try to give an explicit formula for the adjoint of these type operators by the language of conditional expectation operators.

$$
\qquad \qquad \Box
$$

Let $\varphi : M \to N$ be an analytic map with \triangle -property and let $\omega \in \Lambda_2^1(N)$ and $\eta \in \Lambda_2^1(M)$ be represented by $\omega^{\beta} = f^{\beta} d\beta + g^{\beta} d\bar{\beta}$ and $\underline{\eta^{\alpha}} = k^{\alpha} d\alpha + l^{\alpha} d\bar{\alpha}$, for each $\alpha \in \mathcal{A}$ and $\beta \in \mathcal{B}$. Then $\eta^{\alpha}_{\alpha} = k^{\alpha}_{\alpha} dz + l^{\alpha}_{\alpha} d\bar{z}$ and hence ${}^*\overline{\eta^{\alpha}_{\alpha}} = -i\overline{l^{\alpha}_{\alpha}} dz + i\overline{k^{\alpha}_{\alpha}} d\bar{z}$. Then we have

$$
\langle uC_{\varphi}(\omega), \eta \rangle_{M} = \int_{\cup\Delta_{\alpha}} uC_{\varphi}(\omega) \wedge^{*} \overline{\eta} = \sum_{\alpha \in A} \int_{\alpha(\Delta_{\alpha})} [u(\omega \circ \varphi)]_{\alpha}^{\alpha} \wedge^{*} \overline{\eta_{\alpha}^{\alpha}} \n= \sum_{\beta \in B} \sum_{\alpha \in A_{\beta}} 2 \int_{\alpha(\Delta_{\alpha})} \left\{ (u_{\alpha}^{\alpha} \overline{k_{\alpha}^{\alpha}} (f_{\beta}^{\beta} \circ \varphi_{\alpha\beta}) \varphi_{\alpha\beta}^{\prime} + u_{\alpha}^{\alpha} \overline{l_{\alpha}^{\alpha}} (g_{\beta}^{\beta} \circ \varphi_{\alpha\beta}) \overline{\varphi_{\alpha\beta}^{\prime}} \right\} dA \n= \sum_{\beta \in B} \sum_{\alpha \in A_{\beta}} 2 \int_{\varphi_{\alpha\beta}(\alpha(\Delta_{\alpha}))} f_{\beta}^{\beta} \left\{ h_{\alpha\beta} E_{\alpha\beta} (\overline{k_{\alpha}^{\alpha}} u_{\alpha}^{\alpha} \varphi_{\alpha\beta}^{\prime}) \circ \varphi_{\alpha\beta}^{-1} \right\} dA \n+ \sum_{\beta \in B} \sum_{\alpha \in A_{\beta}} 2 \int_{\varphi_{\alpha\beta}(\alpha(\Delta_{\alpha}))} g_{\beta}^{\beta} \left\{ h_{\alpha\beta} E_{\alpha\beta} (\overline{l_{\alpha}^{\alpha}} u_{\alpha}^{\alpha} \overline{\varphi_{\alpha\beta}^{\prime}}) \circ \varphi_{\alpha\beta}^{-1} \right\} dA \n= 2 \sum_{\beta \in B} \int_{\beta(\Delta_{\beta})} f_{\beta}^{\beta} \left\{ \sum_{\alpha \in A_{\beta}} \chi_{\varphi_{\alpha\beta}(\alpha(\Delta_{\alpha}))} \left[h_{\alpha\beta} E_{\alpha\beta} (\overline{k_{\alpha}^{\alpha}} u_{\alpha}^{\alpha} \varphi_{\alpha\beta}^{\prime}) \circ \varphi_{\alpha\beta}^{-1} \right] \right\} dA \n+ 2 \sum_{\beta \in B} \int_{\beta(\Delta_{\beta})} g_{\beta}^{\beta} \left\{ \sum_{\alpha \in A_{\beta}} \chi_{\varphi_{\alpha\beta}(\alpha(\Delta_{\
$$

