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Abstract
In this paper, using properties of the conditional expectation operators we give an
explicit formula for the adjoint of a bounded weighted pullback transform uCϕ with
analytic symbol ϕ andmeasurable weight u on themeasurable differential form spaces
for Riemann surfaces. Also, some properties of these transforms are discussed.
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1 Introduction and Preliminaries

A two dimensional manifold M is a connected Haussdorf topological space such
that every x in M has a neighborhood homeomorphic to an open disc in the plane.
If M is a two dimensional manifold, a complex chart on M is a homeomorphism
α : Uα → α(Uα) of an open subset Uα ⊂ M onto an open subset α(Uα) ⊂ C. Two
charts α and β are analytically compatible if transition map

ταβ = β ◦ α−1 : α(Uα ∩Uβ) → β(Uα ∩Uβ)

is biholomorphic. A complex atlas on M is a collection of analytically equivalent
compatible charts A = {(α,Uα)} whose domains cover M , i.e. M = ∪αUα . Two
complex atlasesA1 andA2 are analytically equivalent ifA1 ∪A2 is a complex atlas.
An analytic structure on a two dimensional manifold M is an equivalence class of
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analytically equivalent atlases. A Riemann surface is a two dimensional manifold
with an analytic structure. A 0-form on M is a complex valued function on M . A
1-form ω on M is an ordered assignment of two functions f α and gα to each local
coordinate chart (α,Uα) on M such that the expression f αdα + gαdᾱ is invariant
under coordinate changes. A 2-form� on M is an assignment of a function f α to each
local coordinate α such that the expression f αdα ∧ dᾱ is invariant under coordinate
changes. For k ∈ {0, 1, 2}, we let �k(M) denote the vector space of k-forms. Note
that �k(M) = 0, for all k ≥ 3.

Since M locally looks like an open subset of C, it is clear that measurability can
be lifted up from C to M using local charts. Let (C,MC, A) be a Lebesque measure
space. A subset B ⊆ M is said to be Lebesque measurable, if for every b ∈ B there
is a local chart (α,Uα) with b ∈ Uα such that α(B ∩ Uα) ∈ MC. This approach is
independent of coordinate system. Put 	M = {B ⊆ M : B is Lebesque measurable}.
It is easy to see that 	M is a σ -algebra over M and contains the Borel σ -algebra
B(M). Let M = D = {z ∈ C : |z| < 1}. Using the trivial chart (id, M),	D = MD =
{B ∩ D : B ∈ MC} is a σ -algebra restricted to D. Note that the change of variable
formula is in disagreement with the change of chart formula, so the Lebesque measure
and hence the Lebesque integral on ∪αUα can not be lifted to M in general. However,
we can also speak about measures on 	M of Lebesque sets on M (e.g. see [10]). We
say that f : M → C is measurable if and only if f −1(MC) ⊆ 	M . So, f : M → C

is measurable if and only if f α = f|Uα
: (Uα,	Uα ) → C is measurable, for all α.

Equivalently, f is measurable if and only if f α ◦ α−1 : (α(Uα),Mα(Uα)) → C is
measurable, for all α. In particular, A ∈ 	M has measure zero if for every local chart
(α,Uα)ofM , the setα(A∩Uα)hasmeasure zero. Since the changeof coordinatesmaps
between charts are diffeomorphisms, then the null sets remain null under coordinate
change. A measurable 1-form with respect to local chart (α,Uα) is an expression ω

of the form ω = f αdα + gαdᾱ, where f α, gα : (Uα,	Uα ) → C are measurable.
A weighted pullback transform on measurable differential form spaces is an oper-

ator induced by pullback with a analytic transformation of the underlying Riemann
surfaces, followed by a multiplication (see section 2 for precise definitions). The pull-
back transforms (composition operators) on Riemann surfaces were first studied by
Mihaila [11]; she obtained some results on pullback transforms on Riemann surfaces
and posed some problems on these operators. Then Cao [3, 4] characterized invertibil-
ity and Fredholmness of pullback and Toeplitz transforms on measurable and analytic
differential forms for Riemann surfaces. Boundedness criteria and the adjoint of a
weighted pullback transform has been given in [10]. In the next section, we provide
another one which is complete and written in terms of conditional expectation oper-
ators different than that used in [10]. Also, some properties of these transforms are
discussed.

2 Main Results

First we review some basic results on pullback transforms and state some general
assumptions. Let us start by recalling the definitions and fixing the notation in case
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M = N = D = {z ∈ C : |z| < 1}. Take L2(D,MD, A) = L2(D) and set �1
2(D) =

{ω = f dz + gdz̄ : f , g ∈ L2(D)}. Then �1
2(D) is a vector space of measurable

1-forms on the Riemann surface D. For z = x + iy and ω = f dz + gdz̄ ∈ �1
2(D),

we have dz = dz̄ = dx − idy and ∗ω := −i f dz + igdz̄. So, ω̄ = ḡdz + f̄ d z̄ and
∗ω̄ = −i ḡdz+i f̄ d z̄. Set dx∧dy = dxdy = d A. Then dz∧dz̄ = −2idxdy and hence
ω∧∗ω = i(| f |2+|g|2)dz∧dz̄ = 2(| f |2+|g|2)dxdy. Forωi = fi dz+gidz̄ ∈ �1

2(D),
set 〈ω1, ω2〉 = ∫

D
ω1 ∧∗ ω2 = ∫

D
2( f1 f̄2 + g1ḡ2)dxdy. Then �1

2(D) is an inner
product space with the induced norm given by ‖ω‖2

D
= 2‖ f ‖2

L2(D)
+2‖g‖2

L2(D)
. Now

let {ωn} = { fndz + gndz̄} be a Cauchy sequence in �1
2(D). Then

max{‖ fn− fm‖2L2(D)
, ‖gn−gm‖2L2(D)

}≤
∫

D

2(| fn− fm |2+|gn−gm |2)dxdy → 0.

Hence there are f , g ∈ L2(D) such that max{‖ fn − f ‖2
L2(D)

, ‖gn − g‖2
L2(D)

} → 0.

