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Abstract

In this paper, using properties of the conditional expectation operators we give an
explicit formula for the adjoint of a bounded weighted pullback transform uC, with
analytic symbol ¢ and measurable weight # on the measurable differential form spaces
for Riemann surfaces. Also, some properties of these transforms are discussed.
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1 Introduction and Preliminaries

A two dimensional manifold M is a connected Haussdorf topological space such
that every x in M has a neighborhood homeomorphic to an open disc in the plane.
If M is a two dimensional manifold, a complex chart on M is a homeomorphism
a : Uy — a(Uy) of an open subset U, C M onto an open subset «(U,) C C. Two
charts @ and § are analytically compatible if transition map

Tap = Boa™ ! 1 a(Uy NUp) — B(Uy NUp)

is biholomorphic. A complex atlas on M is a collection of analytically equivalent
compatible charts 4 = {(«, Uy)} whose domains cover M, i.e. M = UyUy. Two
complex atlases A and A, are analytically equivalent if A; U A5 is a complex atlas.
An analytic structure on a two dimensional manifold M is an equivalence class of
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analytically equivalent atlases. A Riemann surface is a two dimensional manifold
with an analytic structure. A O-form on M is a complex valued function on M. A
I-form w on M is an ordered assignment of two functions f* and g% to each local
coordinate chart (o, Uy) on M such that the expression f*da + g*da is invariant
under coordinate changes. A 2-form 2 on M is an assignment of a function f“ to each
local coordinate « such that the expression f*da A da is invariant under coordinate
changes. For k € {0, 1, 2}, we let Ak(M) denote the vector space of k-forms. Note
that A*(M) = 0, for all k > 3.

Since M locally looks like an open subset of C, it is clear that measurability can
be lifted up from C to M using local charts. Let (C, M, A) be a Lebesque measure
space. A subset B C M is said to be Lebesque measurable, if for every b € B there
is a local chart (o, Uy) with b € Uy such that «(B N Uy) € Mc. This approach is
independent of coordinate system. Put X3, = {B € M : B is Lebesque measurable}.
It is easy to see that X, is a o-algebra over M and contains the Borel o-algebra
B(M).Let M =D = {z € C: |z]| < 1}. Using the trivial chart (id, M), ¥p = Mp =
{BND: B € Mc}is a o-algebra restricted to D. Note that the change of variable
formula is in disagreement with the change of chart formula, so the Lebesque measure
and hence the Lebesque integral on Uy Uy, can not be lifted to M in general. However,
we can also speak about measures on X, of Lebesque sets on M (e.g. see [10]). We
say that f : M — C is measurable if and only if f~!'(M¢) € Zy.So, f: M — C
is measurable if and only if f* = f, : (Ua, Zy,) — C is measurable, for all a.
Equivalently, f is measurable if and only if f¢ o ol Uy, Myw,)) — Cis
measurable, for all «. In particular, A € ¥, has measure zero if for every local chart
(o, Uy) of M, the set (ANUy ) has measure zero. Since the change of coordinates maps
between charts are diffeomorphisms, then the null sets remain null under coordinate
change. A measurable 1-form with respect to local chart (¢, Uy) is an expression w
of the form w = f*da + g*da, where f*, g% : (Uy, Zy,) — C are measurable.

A weighted pullback transform on measurable differential form spaces is an oper-
ator induced by pullback with a analytic transformation of the underlying Riemann
surfaces, followed by a multiplication (see section 2 for precise definitions). The pull-
back transforms (composition operators) on Riemann surfaces were first studied by
Mihaila [11]; she obtained some results on pullback transforms on Riemann surfaces
and posed some problems on these operators. Then Cao [3, 4] characterized invertibil-
ity and Fredholmness of pullback and Toeplitz transforms on measurable and analytic
differential forms for Riemann surfaces. Boundedness criteria and the adjoint of a
weighted pullback transform has been given in [10]. In the next section, we provide
another one which is complete and written in terms of conditional expectation oper-
ators different than that used in [10]. Also, some properties of these transforms are
discussed.