Take

$$
K^{\beta} = \left\{ \sum_{\alpha \in \mathcal{A}_{\beta}} \chi_{\varphi_{\alpha\beta}(\alpha(\triangle_{\alpha}))} \left[h_{\alpha\beta} E_{\alpha\beta} (k_{\alpha}^{\alpha} \overline{u_{\alpha}^{\alpha} \varphi_{\alpha\beta}^{'}}) \circ \varphi_{\alpha\beta}^{-1} \right] \right\} \circ \beta; \quad (2.5)
$$

$$
L^{\beta} = \left\{ \sum_{\alpha \in \mathcal{A}_{\beta}} \chi_{\varphi_{\alpha\beta}(\alpha(\triangle_{\alpha}))} \left[h_{\alpha\beta} E_{\alpha\beta} (l_{\alpha}^{\alpha} \overline{u_{\alpha}^{\alpha}} \varphi_{\alpha\beta}') \circ \varphi_{\alpha\beta}^{-1} \right] \right\} \circ \beta. \tag{2.6}
$$

Then

$$
\langle \omega, (uC_{\varphi})^*(\eta) \rangle_N = 2 \sum_{\beta \in \mathcal{B}} \int_{\beta(\Delta_{\beta})} \left\{ f_{\beta}^{\beta} \overline{K_{\beta}^{\beta}} + g_{\beta}^{\beta} \overline{L_{\beta}^{\beta}} \right\} dA
$$

$$
= \langle \omega, \sum_{\beta \in \mathcal{B}} (K^{\beta} d\beta + L^{\beta} d\overline{\beta}) \chi_{\Delta_{\beta}} \rangle_N.
$$

Consequently, $[(uC_\varphi)^*(\eta)]^\beta = K^\beta d\beta + L^\beta d\overline{\beta}$. So we have the following result.

Theorem 2.8 *Let M* and *N be Riemann surfaces,* $u \in \Lambda^0(M)$ *and let* $\varphi : M \to N$ *be an analytic map with* \triangle -property. If $uC_\varphi : \Lambda_2^1(N) \to \Lambda_2^1(M)$ is bounded, then *for each* $\eta^{\alpha} = k^{\alpha} d\alpha + l^{\alpha} d\overline{\alpha}$ *in* (α , U_{α})*, the adjoint of uC*_{φ} *is given by the formula* $[(uC_{\varphi})[*](\eta)]^{\beta} = K^{\beta}d\beta + L^{\beta}d\bar{\beta}$, where K^{β} *and* L^{β} *are given as* [\(2.5\)](#page-12-0) *and* [\(2.6\)](#page-12-1)*.*

Corollary 2.9 *Let* $M = N = \mathbb{D}$ *and* $\omega = f dz + g d\overline{z} \in \Lambda_2^1(\mathbb{D})$ *. Then*

$$
(uC_{\varphi})^*(\omega) = \left[h_{\varphi} E_{\varphi}(\overline{u\varphi'} f) \circ \varphi^{-1} \right] dz + \left[h_{\varphi} E_{\varphi}(\overline{u}\varphi'g) \circ \varphi^{-1} \right] d\overline{z}
$$

Let $uC_\varphi \in B(\Lambda_2^1(\mathbb{D}))$ and $\omega = fdz + gd\overline{z} \in \Lambda_2^1(\mathbb{D})$. Then by Corollaries [2.6](#page-11-0) and [2.9](#page-13-0) we get that

$$
(uc_{\varphi})^*(u(\omega \circ \varphi)) = (uc_{\varphi})^*(u(f \circ \varphi)\varphi'dz + u(g \circ \varphi)\varphi'd\bar{z})
$$

=
$$
\left[h_{\varphi}E_{\varphi}(|u|^2|\varphi'|^2f \circ \varphi) \circ \varphi^{-1}\right]dz + \left[h_{\varphi}E_{\varphi}(|u|^2|\varphi'|^2f \circ \varphi) \circ \varphi^{-1}\right]d\bar{z}
$$