Set ω = f dz + gdz̄. Then ω ∈ �1
2(D) and ‖ωn − ω‖D → 0. Thus, (�1

2(D), ‖ ‖
D
) is

a Hilbert space (see [6]). We remark that �1
2(D) ∼= L2(D) × L2(D) with the natural

norm ‖( f , g)‖2 = 2‖ f ‖2
L2(D)

+ 2‖g‖2
L2(D)

. The Bergman space L2
a(D) is the set of

analytic functions on D, square integrable with respect to Lebesque area measure A,
i.e. L2

a(D) = L2(D) ∩ H(D), where H(D) denote the class of functions analytic in
the unit disc D. It is a closed subspace of L2(D) and hence is a Hilbert space with
inner product 〈 f , g〉 = 1/π

∫
D
f (z)ḡ(z)d A(z) (see [15]). Since for each f ∈ L2

a(D),
‖ f dz‖D = 2π‖ f ‖L2

a(D), so �1
2,a(D) := { f dz : f ∈ L2

a(D)} ∼= L2
a(D) (see [11]) and

hence is an Hilbert space.
Suppose ϕ : D → D is an analytic and nonconstant function. For w ∈ ϕ(D), let

c(w, ϕ) denote the countable collection of zeros of ϕ(z) − w including multiplicities,
i.e. c(w, ϕ) = {ξ ∈ D : ϕ(ξ) = w}. Let W and g be two non-negative measurable
functions defined on D. By the area formula [5, Theorem 2.32], we have

∫

D

g(ϕ(z))W (z)|ϕ′(z)|2d A(z) =
∫

ϕ(D)

g(w)Nϕ(W )(w)d A(w), (2.1)

where Nϕ( f ) : D → C ∪ {∞} is the generalized counting function defined by
Nϕ( f )(w) = {	 f (ξ) : ξ ∈ c(w, ϕ)} for all f ∈ L0(D), the space of all finite-
valued measurable functions on D. If c(w, ϕ) = ∅, then we take Nϕ( f )(w) = 0.
Then the support of Nϕ( f ) is ϕ(D) and so χϕ(D)Nϕ( f ) = Nϕ( f ). For f ∈ L0(D),
set g = | f |2 in (2.1). Then

∫

D

W | f ◦ ϕ|2|ϕ′|2d A =
∫

D

Nϕ(W )| f |2d A.

Set Nϕ(1) = Nϕ = #{z ∈ D : ϕ(z) = w} where the number of z above is counted
with appropriate multiplicity. If we take W = 1, then we have

∫

D

| f ◦ ϕ|2|ϕ′|2d A =
∫

D

Nϕ | f |2d A. (2.2)
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Suppose ψ : D → D is an analytic and invertible. Then c(ψ−1(w), ϕ) = c(w,ψ ◦
ϕ) for all ω ∈ ϕ(D), and so (Nϕ( f ))ψ := Nϕ( f ) ◦ ψ−1 = Nψ◦ϕ( f ) for all non-
negative function on D. Moreover, Nϕ( f ◦ ϕ) = f Nϕ . In particular, let f (w, a0) be
a Green function on D where a0 is some fixed point. Then Nϕ( f (. a0)) is called the
Nevanlinna counting function on D\{ϕ(a0)} (see [14]).

The space L∞(D) is the set of all essentially bounded functions on D. For an
analytic self-map ϕ : D → D, the pullback transform Cϕ : �1

2(D) → �1
2(D) defined

as Cϕ(ω) = ϕ∗(ω), where ϕ∗(ω) = ( f ◦ ϕ)dϕ + (g ◦ ϕ)dϕ̄ is the pullback of the
form ω = f dz + gdz̄ ∈ �1

2(D). Since dϕ = ϕ′dz and dϕ̄ = dϕ = ϕ′dz̄, then
Cϕ(ω) = ( f ◦ ϕ)ϕ′dz + (g ◦ ϕ)ϕ′dz̄. Using 2.2 we obtain that

‖Cϕ(ω)‖2
D

= 2
∫

D

(| f ◦ ϕ|2 + |g ◦ ϕ|2)|ϕ′|2d A = 2
∫

D

(| f |2 + |g|2)Nϕd A. (2.3)

Thus, for some k > 0,

Cϕ ∈ B(�1
2(D)) ⇐⇒ ‖Cϕ(ω)‖D ≤ k‖ω‖D, ∀ω ∈ �1

2(D)

⇐⇒ k2‖ω‖2
D

− ‖Cϕ(ω)‖2
D

≥ 0

⇐⇒ 2
∫

D

(| f |2 + |g|2)(k2 − Nϕ)d A ≥ 0

⇐⇒ Nϕ ≤ k2 ⇐⇒ Nϕ ∈ L∞(D).

In this case ‖Cϕ(ω)‖D ≤ ‖Nϕ‖1/2∞ ‖ω‖D, and hence ‖Cϕ‖D ≤ ‖Nϕ‖1/2∞ . Also,

〈C∗
ϕCϕ(ω), ω〉 = 〈Cϕ(ω),Cϕ(ω)〉 = ‖Cϕ(ω)‖2

D
= 2

∫

D

(| f |2 + |g|2)Nϕd A

=
∫

D

(
√
Nϕω) ∧∗ (

√
Nϕω) = 〈√Nϕω,

√
Nϕω〉 = 〈Nϕω, ω〉.