2 Main Results

First we review some basic results on pullback transforms and state some general
assumptions. Let us start by recalling the definitions and fixing the notation in case
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M=N=D={zeC:|z| < 1}. Take L2(]D>, Mp, A) = L*(D) and set A}(D) =
{w = fdz + gdz : f,g € L>*(D)}. Then A} (D) is a vector space of measurable
1-forms on the Riemann surface D. For z = x + iyand w = fdz + gdz € A} >(D),
we have dz = dZ = dx — idy and *w := —ifdz + igdZ. So, @ = gdz + fdz and
*@ = —igdz+i fdz.Setdx Ady = dxdy = dA. ThendzAdZ = —2idxdy and hence
ON'B = i(|f1*+]gI)dzndZ = 2| f1* +IgI*)dxdy. Forw; = fidz+gidZ € Ay(D),
set (w1, w2) = [pw1 A" @z = [p2(fif> + g182)dxdy. Then AY(D) is an inner
product space with the induced norm given by ||w||D 2\ f ”L2(1D>) +2|lg “LZ(]D)) ow

let {w,} = {f1dz + gn,dz} be a Cauchy sequence in Az(D). Then

max{{l fu= ful 2> 180 —=8m 172y} < /D 20 fo = fn* +gn—gm|H)dxdy — 0.

Hence there are f, g € L?(ID) such that max{|| f, — f||L2(D), llgn _g”iZ(D)} — 0.

Setw = fdz+ gdz. Then w € Aé(D) and |w, — w|lp — 0. Thus, (Aé(]D)), Il 1p) is
a Hilbert space (see [6]). We remark that A1 (D) = L2(D) x L%(D) with the natural
norm ||(f, &)|? = 2”f||L2(ID>) + 2||g||L2(D) The Bergman space Lﬁ(]D)) is the set of
analytic functions on D, square integrable with respect to Lebesque area measure A,
ie. Lg (D) = L2(D) N H(D), where H (D) denote the class of functions analytic in
the unit disc ID. It is a closed subspace of L*(ID) and hence is a Hilbert space with
inner product (f, g) = 1/m fD f(2)g(2)dA(z) (see [15]). Since for each f € Lg(]D)),
I fdzlip =271l fll 2y 50 A (D) = {fdz: [ € L3(D)} = LZ(D) (see [11]) and
hence is an Hilbert space.

Suppose ¢ : D — D is an analytic and nonconstant function. For w € ¢(D), let
c(w, @) denote the countable collection of zeros of ¢(z) — w including multiplicities,
ie. c(w,p) = {& € D: @) = w}. Let W and g be two non-negative measurable
functions defined on . By the area formula [5, Theorem 2.32], we have

/Dg(cp(z))W(z)Iw’(z)lsz(z) =/ gW)Ny(W)(w)d A(w), 2.1)

»(D)

where N,(f) : D — C U {oo} is the generalized counting function defined by
No(fY(w) = {X2f(&) : § € c(w,p)} forall f € LO(D), the space of all finite-
valued measurable functions on D. If c(w, ¢) = @, then we take N, (f)(w) = 0.
Then the support of Ny (f) is (D) and so xum)Ny(f) = Ny(f). For f € LO(]D)),
set g = | f]?in (2.1). Then

/W|fo<p|2|¢>/|2dA=fN¢<W)|f|2dA.
D D

Set Ny(1) = Ny, = #{z € D : ¢(z) = w} where the number of z above is counted
with appropriate multiplicity. If we take W = 1, then we have

/ \f ool PdA = / N, | fIPdA. 22)
D D
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Suppose ¥ : D — D is an analytic and invertible. Then c(¥ N w), ) = c(w, Yo
@) for all w € p(D), and so (Ny(f))y = Ny(f) o Yl = Nyoy(f) for all non-
negative function on ID. Moreover, Ny (f o ¢) = fN,. In particular, let f(w, ap) be
a Green function on ID where ag is some fixed point. Then Ny, (f (. ap)) is called the
Nevanlinna counting function on D\{¢(ap)} (see [14]).

The space L°°(D) is the set of all essentially bounded functions on D. For an
analytic self-map ¢ : D — D, the pullback transform C,, : A}(D) — Al(D) defined
as Cy(w) = ¢*(w), where ¢*(w) = (f o ¢)dy + (g o ¢)d¢ is the pullback of the
form w = fdz + gdz € AL(D). Since dgp = ¢'dz and d¢ = d¢ = ¢'dz, then
Cyp(w) = (fop)gdz+(go ¢)¢'dz. Using 2.2 we obtain that

ICy (@)1} = Z/D(If opl* +1gogMl¢*dA = Z/D(Iflz +1g1)NydA. (2.3)
Thus, for some k > 0,

Cy € B(AY(D)) <= [Cy()lp < kllw|p, Yo € A)(D)
= ol — 1C ()3 =0

= 2[ (1> +1g1H (k> = Ny)dA > 0
D

& N, <k* < N, € L*(D).