=
$$
[h_{\varphi}E_{\varphi}(|u\varphi'|^2) \circ \varphi^{-1}](fdz + gd\bar{z}) = J_{\varphi}(|u\varphi'|^2)\omega = N_{\varphi}(|u|^2)\omega \ a.e. [A].
$$

Consequently, $(uC_\varphi)^*(uC_\varphi) = M_{N_\varphi(|u|^2)}, |u|^2$ is viewed as a function defined *A*almost everywhere on $D_0 = \{z \in \mathbb{D} : \varphi'(z) \neq 0\}$. Also,

$$
(uC_{\varphi})(uC_{\varphi})^{*}(\omega) = u\varphi'(h_{\varphi} \circ \varphi)E_{\varphi}(\overline{u\varphi'}f)dz + u\overline{\varphi'}(h_{\varphi} \circ \varphi)E_{\varphi}(\overline{u}\varphi'g)d\overline{z}.
$$

Example 2.10 Let $M = N = D$ and $\varphi(z) = z^n$. Then for $w \in D$, $c(w, \varphi) =$ ${e^{\theta_1}w, \ldots, e^{\theta_{n-1}w}, w}$ and $c(w^n, \varphi) = \{z_1, \ldots, z_n\}$ where $z_k = \sqrt[n]{|w|}$ and $\theta_k = e^{\frac{2k\pi i}{n}}$. Since $A(\mathbb{D} \setminus \mathbb{D}_0) = 0$, then by Theorem [2.3](#page-8-0) we get that

$$
h(w) = \sum_{k=1}^{n} \frac{1}{|\varphi'(z_k)|^2} = \frac{1}{n|w|^{\frac{2(n-1)}{n}}}
$$

and for each $0 \le f \in L^0(\Sigma)$ we have (also see [\[2](#page-15-13), [9\]](#page-15-14))

$$
E_{\varphi}(f)(w) = \frac{1}{n} \sum_{z \in c(w^n, \varphi)} f(z) = \frac{1}{n} \sum_{k=1}^n f(e^{\theta_k} w);
$$

\n
$$
(E_{\varphi}(f) \circ \varphi^{-1})(w) = \frac{1}{n} \sum_{z \in c(w, \varphi)} f(z) = \frac{1}{n} \sum_{k=1}^n f(z_k);
$$

\n
$$
J_{\varphi}[f](w) = h(w)(E_{\varphi}(f) \circ \varphi^{-1})(w) = \frac{1}{n^2 |w|^{\frac{2(n-1)}{n}}} \sum_{k=1}^n f(z_k).
$$

Thus so for $u \in \Lambda^0(M)$, $N_\varphi(|u|^2) = J_\varphi[|u\varphi'|^2](w) = \sum_{k=1}^n |u(z_k)|^2$. In particular, if $u(z) = z$ then $J_{\varphi}[\vert z\varphi'\vert^2](w) = n\vert w\vert^{\frac{2}{n}}$. Also, if $\overline{u\varphi'}f$ and $\overline{u}\varphi'g$ are non-negative, then by Corollary [2.9](#page-13-0) we have

$$
(uC_{\varphi})^*(\omega) = J_{\varphi}[u\varphi' f](w)dw + J_{\varphi}[\bar{u}\varphi'g](w)d\bar{w}
$$

=
$$
\frac{1}{n|w|^{\frac{n-1}{n}}} \sum_{k=1}^n \bar{u}(z_k) \{e^{\theta_k} f(z_k)dw + e^{-\theta_k} g(z_k)d\bar{w}\}.
$$

Proposition 2.11 *Let* $u \in \Lambda^0(M)$ *, let* $\varphi : M \to N$ *be an analytic map with* Δ -*property and* $\mu C_\varphi \in B(\Lambda_2^1(N) \Lambda_2^1(M))$ *. Then* (a) dim $\mathcal{N}(u\tilde{C}_{\varphi}) = 0$ *or* ∞ .