Since C∗
ϕCϕ is self-adjoint, then C∗

ϕCϕ(ω) = Nϕω for all ω ∈ �1
2(D). Using (2.3),

‖Cϕ(ω)‖D = ‖ω‖D if and only if Nϕ = 1 on D. But Nϕ = 1 if and only if ϕ is a
bijection. The support of f ∈ L0(D) is defined by σ( f ) = {x ∈ D : f (x) �= 0}.
In our case, σ( f dz + gdz̄) = σ( f ) ∪ σ(g). It is worth nothing that σ(Nϕ) = ϕ(D)

and σ(Nϕ) = D if and only if ϕ is onto. Let K = D\ϕ(D). Using (2.3), Cϕ(ω) = 0
if and only if σ(ω) ⊆ K for all ω ∈ �1

2(D). It follows that N (Cϕ) ∼= �1
2(K )

and hence R(C∗
ϕ) = �1

2(K )⊥ ∼= �1
2(ϕ(D)). So, Cϕ is one-to-one if and only if

A(K ) = 0 and Cϕ is partial isometry if and only of Nϕ = 1 on ϕ(D). Note that
‖Cϕ( f dz)‖2

D
= 2

∫
D

| f |2Nϕd A for all f ∈ L2
a(D). So,Cϕ is bounded if and only if Nϕ

is bounded. In particular, if we take ϕ(z) = zn , then ‖Cϕ‖2 = ‖C∗
ϕCϕ‖ = ‖Mn‖ = n

and hence ‖Cϕ‖ = √
n (see [11, p.26]).

Now we show that the measure A ◦ϕ−1 defined by A ◦ϕ−1(K ) = A(ϕ−1(K )), for
all K ∈ MD, is absolutely continuous with respect to A. For this, let A(K ) = 0 but
A(ϕ−1(K )) �= 0 for some K ∈ MD. Since ϕ is a non-constant analytic self-map on
D, so there exists a collection of disjoint open sets {Vi } such that A(D\ ∪ Vi ) = 0 and
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ϕ|Vi is one-to-one. So, A(Vi ∩ ϕ−1(K )) �= 0, for some i ∈ N. Set F = Vi ∩ ϕ−1(K ).

Then F = ϕ−1(F ′) for some F ′ ⊆ K . Note that ϕ|F is one-to-one and so |ϕ′| > 0 on
F . Thus,

∫
Vi

χF |ϕ′|2d A = ∫
F |ϕ′|2d A > 0. Since ϕ(F) ⊆ F ′ ⊆ K and A(K ) = 0,

then A(ϕ(Vi ) ∩ ϕ(F)) ≤ A(K ) = 0. Then by the area formula we obtain that

0 <

∫

Vi∩ϕ−1(F ′)
|ϕ′|2d A =

∫

Vi
χF |ϕ′|2d A

=
∫

ϕ(Vi )
χF ◦ ϕ−1d A =

∫

ϕ(Vi )∩ϕ(F)

d A = 0.

But this is a contradiction. These observations establish the following result.

Proposition 2.1 Let Cϕ : �1
2(D) → �1

2(D) be the pullback transform induced by a
non-constant analytic self-map ϕ on the unit disc D. Then the following statements
hold:

(a) [11, Theorem 2.1] Cϕ is bounded if and only if Nϕ ∈ L∞(D), and in this case
‖Cϕ‖2

D
≤ ‖Nϕ‖∞.

(b) [11, Corollary 2.1] C∗
ϕCϕ = MNϕ , the multiplication operator induced by Nϕ .

(c) N (Cϕ) ∼= �1
2(K ), where K = D\ϕ(D).

(d) Cϕ is an isometry if and only if Nϕ = 1 on D.
(e) Cϕ is a partial isometry if and only if Nϕ = 1 on ϕ(D).
(f) A ◦ ϕ−1 is absolutely continuous with respect to A on D.

Let M and N be Riemann surfaces. A continuous map ϕ : M → N is said to be
analytic if for any chart α on M and for any chart β on N with ϕ(Uα) ⊂ Uβ , the
function ϕαβ = β ◦ ϕ ◦ α−1 : α(Uα) → β(Uβ) is analytic. Throughout the paper
ϕ : M → N will be an analytic map,A = {(α,Uα)}, B = {(β,Uβ)}, M = ∪αUα and
N = ∪βUβ . LetMβ(Uβ ) be the Lebesque σ -algebra in β(Uβ), f β, gβ, Fβ ∈ L0(Uβ),
ω ∈ �1(N ), � ∈ �2(N ), ωβ = ω|Uβ = f βdβ + gβdβ̄, �β = �|Uβ = Fβdβ ∧ dβ̄.
Take

L p(β(Uβ)) = L p(β(Uβ),Mβ(Uβ ), A|Mβ(Uβ )
);

f β
β = f β ◦ β−1 ∈ L0(β(Uβ));

∗ωβ = −i f βdβ + igβdβ̄

and ϕ∗(ωβ) = ( f β ◦ ϕ)dβ ◦ ϕ + (gβ ◦ ϕ)dβ̄ ◦ ϕ. Then

ωβ ∧∗ ωβ = i(| f β |2 + |gβ |2)dβ ∧ dβ̄;
ω

β
β = ( f β ◦ β−1)dβ ◦ β−1 + (gβ ◦ β−1)dβ̄ ◦ β−1 = f β

β dz + gβ
βdz̄;

�
β
β = (Fβ ◦ β−1)d(β ∧ dβ̄) ◦ β−1 = Fβ

β dz ∧ dz̄;
∫

Uβ

�β =
∫

β(Uβ)

�
β
β =

∫

β(Uβ)

Fβ
β dz ∧ dz̄ =

∫

β(Uβ)

−2i Fβ
β d A.
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A triangle on M is a Jordan domain together with a homeomorphism onto a triangle
inC. A two dimensional manifold is called triangulable if there are countable triangles
{�α} on M such that ∪�α = M , for α �= β, int�α ∩ int�β = ∅ and for each p ∈ M
there is a neighborhoods V of p such that that set {α : �α ∩ V �= ∅} is finite. By
subdividing a triangulation it is always possible to have each triangle contained in the
domain of a chart [11, p. 24]. It is known that a connected surface is triangulable if and
only if it admits a countable base. In particular, every Riemann surface is triangulable
(see [13]). Since there might exist several charts containing a given triangle, using
the axiom of choice, we pick one of them and then we restrict it to the interior of the
triangle. So, for �α ⊂ U ′

α , Uα := int�α ∩ U ′
α is the restriction of U ′

α to the interior
of �α . For brevity, we consider the following standing assumption.

�-property: We say that triangulations {�α} of M and {�β} of N have �-property
if each triangle �α is contained in the domain of some chart on M and each triangle
�β is contained in the domain of some chart on N and for every α, there is a β such
that ϕ(�α) ⊆ �β , Uα = int�α , Uβ = int�β and so {α : α ∈ A} = {(α, β) : α ∈
A, ϕ(�α) ⊆ �β}.