. 1/2 1/2
In this case [|Cy (@) [[p < [N, |65 lollp, and hence [[C,llp < [N, |15 Also,

(C3Cy(@), @) = (Cyp(), Cy(@)) = [[Cyp(w) I =2 fD (1> +1g1HN,ydA
= A(@w) A* (Npw) = (/Nyw, \/Nyw) = (N,0, »).

Since C;C(p is self-adjoint, then C(’;Cw(w) = Nyo forallow € Aé(]D)). Using (2.3),
Cy(@)lp = llwllp if and only if N, = 1 on D. But Ny, = 1 if and only if ¢ is a
bijection. The support of f € LO(D) is defined by o (f) = {x € D : f(x) # 0}.
In our case, o (fdz + gdz) = o(f) Uo(g). Itis worth nothing that o (Ny) = (D)
and o (Ny) = D if and only if ¢ is onto. Let K = D\¢(D). Using (2.3), Cy(w) =0
if and only if o(w) € K for all € AL(D). It follows that N'(C,) = AL(K)
and hence R(C;) = A;(K)J- = A;(go(]]]))). So, C, is one-to-one if and only if
A(K) = 0 and C, is partial isometry if and only of N, = 1 on ¢(ID). Note that
ICo(fd2)I3 =2 [ | fI*Nyd Aforall f € LZ(ID).So, Cy is bounded if and only if N,,
is bounded. In particular, if we take ¢(z) = 2", then ||Cy||> = ICColl = IMyll = n
and hence [|Cy|| = /n (see [11, p.26)).

Now we show that the measure A o ¢! defined by Ao~ (K) = A(¢p~1(K)), for
all K € Mp, is absolutely continuous with respect to A. For this, let A(K) = 0 but
A(p~ 1 (K)) # 0 for some K € Mp. Since ¢ is a non-constant analytic self-map on
D, so there exists a collection of disjoint open sets {V;} such that A(D\ U V;) = 0 and
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P, is one-to-one. So, A(V; N~ (K)) # 0, forsome i € N. Set F = V; N~ 1 (K).
Then F = ¢~ ! (F’) for some F’ C K. Note that @, is one-to-one and so |¢'| > 0 on
F. Thus, [, xrlo'|I’dA = [, |¢/|*dA > 0. Since ¢(F) € F' C K and A(K) = 0,
then A(@(Vi) N @(F)) < A(K) = 0. Then by the area formula we obtain that

0 < / o/ PdA = / xrlg' PdA
ViNg =1 (F’) Vi

:/ XFogfldA:/ dA =0.
o(V)) o (V)N (F)

But this is a contradiction. These observations establish the following result.

Proposition 2.1 Let C,, : A;(ID)) — Aé(ID)) be the pullback transform induced by a
non-constant analytic self-map ¢ on the unit disc D. Then the following statements
hold:

(a) [11, Theorem 2.1] C, is bounded if and only if Ny, € L*(ID), and in this case
IC 13 < [Ny lloo-

(b) [11, Corollary 2.1] C; Cy = My, the multiplication operator induced by N.

(©) N(Cy) = AL(K), where K = D\gp(D).

(d) Cy is an isometry if and only if Ny = 1 on .

(e) Cy is a partial isometry if and only if Ny, = 1 on ¢ (D).

(f) A o ¢~ is absolutely continuous with respect to A on D.

Let M and N be Riemann surfaces. A continuous map ¢ : M — N is said to be
analytic if for any chart & on M and for any chart 8 on N with ¢(Uy) C Upg, the
function g = Bogo ol a(Uy) — B(Up) is analytic. Throughout the paper
¢ : M — N will be an analytic map, A = {(«, Uy)}, B = {(B, Up)}, M = U, U, and
N = UgUg.Let Mp(uy,) be the Lebesque o-algebrain (Up), P gl FP e LO(Uﬂ),
we AY(N), Q€ A*(N), o = w, = fPdB + gPdB, QF = Qu, = FPdB A dB.
Take

LP(B(Up)) = LY (B(Up), Mpwy), AIM,‘S(UIS));
15 =1Pop™ e LOBWp)):
*of = —ifPdp +igldp
and p*(0P) = (fP o p)dB o ¢ + (8P o p)dB o ¢. Then

of A 0P =i(1fP) + 18P 1P)dB A dp;
oy =(fPopNdpop ™ + (8P o pNdBo B! = fldz + ghdz:
Qf = (FF o p~)d(B AdB) o p~' = Ffdz ndZ:

/ szﬂzf szﬁ:/ F/fdzAde/ —2iF§dA.
Ug B(Up) B(U) BUp)
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A triangle on M is a Jordan domain together with a homeomorphism onto a triangle
in C. A two dimensional manifold is called triangulable if there are countable triangles
{Aq} on M such that UA, = M, for o # B, intA, NintAg = ¢ and for each p € M
there is a neighborhoods V of p such that that set {& : Ay NV # @} is finite. By
subdividing a triangulation it is always possible to have each triangle contained in the
domain of a chart [11, p. 24]. It is known that a connected surface is triangulable if and
only if it admits a countable base. In particular, every Riemann surface is triangulable
(see [13]). Since there might exist several charts containing a given triangle, using
the axiom of choice, we pick one of them and then we restrict it to the interior of the
triangle. So, for A, C U,, Uy = intAy N U, is the restriction of U, to the interior
of A,. For brevity, we consider the following standing assumption.

A-property: We say that triangulations {Ay} of M and {Ag} of N have A-property
if each triangle A, is contained in the domain of some chart on M and each triangle
Apg is contained in the domain of some chart on N and for every «, there is a B such
that (Ay) € Ag, Uy = intA,, Ug = intAg andso {@ : @ € A} = {(o, B) 1 ¢ €
A, p(Ay) © A,B}-

The space A;(N ) of measurable 1-forms on the Riemann surface N defined as
AWN) ={we AN : o = fPdp+gPaB. ff. gk € L2(B(Up)). forall p € B}.
Consider triangulation {Ag}ge of N with A-property. Let w1, w2 € Aé(N ) and

= fFdp + gl dp, for B € B. Set (w1, w2)y = [y @1 A* @3. Then we have

(w1,w2)N=/ w1 A wz—Z/ wl/\ a)2
UAﬁ

BeB
=Y (fl 17+ 40 ¢biap nap
BeB
= / {(ﬁ),’i () + (g1 <g2>§} idz A dZ
ﬂEB /S(A/S)
=Y 2 / {(f1)g (fz)lgj + (g1)g (gz)g} dA.
BeB B(&p)

The space A%(N ) which satisfy the following

||w||?v=/ w/\*a=22/ {1757 + 101} aa < oo
N hes BLp

is a Hilbert space with inner product (w1, w2) = fN w) AN*wp = Zﬂ(w’f, a)g)Aﬁ (see
[61). Since {(f)}. (g5} C LA(B(Up)). then (], wh) s, < oo forall g € B. So, if
B is finite, then ||w||y < oo forall w € A%(N ). So we have the following result.
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Proposition 2.2 Let {Ag}gep be atriangulation of N with A-property. Then A;(N) =
By AL B, 10} = gl IR, = g ol s, and

B2 B2 B2
lwgllga —/ 2(1fg 17 + lgglHdA,
BlB(AR) Bap) B B

forall o € AL(N).

Now, let w € A}(N). Using A-property, we take (@ 0 ¢)g = @ 0 ¢ 0o ™! Since

(ffopla=flogoa =(ffopoBogpoa™) = ff ogu;
¥ op)e =g opoa =g} o
d(Bogla=d(Bogoa™)=dpsg = ¢pdz:

d(F o 9)a = dB o 9)a = ¢lpdz = Pz,

then

[Cy(@)]% = [wo @)% = (@ 0 9)y = [(FPdB) o v + (gPdB) o ¢l
=(fPo)ed(Bop)a+ (g% 00)ed(Bop)
= (f,éS © Pap)Pepdz + (gg 0 Pup) P57

It follows that

||c¢;<w>||%4=fA Coe N Co@ =3 [ @op* A*@opP
U

o ac A e
:Z/ [a)O(p]g/\*[a)O(p]g
aeA (B
— B 2 B 2 ./ 12
= 3 2/ {17 0 upl? + 18] 0 9ap P} I0ip12d 4
a(Lg)

{(.B)aeA, o(Ag)SAB}

=Y o[ 0P+ ighP o gus)elpPaa,

peBacAs ¢
where Ag = {@ € A: p(Ay) € Agl.