(b) dim $\mathcal{N}((uC_{\varphi})^*)=0$ *or* ∞ *.*

Proof (a) Let $0 \neq \omega \in \mathcal{N}(uC_{\omega})$ be represented by $\omega^{\beta} = f^{\beta}d\beta + g^{\beta}d\overline{\beta}$ in any local chart (β, U_β) . Then $\mu_\beta(\sigma(f^\beta) \cup \sigma(g^\beta)) = \mu_\beta(\sigma(\omega^\beta)) = A(\beta(\sigma(\omega^\beta))) > 0$. Choose a sequence $\{K_n\}$ of pairwise disjoint $\mathcal{M}_{\mathbb{C}}$ -measurable sets in $\beta(\sigma(\omega^{\beta}))$ with $0 < A(K_n) < \infty$. Let $\omega_n^{\beta} = \omega^{\beta} \chi_{\beta^{-1}(K_n)}$ for $n \in \mathbb{N}$. Then $\omega_n \neq 0$ and for all $n \neq m$,

$$
\langle \omega_n, \omega_m \rangle_N = \sum_{\beta \in \mathcal{B}} \langle \omega_n^{\beta}, \omega_m^{\beta} \rangle_{\Delta_{\beta}} = \sum_{\beta \in \mathcal{B}} \int_{\beta(\Delta_{\beta})} 2(|f_{\beta}^{\beta}|^2 + |g_{\beta}^{\beta}|^2) \chi_{E_n \cap E_m} dA = 0
$$

and

$$
\|uC_{\varphi}(\omega_{n})\|_{M}^{2} = \sum_{\beta \in \mathcal{B}} \sum_{\alpha \in \mathcal{A}_{\beta}} 2 \int_{\varphi_{\alpha\beta}^{-1}(E_{n})} \left\{ (|f^{\beta}_{\beta}|^{2} + |g^{\beta}_{\beta}|^{2}) \circ \varphi_{\alpha\beta} \right\} |u^{\alpha}_{\alpha}\varphi'_{\alpha\beta}|^{2} dA
$$

$$
\leq \sum_{\beta \in \mathcal{B}} \sum_{\alpha \in \mathcal{A}_{\beta}} 2 \int_{\alpha(\Delta_{\alpha})} \left\{ (|f^{\beta}_{\beta}|^{2} + |g^{\beta}_{\beta}|^{2}) \circ \varphi_{\alpha\beta} \right\} |u^{\alpha}_{\alpha}\varphi'_{\alpha\beta}|^{2} dA = \|uC_{\varphi}(\omega)\|_{M}^{2} = 0.
$$

Consequently, dim $\mathcal{N}(u_0) = \infty$.

(b) Let $0 \neq \eta \in \mathcal{N}((uC_{\varphi})^*)$ be represented by $\eta^{\alpha} = k^{\alpha} d\alpha + l^{\alpha} d\bar{\alpha}$ in any local chart (α, U_{α}) . Then by Theorem [2.8](#page-12-2) we have

$$
\langle \omega, (uC_{\varphi})^*(\eta) \rangle_N = 2 \sum_{\beta \in \mathcal{B}} \int_{\beta(\triangle_{\beta})} \left\{ f^{\beta}_{\beta} \overline{K^{\beta}_{\beta}} + g^{\beta}_{\beta} \overline{L^{\beta}_{\beta}} \right\} dA = 0
$$

for all $\omega \in \Lambda_2^1(N)$. Put $p_\alpha^\alpha = \max\{|k_\alpha^\alpha|^2, |l_\alpha^\alpha|^2\}$. Then

$$
\int_{\alpha(\triangle_{\alpha})} E_{\alpha\beta}(p^{\alpha}_{\alpha})dA = \int_{\alpha(\triangle_{\alpha})} p^{\alpha}_{\alpha}dA > 0.
$$