The space �1
2(N ) of measurable 1-forms on the Riemann surface N defined as

�1
2(N ) = {ω ∈ �1(N ) : ωβ = f βdβ+gβdβ̄, f β

β , gβ
β ∈ L2(β(Uβ)), for all β ∈ B}.

Consider triangulation {�β}β∈B of N with �-property. Let ω1, ω2 ∈ �1
2(N ) and

ω
β
i = f β

i dβ + gβ
i dβ̄, for β ∈ B. Set 〈ω1, ω2〉N = ∫

N ω1 ∧∗ ω2. Then we have

〈ω1, ω2〉N =
∫

∪�β

ω1 ∧∗ ω2 =
∑

β∈B

∫

�β

ω
β
1 ∧∗ ω

β
2

=
∑

β∈B

∫

�β

( f β
1 f β

2 + gβ
1 gβ

2 )idβ ∧ dβ̄

=
∑

β∈B

∫

β(�β)

{

( f1)
β
β ( f2)

β
β + (g1)

β
β (g2)

β
β

}

idz ∧ dz̄

=
∑

β∈B
2

∫

β(�β)

{

( f1)
β
β ( f2)

β
β + (g1)

β
β (g2)

β
β

}

d A.

The space �1
2(N ) which satisfy the following

‖ω‖2N =
∫

N
ω ∧∗ ω =

∑

β∈B
2

∫

β(�β)

{
| f β

β |2 + |gβ
β |2

}
d A < ∞

is a Hilbert space with inner product 〈ω1, ω2〉 = ∫
N ω1 ∧∗ ω2 = ∑

β〈ωβ
1 , ω

β
2 〉�β (see

[6]). Since {( fi )ββ, (gi )
β
β} ⊂ L2(β(Uβ)), then 〈ωβ

1 , ω
β
2 〉�β < ∞ for all β ∈ B. So, if

B is finite, then ‖ω‖N < ∞ for all ω ∈ �1
2(N ). So we have the following result.
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Proposition 2.2 Let {�β}β∈B be a triangulation of N with�-property. Then�1
2(N ) ∼=

⊕
β �1

2(β(�β)), ‖ω‖2N = ∑
β ‖ωβ‖2�β

= ∑
β ‖ωβ

β‖2β(�β) and

‖ωβ
β‖2β(�β) =

∫

β(�β)

2(| f β
β |2 + |gβ

β |2)d A,

for all ω ∈ �1
2(N ).

Now, let ω ∈ �1
2(N ). Using �-property, we take (ω ◦ ϕ)α = ωβ ◦ ϕ ◦ α−1. Since

( f β ◦ ϕ)α = f β ◦ ϕ ◦ α−1 = ( f β ◦ β−1) ◦ (β ◦ ϕ ◦ α−1) = f β
β ◦ ϕαβ;

(gβ ◦ ϕ)α = gβ ◦ ϕ ◦ α−1 = gβ
β ◦ ϕαβ;

d(β ◦ ϕ)α = d(β ◦ ϕ ◦ α−1) = dϕαβ = ϕ′
αβdz;

d(β̄ ◦ ϕ)α = d(β ◦ ϕ)α = ϕ′
αβdz = ϕ′

αβdz̄,

then

[Cϕ(ω)]αα = [ω ◦ ϕ]αα = (ωβ ◦ ϕ)α = [( f βdβ) ◦ ϕ + (gβdβ̄) ◦ ϕ]α
= ( f β ◦ ϕ)αd(β ◦ ϕ)α + (gβ ◦ ϕ)αd(β̄ ◦ ϕ)α

= ( f β
β ◦ ϕαβ)ϕ′

αβdz + (gβ
β ◦ ϕαβ)ϕ′

αβdz̄.

It follows that

‖Cϕ(ω)‖2M =
∫

∪�α

Cϕ(ω) ∧∗ Cϕ(ω) =
∑

α∈A

∫

�α

(ω ◦ ϕ)α ∧∗ (ω ◦ ϕ)α

=
∑

α∈A

∫

α(�α)

[ω ◦ ϕ]αα ∧∗ [ω ◦ ϕ]αα

=
∑

{(α,β):α∈A, ϕ(�α)⊆�β }
2

∫

α(�α)

{
| f β

β ◦ ϕαβ |2 + |gβ
β ◦ ϕαβ |2

}
|ϕ′

αβ |2d A

=
∑

β∈B

∑

α∈Aβ

2
∫

α(�α)

{
(| f β

β |2 + |gβ
β |2) ◦ ϕαβ

}
|ϕ′

αβ |2d A,

where Aβ = {α ∈ A : ϕ(�α) ⊆ �β}.

We now introduce conditional expectations as another application of the Radon–
Nikodym theorem. Let (X , 	,μ) be a complete σ -finite measure space. For any
complete σ -finite subalgebra C ⊆ 	 the Hilbert space L2(X , C, μ|C) is abbreviated
to L2(C) where μ|C is the restriction of μ to C. For each non-negative f ∈ L0(	), the
linear space of all complex-valued 	-measurable functions on X , or f ∈ L2(	), by
the Radon–Nikodym theorem, there exists a unique C-measurable function EC( f ) =
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E( f | C) such that
∫
A f dμ = ∫

A EC( f )dμ, where A is any C-measurable set for
which

∫
A f dμ exists. Now associatedwith every complete σ -finite subalgebra C ⊆ 	,

the mapping EC : L2(	) → L2(C) uniquely defined by the assignment f �→ EC( f ),
is called the conditional expectation operator with respect to C. The mapping EC is a
linear orthogonal projection onto L2(C). Note thatD(EC), the domain of EC , contains
∪p≥1L p(	) ∪ { f ∈ L0(	) : f ≥ 0}. For more details on the properties of EC see
[7, 12]. Conditional expectation operator plays a crucial role in our considerations.
Those properties of EC used in our discussion are summarized below. In all cases we
assume that f , g, f g ∈ D(EC) and p ≥ 1.
◦ If g is C-measurable then EC( f g) = EC( f )g.
◦ |EC( f )|p ≤ EC(| f |p).
◦ If f ≥ 0 then EC( f ) ≥ 0.
◦ |EC( f g)|2 ≤ (EC(| f |2))(EC(|g|2)).