We now introduce conditional expectations as another application of the Radon—
Nikodym theorem. Let (X, X, u) be a complete o-finite measure space. For any
complete o -finite subalgebra C C X the Hilbert space L2(X ,C, M) is abbreviated
to L2(C) where M) is the restriction of  to C. For each non-negative f € LO(%), the
linear space of all complex-valued ¥-measurable functions on X, or f € L*(X), by
the Radon—-Nikodym theorem, there exists a unique C-measurable function E C( )=
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E(f | C) such that [, fdu = [, EC(f)du, where A is any C-measurable set for
which [ 4 Jd exists. Now associated with every complete o-finite subalgebraC C X,
the mapping EC:L2(%) - LX) uniquely defined by the assignment f EC(f),
is called the conditional expectation operator with respect to C. The mapping E Cisa
linear orthogonal projection onto L2(C). Note that D(E C), the domain of E C, contains
Up=1LP(Z) U {f € LO(®) : f = 0}. For more details on the properties of E€ see
[7, 12]. Conditional expectation operator plays a crucial role in our considerations.
Those properties of E C used in our discussion are summarized below. In all cases we
assume that f, g, fg € D(E®) and p > 1.

o If g is C-measurable then EC(fg) = E¢(f)g.

o |[EC(f)IP < EC(IfIP).

o If f > 0 then EC(f) > 0.

o [EC(fo)l* = (EC(fIPN(EC(Ig)).

Let G| and G, be an open and connected sets in C and let ¢ : G{ — G» be a non-
constant analytic function. Still proceeding as in the proof of Proposition 2.1(f), one
establishes that Aogo_l is absolutely continuous withrespectto A, i.e., A(go‘l (K)) =0
for all K € Mg, with A(K) =0.Leth, = Ao ¢~ /d A be the Radon—Nikodym
derivative. Consider the o-finite algebra C(p) = ¢! (Mg,) of G1 and take EC® =
E(.|C(¢)) = E,.Itisknown that for each non-negative G -measurable function f or
foreach f € L?(G), there exists a Gp-measurable function g such that Ey(f) = gog.
Moreover, g is uniquely determined in o (h,), the support of h,. Therefore, even
though ¢ is not invertible, the expression g = E,(f) o ¢~ is well defined, whenever
o(g) C o(hy) (see [1]). Recall that for 0 < f € L9(Gp) and 0 < W € LY(Gy) we
have

/GW(z)f(<p(z))|<p/(z)|2dA(z)=/ Z W(z) ¢ fw)dA(w).
1 ¢

Gy zec(w,p)

Set Gy = {z € G| : ¢'(z) # 0} Then G is countable and so Gy = G a.e. [A].
For0 < g € LY(Gy), put W(z) = Xcog(z)|(p’(z)|_2. Then we have that

g(2)

TP Fw)dAw). (2.4)

/ 8(2) f(p(2))dA(z) =/
G @

(Gv) zec(w,p)NGo

On the other hand, by the change of variable formula in the measure theory setting,
we have ([8])

/G g(fow)dA=/G E¢(g)(fo<p)dA=/ (E () op™ ) fdAoy™!
1 1

@(G1)

_ L(Gl) {h(pE(p(g) o (p_l} fdA.
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Now, for each A € Mg, take f = x4 and set Jy[g] = hyE,(g) o (pfl, Using
(2.4) we get that

/A Tolglw)— )~ 8O A GndAw) =0,

/ 2
zec(w,p)NGy |¢ (Z)|

It follows that

Lagw= Y 22 wepG.

/ 2°
zec(w,p)NGo |¢ (Z)l

If Ny(.) is bounded on ¢(G1), then Jy[g] is finite-valued. Note that J,[1] = &
and c(w, ¢) = @ for w € Gy\@(G1). Also, if B € Gy\¢(Gy) is in Mg,, then
¢ "(B)NG| =P andhence [, hdA = [dAop™" = A(p~(B)NG/) = 0. Thus,
o(Jylgl) Co(h) C ¢~ 1(G1). These observations establish the following result.

Theorem 2.3 Let G| and G, be an open and connected sets in C, ¢ : G| — G; be
a non-constant analytic function and let Go = {z € G| : ¢'(z) # 0}. Then for each
0 < g e L%G)) we have

8(2)

"()2
J‘/’[g](w) = { zec(w,p)NGo I (2]
0 w ¢ G2\p(G1),

w € ¢(Gy)

where Jy[g] = hyEy(g) o go_l. In particular, J¢[|<p’|2] = Ny(xG,) and

1
— 7 w e (G
h(w) recw.gnGy ¥ @F (G1)

0 w ¢ Ga\g(Gy).