So for some $\delta > 0$, $\varphi_{\alpha\beta}^{-1}(\mathcal{M}_{\beta(\Delta_{\beta})})$ -measurable set $F = \{z \in \alpha(\Delta_{\alpha})$: $E_{\alpha\beta}(p_{\alpha}^{\alpha})(z) \ge \delta$ has positive measure. There is $M_{\beta(\Delta_{\beta})}$ -measurable set $G \subseteq \beta(\Delta_{\beta})$ such that $F = \varphi_{\alpha\beta}^{-1}(G)$. It follows that there exists a sequence $\{G_n\} \subseteq \mathcal{M}_{\beta(\Delta_{\beta})}$ of pairwise disjoint sets in *G* such that $0 < A(\varphi_{\alpha\beta}^{-1}(G_n)) < \infty$. Take $\eta_n = \eta \chi_{\alpha^{-1}(\varphi_{\alpha\beta}^{-1}(G_n))}$ for $n \in \mathbb{N}$. Then

$$
\|\eta_n\|_M^2 = 2 \sum_{\alpha \in \mathcal{A}} \int_{\alpha(\Delta_{\alpha})} \left(|l_{\alpha}^{\alpha}|^2 + |k_{\alpha}^{\alpha}|^2 \right) \chi_{\varphi_{\alpha\beta}^{-1}(G_n)} dA \ge 2 \sum_{\alpha \in \mathcal{A}} \int_{\varphi_{\alpha\beta}^{-1}(G_n)} p_{\alpha}^{\alpha} dA
$$

=
$$
2 \sum_{\alpha \in \mathcal{A}} \int_{\varphi_{\alpha\beta}^{-1}(G_n)} E_{\alpha\beta}(p_{\alpha}^{\alpha}) dA \ge 2\delta A(\varphi_{\alpha\beta}^{-1}(G_n)) > 0,
$$

$$
\langle \eta_n, \eta_m \rangle_M = 0 \text{ for all } n \neq m \text{ and } \|(uC_\varphi)^*(\eta_n)\|_N^2 \leq \|(uC_\varphi)^*(\eta)\|_N^2 = 0.
$$

Acknowledgements The authors would like to sincerely thank the anonymous referee for carefully reading the paper and for very useful comments.

Author Contributions Minayi is my PhD student. We did it together.

Declarations

Competing interests The authors declare no competing interests.

References

- 1. Campbell, J., Jamison, J.: On some classes of weighted composition operators. Glasg. Math. J. **32**, 87–94 (1990)
- 2. Carswell, B.J., Stessin, M.I.: Conditional expectation and the Bergman projection. J. Math. Anal. Appl. **341**, 270–275 (2008)
- 3. Cao, G.F.: Fredholm composition operators on Riemann surfaces. Acta Math. Sin. **21**, 869–872 (2005)
- 4. Cao, G.F., Wang, X.F.: Operators on differential form spaces for Riemann surfaces. Acta Math. Sin. **23**, 925–934 (2007)
- 5. Cowen, C., MacCluer, B.: Composition Operators on Space of Analytic Functions. CRC Press (1995)
- 6. Farkas, H.M., Irwin, K.: Riemann Surfaces. Springer (1992)
- 7. Herron, J.: Weighted conditional expectation operators. Oper. Matrices **5**, 107–118 (2011)
- 8. Hoover, T., Lambert, A., Queen, J.: The Markov process determined by a weighted composition operator. Stud. Math. **LXXII**, 225–235 (1982)
- 9. Jabbarzadeh, M.R., Hassanloo, M.: Conditional expectation operators on the Bergman spaces. J. Math. Anal. Appl. **385**, 322–325 (2012)
- 10. Jabbarzadeh, M.R., Talebi, F.: Weighted composition operators on measurable differential form spaces. Bull. Iran. Math. Soc. **41**, 259–267 (2015)
- 11. Mihaila, I.: Composition operators on Riemann surfaces. UN Hampshire Doctoral Dissertation (1996)
- 12. Rao, M.M.: Conditional Measure and Applications. Marcel Dekker, New York (1993)
- 13. Springer, G.: Introduction to Riemann Surfaces. Addison-Wesley (1957)
- 14. Yang, X.: Composition operators on Hardy spaces of Riemann surfaces. Complex Var. Elliptic Equ. **61**, 351–358 (2016)
- 15. Zhu, K.: Operator Theory in Function Spaces. Marcel Dekker, New York (1990)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.