Let G1 and G2 be an open and connected sets in C and let ϕ : G1 → G2 be a non-
constant analytic function. Still proceeding as in the proof of Proposition 2.1(f), one
establishes that A◦ϕ−1 is absolutely continuouswith respect to A, i.e., A(ϕ−1(K )) = 0
for all K ∈ MG2 with A(K ) = 0. Let hϕ = A ◦ ϕ−1/d A be the Radon–Nikodym
derivative. Consider the σ -finite algebra C(ϕ) = ϕ−1(MG2) of G1 and take EC(ϕ) =
E(. | C(ϕ)) = Eϕ . It is known that for each non-negativeG1-measurable function f or
for each f ∈ L2(G1), there exists aG2-measurable function g such that Eϕ( f ) = g◦ϕ.
Moreover, g is uniquely determined in σ(hϕ), the support of hϕ . Therefore, even
though ϕ is not invertible, the expression g = Eϕ( f ) ◦ ϕ−1 is well defined, whenever
σ(g) ⊆ σ(hϕ) (see [1]). Recall that for 0 ≤ f ∈ L0(G2) and 0 ≤ W ∈ L0(G1) we
have

∫

G1

W (z) f (ϕ(z))|ϕ′(z)|2d A(z) =
∫

ϕ(G1)

⎧
⎨

⎩

∑

z∈c(w,ϕ)

W (z)

⎫
⎬

⎭
f (w)d A(w).

Set G0 = {z ∈ G1 : ϕ′(z) �= 0} Then G0 is countable and so G0 = G1 a.e. [A].
For 0 ≤ g ∈ L0(G1), put W (z) = χG0

g(z)|ϕ′(z)|−2. Then we have that

∫

G1

g(z) f (ϕ(z))d A(z) =
∫

ϕ(G1)

⎧
⎨

⎩

∑

z∈c(w,ϕ)∩G0

g(z)

|ϕ′(z)|2

⎫
⎬

⎭
f (w)d A(w). (2.4)

On the other hand, by the change of variable formula in the measure theory setting,
we have ([8])

∫

G1

g( f ◦ ϕ)d A =
∫

G1

Eϕ(g)( f ◦ ϕ)d A =
∫

ϕ(G1)

{Eϕ(g) ◦ ϕ−1} f d A ◦ ϕ−1

=
∫

ϕ(G1)

{
hϕEϕ(g) ◦ ϕ−1

}
f d A.
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Now, for each A ∈ MG1 , take f = χA and set Jϕ[g] = hϕEϕ(g) ◦ ϕ−1. Using
(2.4) we get that

∫

A

⎧
⎨

⎩
Jϕ[g](w) −

∑

z∈c(w,ϕ)∩G0

g(z)

|ϕ′(z)|2

⎫
⎬

⎭
χϕ(G1)d A(w) = 0.

It follows that

Jϕ[g](w) =
∑

z∈c(w,ϕ)∩G0

g(z)

|ϕ′(z)|2 , (w ∈ ϕ(G1)).

If Nϕ(.) is bounded on ϕ(G1), then Jϕ[g] is finite-valued. Note that Jϕ[1] = h
and c(w, ϕ) = ∅ for w ∈ G2\ϕ(G1). Also, if B ⊆ G2\ϕ(G1) is in MG2 , then
ϕ−1(B)∩G1 = ∅ and hence

∫
B hd A = ∫

B d A ◦ϕ−1 = A(ϕ−1(B)∩G1) = 0. Thus,
σ(Jϕ[g]) ⊆ σ(h) ⊆ ϕ−1(G1). These observations establish the following result.

Theorem 2.3 Let G1 and G2 be an open and connected sets in C, ϕ : G1 → G2 be
a non-constant analytic function and let G0 = {z ∈ G1 : ϕ′(z) �= 0}. Then for each
0 ≤ g ∈ L0(G1) we have

Jϕ[g](w) =
⎧
⎨

⎩

∑

z∈c(w,ϕ)∩G0

g(z)
|ϕ′

(z)|2 w ∈ ϕ(G1)

0 w /∈ G2\ϕ(G1),

where Jϕ[g] = hϕEϕ(g) ◦ ϕ−1. In particular, Jϕ[|ϕ′|2] = Nϕ(χG0) and

h(w) =
⎧
⎨

⎩

∑

z∈c(w,ϕ)∩G0

1
|ϕ′

(z)|2 w ∈ ϕ(G1)

0 w /∈ G2\ϕ(G1).

Let Eϕ(L2
a(D)) ⊆ L2

a(D). Then by [2, Theorem 2], non-negativity of f ∈ L2
a(D)

is not required as mentioned in Theorem 2.3 for Jϕ[ f ].
Example 2.4 Let G1 = D, {α, β, γ } ⊂ R, ϕ(z) = αz2 + βz + γ and let G2 = ϕ(D).
Then for each w ∈ ϕ(D), c(wn, ϕ) = {w,−β+αw

α
} and c(w, ϕ) = {w1, w2} =

{−β−
√

β2−4α(γ−w)

2α ,
−β+

√
β2−4α(γ−w)

2α }. Then by [2, Theorem 2] and Theorem 2.3 we
obtain

Eϕ( f )(w) = 1

2
f (w) + 1

2
f

(

−β + αw

α

)

;

h(w) = 2

|β2 − 4α(γ − w)|2
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and (Eϕ( f ) ◦ ϕ−1)(w) = 1
2 { f (w1) + f (w2)}. Consequently,

Jϕ[ f ](w) = 1

|β2 − 4α(γ − w)|2 { f (w1) + f (w2)} , f ∈ L2
a(D), w ∈ ϕ(D).