Let E(p(L(% (D)) < Lz (D). Then by [2, Theorem 2], non-negativity of f € L(% (D)
is not required as mentioned in Theorem 2.3 for Jy[ f].

Example2.4 Let G| =D, {o, B, ¥} C R, ¢(z) = az> + Bz + y and let G, = ¢p(D).
Then for each w € ¢(D), c(w”, ¢) = {w, —’Sf#} and c(w, ¢) = {wy, wa} =

—B— 2_ — _ 2_ —
(L Pty ) Py P4 Z8)y Then by [2, Theorem 2] and Theorem 2.3 we

obtain

3

1 1
EoH = 7+ 5 (250

o
2

h =
W) =18 "daty —w)P
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and (E,(f) o 9™ ")(w) = 5 {f(w1) + f(wy)}. Consequently,

1

B dap —wp @0 @), fe L;(D), w € p(D).

Jolfl(w) =

Boundedness of pullback transforms on between differential form spaces for Rie-
mann surfaces has been characterised in [11, Theorem 2.2]. In [10, Theorem 2.2],
we studied bounded operators of the form w +— u(w o ¢) for w € A%(N ). In the
following, the boundedness of weighted pullback transforms acting between two dif-
ferent measurable differential form spaces are characterized using some properties of
conditional expectation operators.

Theorem 2.5 Let M and N be Riemann surfaces, u € A°(M) and let o : M — N
be an analytic map with A-property. Then the weighted pullback transform uC, :
Aé(N) — Aé(M) is bounded if and only z'fN¢(|u2|) is essentially bounded. In this
case [uCyl2, < 1IN (u?)loc.

Proof Letw € Aé(N). Then for each a € A we have

[UCy(@)]% = u® (@F 0 )y = u%(@ 0 @)g

= U (f} 0 Gup)@lpdz + UC(8h 0 Pup)@lpdZ

Let Ag = {e € A: ¢(Ay) S Ag}. Then by the change of variable formula we have

luCy(@) 3 = > / [u(w 0 @)]% A* Tu(w o @)%

ae A’ ba)

=2 ) f {1752 418512} ap@ @0 PaAG)
BeBacAg a(8a)

=23 (1£F W) P+l () ) Jup Ll N (w)d A (w)

ﬂEBO(EA/S o (Dg))

=2y ) f (15 )P + 185 W) X (b (W)
BeBacAg B&p)

< Jupllu s "1 (w)d A(w),

where

Tap 16504 P1(w) = hogp () | Eap (i) 0 9yt |
Eup = E(. | wa}(Mﬁ(Aﬂ)));
dAo (/)a_ﬁl
hop = ————.
dA
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Put c(w, pup) = {2 € a(Ly) : w&ﬂ(z) # 0, 9ap(z) = w}. Using Theorem 2.3, we
have

ug ()P 1@hs @1
|§0&ﬂ(2)|2 B

> @

z€c(W,Pap)

Jupllug ¢l Plw) = >

z€c(W,Pap)

= Ny (L) W) = Xgup(@(2a) Nows (41 ().
Thus
luCyp(@)llfy =2 f (SF P+ 185 D7 Ny (u2P)(w) § dAw)
peB” PAp) acAg
in which

> Mo (usPw) = 30 D e @ : 2 € alta), gup(a) = w}

DtG.Aﬁ OlE.Aﬂ

=Y D e @R e @ € bu v @) = g7 )

acAg

= D x e Moo = B~ @)} = NpuP (™ ) = Ny (s ().

Consequently,

luCyp(@)llz =2 / (512 + 185Ny (1)) pd A
ﬁeB .3( ﬁ)

Now, if N, (|u|?) € L%°(M) then

luCy(@) 13 < (N (le*))gl oo sz (51 +1851)dA
peB JBLp)

< INy(uHllsollwll,
and so [uCyl3, < infges |(Np(ul*)glloo < INg(Iu*)[loo. Conversely, suppose
uC, is bounded. If A and B is finite, then for each g € B, (N¢(|u|2)),3 is essentially

bounded and hence

Ny (1)l oo = max [|(Ny (lu*)plles < 0.
BeB

Now, let A and B be countably infinite sets. If N¢(|u|2) ¢ L°°(M), then there
exists {8,} C B such that (N¢(|u|2))'3n > 2", For each n, choose U, € B,(Ag,) with
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0<A(U,) <oo.Letw € A;(N) be represented by