Boundedness of pullback transforms on between differential form spaces for Rie-
mann surfaces has been characterised in [11, Theorem 2.2]. In [10, Theorem 2.2],
we studied bounded operators of the form ω �→ u(ω ◦ ϕ) for ω ∈ �1

2(N ). In the
following, the boundedness of weighted pullback transforms acting between two dif-
ferent measurable differential form spaces are characterized using some properties of
conditional expectation operators.

Theorem 2.5 Let M and N be Riemann surfaces, u ∈ �0(M) and let ϕ : M → N
be an analytic map with �-property. Then the weighted pullback transform uCϕ :
�1

2(N ) → �1
2(M) is bounded if and only if Nϕ(|u2|) is essentially bounded. In this

case ‖uCϕ‖2M ≤ ‖Nϕ(|u|2)‖∞.

Proof Let ω ∈ �1
2(N ). Then for each α ∈ A we have

[uCϕ(ω)]αα = (uα(ωβ ◦ ϕ))α = uα
α(ωβ ◦ ϕ)α

= uα
α( f β

β ◦ ϕαβ)ϕ′
αβdz + uα

α(gβ
β ◦ ϕαβ)ϕ′

αβdz̄

Let Aβ = {α ∈ A : ϕ(�α) ⊆ �β}. Then by the change of variable formula we have

‖uCϕ(ω)‖2M =
∑

α∈A

∫

α(�α)

[u(ω ◦ ϕ)]αα ∧∗ [u(ω ◦ ϕ)]αα

= 2
∑

β∈B

∑

α∈Aβ

∫

α(�α)

{
| f β

β |2 + |gβ
β |2

}
(ϕαβ(z))|uα

α(z)ϕ′
αβ(z)|2d A(z)

= 2
∑

β∈B

∑

α∈Aβ

∫

ϕαβ(α(�α))

(| f β
β (w)|2+|gβ

β (w)|2)Jαβ [|uα
αϕ′

αβ |2](w)d A(w)

= 2
∑

β∈B

∑

α∈Aβ

∫

β(�β)

(| f β
β (w)|2 + |gβ

β (w)|2)χϕαβ(α(�α))(w)

×Jαβ [|uα
αϕ′

αβ |2](w)d A(w),

where

Jαβ [|uα
αϕ′

αβ |2](w) = hαβ(w)
{
Eαβ(|uα

αϕ′
αβ |2) ◦ ϕ−1

αβ

}
(w);

Eαβ = E(. | ϕ−1
αβ (Mβ(�β)));

hαβ = d A ◦ ϕ−1
αβ

d A
.
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Put c(w, ϕαβ) = {z ∈ α(�α) : ϕ′
αβ(z) �= 0, ϕαβ(z) = w}. Using Theorem 2.3, we

have

Jαβ [|uα
α ϕ′

αβ |2](w) =
∑

z∈c(w,ϕαβ)

|uα
α(z)|2|ϕ′

αβ(z)|2
|ϕ′

αβ(z)|2 =
∑

z∈c(w,ϕαβ)

|uα
α(z)|2

= Nϕαβ (|uα
α|2)(w) = χϕαβ(α(�α))Nϕαβ (|uα

α|2)(w).

Thus

‖uCϕ(ω)‖2M = 2
∑

β∈B

∫

β(�β)

(| f β
β (w)|2 + |gβ

β (w)|2)
⎧
⎨

⎩

∑

α∈Aβ

Nϕαβ (|uα
α|2)(w)

⎫
⎬

⎭
d A(w)

in which

∑

α∈Aβ

Nϕαβ (|uα
α|2)(w) =

∑

α∈Aβ

{∑
|uα

α(z)|2 : z ∈ α(�α), ϕαβ(z) = w
}

=
∑

α∈Aβ

{∑
|uα(α−1(z))|2 : α−1(z) ∈ �α, ϕ(α−1(z)) = β−1(w)

}

=
{∑

|u(x)|2 : x ∈ M, ϕ(x) = β−1(w)
}

= Nϕ(|u|2)(β−1(w)) = (Nϕ(|u|2))β(w).

Consequently,

‖uCϕ(ω)‖2M = 2
∑

β∈B

∫

β(�β)

(| f β
β |2 + |gβ

β |2)(Nϕ(|u|2))βd A.

Now, if Nϕ(|u|2) ∈ L∞(M) then

‖uCϕ(ω)‖2M ≤ ‖(Nϕ(|u|2))β‖∞

⎧
⎨

⎩

∑

β∈B
2

∫

β(�β)

(| f β
β |2 + |gβ

β |2)d A
⎫
⎬

⎭

≤ ‖Nϕ(|u|2)‖∞‖ω‖2N ,

and so ‖uCϕ‖2M ≤ infβ∈B ‖(Nϕ(|u|2))β‖∞ ≤ ‖Nϕ(|u|2)‖∞. Conversely, suppose
uCϕ is bounded. If A and B is finite, then for each β ∈ B, (Nϕ(|u|2))β is essentially
bounded and hence

‖Nϕ(|u|2)‖∞ = max
β∈B

‖(Nϕ(|u|2))β‖∞ < ∞.

Now, let A and B be countably infinite sets. If Nϕ(|u|2) /∈ L∞(M), then there
exists {βn} ⊂ B such that (Nϕ(|u|2))βn ≥ 2n . For each n, chooseUn ⊆ βn(�βn ) with
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0 < A(Un) < ∞. Let ω ∈ �1
2(N ) be represented by

ωβn = (χUn
◦ βn)dβn

√
Nϕ(|u|2)A(Un)

, n ≥ 1.

Then

‖ω‖2N = 2
∞∑

n=1

∫

βn(�βn )

χUn
d A

(Nϕ(|u|2))βn A(Un)

≤ 2
∞∑

n=1

1

2n A(Un)

∫

Un

d A =
∞∑

n=0

1

2n
= 2,

and

‖uCϕ(ω)‖2M = 2
∞∑

n=1

∫

βn(�βn )

χUn
(Nϕ(|u|2))βn d A

(Nϕ(|u|2))βn A(Un)
= 2

∞∑

n=1

1 = ∞.

But this is a contradiction. This completes the proof. ��
Corollary 2.6 (a) [11, Theorem 2.2] The pullback transform Cϕ : �1

2(N ) → �1
2(M)

is bounded if and only if the counting function Nϕ is bounded.
(b) If M = N = D, then Jϕ(|uϕ′|2) = hϕEϕ(|uϕ′|2) ◦ ϕ−1 = Nϕ(χG0 |u|2).
Let (β,Uβ) be any local chart in N and let 	β be the σ -algebra generated by

{β−1(K ) ∩ Uβ : K ∈ MC}. Define μβ(B) = A(β(B)) for all B ∈ 	β . Thus,
(Uβ,	β, μβ) is a non-atomic measure space.

Let ω ∈ N (uCϕ) and Nϕ(|u|2) > 0 on N . Then for all β ∈ B, (Nϕ(|u|2))β > 0
on β(�β) and

2
∑

β∈B

∫

β(�β)∩σ(ωβ)

(| f β
β |2 + |gβ

β |2)(Nϕ(|u|2))βd A = ‖uCϕ(ω)‖2M = 0.

It follows thatμβ(β(�β)∩σ(ωβ)) = 0, and soωβ = 0 for all β ∈ B. Thus,ω = 0.
Now, suppose for some β ∈ B and B ∈ 	β with 0 < μβ(B) = A(β(B)) < ∞,
χBNϕ(|u|2) = 0. Set ω0 = χBdβ Then ω0 �= 0 and ‖uCϕ(ω0)‖M = 0. Using this
and Proposition 2.1 we have the following corollary.

Corollary 2.7 Let uCϕ ∈ B(�1
2(N )�1

2(M)). Then the followings hold.
(a) Then uCϕ is injective if and only if Nϕ(|u|2) > 0 on N.
(b) uCϕ is an isometry if and only if Nϕ(|u|2) = 1 on N.
(c) uCϕ is a partial isometry if and only if Nϕ(|u|2) = 1 on ϕ(N ).

Now, we try to give an explicit formula for the adjoint of these type operators by
the language of conditional expectation operators.
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Let ϕ : M → N be an analytic map with �-property and let ω ∈ �1
2(N ) and

η ∈ �1
2(M) be represented by ωβ = f βdβ + gβdβ̄ and ηα = kαdα + lαdᾱ, for each

α ∈ A and β ∈ B. Then ηα
α = kα

αdz + lααdz̄ and hence
∗ηα

α = −ilααdz + ikα
αdz̄. Then

we have

〈uCϕ(ω), η〉M =
∫

∪�α

uCϕ(ω) ∧∗ η =
∑

α∈A

∫

α(�α)

[u(ω ◦ ϕ)]αα ∧∗ ηα
α

=
∑

β∈B

∑

α∈Aβ

2
∫

α(�α)

{
(uα

α kα
α( f β

β ◦ ϕαβ)ϕ′
αβ + uα

α lαα (gβ
β ◦ ϕαβ)ϕ′

αβ

}
d A

=
∑

β∈B

∑

α∈Aβ

2
∫

ϕαβ(α(�α))

f β
β

{
hαβEαβ(kα

α uα
α ϕ′

αβ) ◦ ϕ−1
αβ

}
d A

+
∑

β∈B

∑

α∈Aβ

2
∫

ϕαβ(α(�α))

gβ
β

{
hαβEαβ(lαα uα

α ϕ′
αβ) ◦ ϕ−1

αβ

}
d A

= 2
∑

β∈B

∫

β(�β)

f β
β

⎧
⎨

⎩

∑

α∈Aβ

χϕαβ(α(�α))

[
hαβEαβ(kα

α uα
α ϕ′

αβ) ◦ ϕ−1
αβ

]
⎫
⎬

⎭
d A

+2
∑

β∈B

∫

β(�β)

gβ
β

⎧
⎨

⎩

∑

α∈Aβ

χϕαβ(α(�α))

[
hαβEαβ(lαα uα

α ϕ′
αβ) ◦ ϕ−1

αβ

]
⎫
⎬

⎭
d A

Take

K β =
⎧
⎨

⎩

∑

α∈Aβ

χϕαβ(α(�α))

[
hαβEαβ(kα

α uα
α ϕ′

αβ) ◦ ϕ−1
αβ

]
⎫
⎬

⎭
◦ β; (2.5)

Lβ =
⎧
⎨

⎩

∑

α∈Aβ

χϕαβ(α(�α))

[
hαβEαβ(lαα uα

α ϕ′
αβ) ◦ ϕ−1

αβ

]
⎫
⎬

⎭
◦ β. (2.6)

Then

〈ω, (uCϕ)∗(η)〉N = 2
∑

β∈B

∫

β(�β)

{

f β
β K β

β + gβ
β L

β
β

}

d A

= 〈ω,
∑

β∈B
(K βdβ + Lβdβ̄)χ�β 〉N .

Consequently, [(uCϕ)∗(η)]β = K βdβ + Lβdβ̄. So we have the following result.

Theorem 2.8 Let M and N be Riemann surfaces, u ∈ �0(M) and let ϕ : M → N
be an analytic map with �-property. If uCϕ : �1

2(N ) → �1
2(M) is bounded, then

for each ηα = kαdα + lαdᾱ in (α,Uα), the adjoint of uCϕ is given by the formula
[(uCϕ)∗(η)]β = K βdβ + Lβdβ̄, where K β and Lβ are given as (2.5) and (2.6).
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Corollary 2.9 Let M = N = D and ω = f dz + gdz̄ ∈ �1
2(D). Then

(uCϕ)∗(ω) =
[
hϕEϕ(uϕ′ f ) ◦ ϕ−1

]
dz +

[
hϕEϕ(uϕ′g) ◦ ϕ−1

]
dz̄

Let uCϕ ∈ B(�1
2(D)) and ω = f dz + gdz̄ ∈ �1

2(D). Then by Corollaries 2.6 and
2.9 we get that

(uCϕ)∗(u(ω ◦ ϕ)) = (uCϕ)∗(u( f ◦ ϕ)ϕ′dz + u(g ◦ ϕ)ϕ′dz̄)

=
[
hϕEϕ(|u|2|ϕ′|2 f ◦ ϕ) ◦ ϕ−1

]
dz +

[
hϕEϕ(|u|2|ϕ′|2 f ◦ ϕ) ◦ ϕ−1

]
dz̄

= [hϕEϕ(|uϕ′|2) ◦ ϕ−1]( f dz + gdz̄) = Jϕ(|uϕ′|2)ω = Nϕ(|u|2)ω a.e.[A].