0 BBy

VN, (uHAWU,)

Then
oo
X, dA
||w||?v=22/ e
= Jouap) No (), AU
oo o
1 1
<2y s | A= 5 =2
n=1 ( Vl) Un n=0
and
Ny(Ju|*))p,dA >
luC, (a))”M _ 22/ XUn( <p§| | ))ﬂn 221 — o
S Np(u)p, AU &
But this is a contradiction. This completes the proof. O

Corollary 2.6 (a) [11, Theorem 2.2] The pullback transform C, : AY(N) — AL(M)
is bounded if and only if the counting function Ny, is bounded.
() If M = N =D, then Jy(|u¢'|*) = hy Ey(Jug'*) 0 ™" = Ny (xGolul®).

Let (B, Ug) be any local chart in N and let Xg be the o-algebra generated by
{B~1(K) N Up : K € Mc}. Define ug(B) = A(B(B)) for all B € Xg. Thus,
(Ug, Zg, p) is a non-atomic measure space.

Let w € N'(uCyp) and Ny (Ju|>) > 0 on N. Then for all 8 € B, (N, (Jul*))g > 0
on B(Ag) and

2y UFEP + 185 PN (u)pd A = [uCy (@) Iy = 0.
sppEpnoeh

It follows that u,g(ﬁ(A,g)ﬂa(a)ﬂ)) =0,andsow? = Oforall 8 € B.Thus,w = 0.
Now, suppose for some B € Band B € Xg with 0 < ug(B) = A(B(B)) < oo,
X3N¢(|u|2) = 0. Set wgp = xpdB Then wy # 0 and [|[uCy(wp)||y = 0. Using this
and Proposition 2.1 we have the following corollary.

Corollary 2.7 Let uC, € B(AY(N) AY(M)). Then the followings hold.
(a) Then uCy, is injective if and only ifN(p(|u|2) >0onN.

(b) uCy is an isometry if and only ifN(p(|u|2) =1lonN.

(¢) uCy is a partial isometry if and only ifN(p(|u|2) =1on ¢(N).

Now, we try to give an explicit formula for the adjoint of these type operators by
the language of conditional expectation operators.
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Let ¢ : M — N be an analytic map with A-property and let o € A;(N ) and
n e Aé(M) be represented by wf = fPdB + gPdp and n* = k*da + [*da, for each
o € Aand B € B. Then n% = k%dz + 1%dzZ and hence *n% = —il%dz + ik%dz. Then
we have

[ wwepr i

(UCy (@), 1)1t = / uC, () N T =
Vha acA (Aa)

-y Y2 / [We K] 0 gap) s + S TE ] 0 gup) i | dA
BeBacAg (8a)

2222f

ﬂEBaEAﬁ (ﬂaﬁ(a(Au))

+ZZZ/

,5630(6./43 (/’aﬂ(a(Aa))

17 {hap Eap 05 1, @l5) 0 0 | d A

85 { ot Eap (5 & 075) 0 08 | d 4
=2 Z fé} Z Xap (@(Da)) I:haﬁEaﬂ(E Uy Pop) © %?ﬂl] dA

peB B0 T | acAy

23 [ Y teptann [has B B ) 003 ] 4
peB’PLp) aeAy

Take
KP =13 tpugtaoan [hepEap (8 ug o) owig [ H 0B 25)
acAg
LP =13 Xouptwtn) [haﬁEaﬁ(lé‘@w&ﬁ)O%gl ] °p. (2.6)
acAg
Then

. wC =2 [

ﬁEB ﬂ(Aﬂ)

= (@, Y (KPdB+ LPdB)xn,n-
BeB

{f;Kg +ggL§}dA

Consequently, [(uC(p)*(n)]ﬁ = KPdp + LPdB. So we have the following result.