Consequently, (uCϕ)∗(uCϕ) = MNϕ(|u|2), |u|2 is viewed as a function defined A-
almost everywhere on D0 = {z ∈ D : ϕ′(z) �= 0}. Also,

(uCϕ)(uCϕ)∗(ω) = uϕ′(hϕ ◦ ϕ)Eϕ(uϕ′ f )dz + uϕ′(hϕ ◦ ϕ)Eϕ(uϕ′g)dz̄.

Example 2.10 Let M = N = D and ϕ(z) = zn . Then for w ∈ D, c(w, ϕ) =
{eθ1w, . . . , eθn−1w,w} and c(wn, ϕ) = {z1, . . . , zn}where zk = n

√|w| and θk = e
2kπ i
n .

Since A(D \ D0) = 0, then by Theorem 2.3 we get that

h(w) =
n∑

k=1

1

|ϕ′(zk)|2 = 1

n|w| 2(n−1)
n

and for each 0 ≤ f ∈ L0(	) we have (also see [2, 9])

Eϕ( f )(w) = 1

n

∑

z∈c(wn ,ϕ)

f (z) = 1

n

n∑

k=1

f (eθkw);

(Eϕ( f ) ◦ ϕ−1)(w) = 1

n

∑

z∈c(w,ϕ)

f (z) = 1

n

n∑

k=1

f (zk);

Jϕ[ f ](w) = h(w)(Eϕ( f ) ◦ ϕ−1)(w) = 1

n2|w| 2(n−1)
n

n∑

k=1

f (zk).

Thus so for u ∈ �0(M), Nϕ(|u|2) = Jϕ[|uϕ′|2](w) = ∑n
k=1 |u(zk)|2. In particular,

if u(z) = z then Jϕ[|zϕ′|2](w) = n|w| 2n . Also, if uϕ′ f and ūϕ′g are non-negative,
then by Corollary 2.9 we have

(uCϕ)∗(ω) = Jϕ[uϕ′ f ](w)dw + Jϕ[ūϕ′g](w)dw̄

= 1

n|w| n−1
n

n∑

k=1

ū(zk)
{
eθk f (zk)dw + e−θk g(zk)dw̄

}
.
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Proposition 2.11 Let u ∈ �0(M), letϕ : M → N be an analyticmapwith�-property
and uCϕ ∈ B(�1

2(N )�1
2(M)). Then

(a) dimN (uCϕ) = 0 or ∞.
(b) dimN ((uCϕ)∗) = 0 or ∞.

Proof (a) Let 0 �= ω ∈ N (uCϕ) be represented by ωβ = f βdβ + gβdβ̄ in any
local chart (β,Uβ). Then μβ(σ( f β) ∪ σ(gβ)) = μβ(σ(ωβ)) = A(β(σ (ωβ)) > 0.
Choose a sequence {Kn} of pairwise disjoint MC-measurable sets in β(σ(ωβ)) with
0 < A(Kn) < ∞. Let ωβ

n = ωβχβ−1(Kn)
for n ∈ N. Then ωn �= 0 and for all n �= m,

〈ωn, ωm〉N =
∑

β∈B
〈ωβ

n , ωβ
m〉�β =

∑

β∈B

∫

β(�β)

2(| f β
β |2 + |gβ

β |2)χEn∩Emd A = 0

and

‖uCϕ(ωn)‖2M =
∑

β∈B

∑

α∈Aβ

2
∫

ϕ−1
αβ (En)

{
(| f β

β |2 + |gβ
β |2) ◦ ϕαβ

}
|uα

αϕ′
αβ |2d A

≤
∑

β∈B

∑

α∈Aβ

2
∫

α(�α)

{
(| f β

β |2 + |gβ
β |2) ◦ ϕαβ

}
|uα

αϕ′
αβ |2d A = ‖uCϕ(ω)‖2M = 0.

Consequently, dimN (uCϕ) = ∞.
(b) Let 0 �= η ∈ N ((uCϕ)∗) be represented by ηα = kαdα + lαdᾱ in any local

chart (α,Uα). Then by Theorem 2.8 we have

〈ω, (uCϕ)∗(η)〉N = 2
∑

β∈B

∫

β(�β)

{

f β
β K β

β + gβ
β L

β
β

}

d A = 0

for all ω ∈ �1
2(N ). Put pα

α = max{|kα
α |2, |lαα |2}. Then

∫

α(�α)

Eαβ(pα
α)d A =

∫

α(�α)

pα
αd A > 0.

So for some δ > 0, ϕ−1
αβ (Mβ(�β))-measurable set F = {z ∈ α(�α) :

Eαβ(pα
α)(z) ≥ δ} has positive measure. There isMβ(�β)-measurable set G ⊆ β(�β)

such that F = ϕ−1
αβ (G). It follows that there exists a sequence {Gn} ⊆ Mβ(�β) of pair-

wise disjoint sets in G such that 0 < A(ϕ−1
αβ (Gn)) < ∞. Take ηn = ηχ

α−1(ϕ−1
αβ (Gn))

for n ∈ N. Then

‖ηn‖2M = 2
∑

α∈A

∫

α(�α)

(
|lαα |2 + |kα

α |2
)

χ
ϕ−1

αβ (Gn)
d A ≥ 2

∑

α∈A

∫

ϕ−1
αβ (Gn)

pα
αd A

= 2
∑

α∈A

∫

ϕ−1
αβ (Gn)

Eαβ(pα
α)d A ≥ 2δA(ϕ−1

αβ (Gn)) > 0,
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〈ηn, ηm〉M = 0 for all n �= m and ‖(uCϕ)∗(ηn)‖2N ≤ ‖(uCϕ)∗(η)‖2N = 0. ��
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