Theorem 2.8 Let M and N be Riemann surfaces, u € A°(M) and let o - M — N
be an analytic map with A-property. If uCy : Aé(N ) — Aé(M ) is bounded, then
for each n® = k*da + 1%da in («, Uy), the adjoint of uC, is given by the formula
[(uC(p)*(n)]’S = Kﬂdﬂ + L/Sd,B_, where KB and LP are given as (2.5) and (2.6).
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Corollary2.9 Let M = N = D and w = fdz + gdz € AY(D). Then
WCy)* (@) = [hwEw(u_w’f) ° (p_l] dz + I:h(pE(p(ﬁ(p’g) o (p_l] dz

LetuC, € B(AY(D)) and w = fdz + gdz € A} (D). Then by Corollaries 2.6 and
2.9 we get that

WCy)*(u(@ o 9)) = WCy)* ([ 0 9)¢'dz + u(g 0 p)¢'d)
= [ E PPl P f 0 @) 0 97 [ dz + [ By (uPly' P f 0 9) 0 97! ]
= Uy Ey(lug/ ") 0 ' 1(fdz + 8d2) = Jy(ug/ Yo = No(ul)oo ac.AL

Consequently, (uCy)*(uCy) = MN¢(|M|2), lu|? is viewed as a function defined A-
almost everywhere on Do = {z € D : ¢/(z) # 0}. Also,

UCy)(UCy)* (@) = ug/(hy o @) Ep(ug’ f)dz + ug' (hy o ) Ey (g’ g)dz.

Example2.10 Let M = N = D and ¢(z) = z". Then for w € D, c(w,¢) =

{egluh LR ENR wlandc(w”, ¢) = {z1, ..., 2n} Where zx = J/|w|and 6y = eZkrfi.
Since A(D \ D) = 0O, then by Theorem 2.3 we get that
n
1 1
hw) =) ——5=—%-s
k=1 o’ (zx)| njw| "

and for each 0 < f € L%(Z) we have (also see [2, 9])

1 1
By =~ 3 f@)==3 f*w)
=1

z€c(w",p)

1 1
(Eg(fog™hHw) =~ >~ f(z)=;Zf<Zk);

z€c(w,p)

JoLf1w) = h(w)(Ey(f) 0 9~ H(w) = ——5r Z £ @0

n2{w| "

Thus so for u € AY(M), Ny(Jul*) = Jyllug[*1(w) = > _; lu(z)|?. In particular,
if u(z) = z then J¢[|z<p/|2](w) = n|w|%. Also, if u¢’ f and ii¢'g are non-negative,
then by Corollary 2.9 we have

WCy) (@) = Jo[ug! flw)dw + Jylag'g1(w)d i

= Y e fandw + e g i)

nlw| 7 )
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Proposition 2.11 Letu € A°(M), letgp : M — N be an analytic map with A-property
and uC, € B(AN(N) AL (M)). Then

(a) dim N (uCy) = 0 or oco.

(b) dim N (uCy)*) = 0 or .

Proof (a) Let 0 # w € N(uC,) be represented by P = fPdB + gPdp in any
local chart (B, Ug). Then ug(o (%) Ua(gh)) = uslo(@f)) = A(B(o (@) > 0.
Choose a sequence {K,} of pairwise disjoint Mc-measurable sets in B(o (0f)) with
0 < A(K,) < oo. Let wf = (,()ﬁXﬂ—l(Kn) forn € N. Then w,, # 0 and for all n # m,

(W om)y = Y (ol ), = Z/ 20115 P + 185 P xene, dA =0
BeB BeB B(Lp)

and

luCplnly =3 3 2 / e 1gh o eus ) el Pan

peBacAy Pup (En)

I3 |

{FE 2+ 1851 0 gup | luSig2d A = uCy @)1y = 0.
peBacAg (8a)

Consequently, dim N (uCy,) = oo.
(b) Let 0 # n € N ((uCy)*) be represented by n® = k%da + [“da in any local
chart (¢, Uy ). Then by Theorem 2.8 we have

. wC v =2 [

BB | BB _
o {fﬁ Ky —l—gﬂLﬂ} dA =0
BeB

forall w € AY(N). Put p% = max{|k%|?, I%]}. Then

| Ewwtaa= [  peaa-o
a(Ly) a(Ay)

So for some § > O, @Jé(Mﬁ(Aﬁ))—measurable set F = {z € a(Ly)
Eqp(py)(z) > &} has positive measure. There is Mg(a )-measurable set G € B(Ap)

such that F = gol;ﬁ] (G). It follows that there exists a sequence {G,} € Mg(a ) of pair-
wise disjoint sets in G such that 0 < A((pa_ﬁl (Gp)) < oo. Take n, = "Xa—l(%} G)
for n € N. Then

il =23 [ (P WeP) g pda =2 Y [ ptaa

aeA’e(B) wet?bas (Gn)

:22/

| Eap(py)dA = 28A(g,5(Gn)) > 0,
acA Y %as ()
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(s ) = O for alln # m and [|WCy)* )13 < [@Cy)* 1% = 0. o
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