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Abstract
In this paper point spectrum, compactness, reducibility, generalized inverse and some
weak normal classes of substitution conditional type operators acting on L2(�) will
be investigated.
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1 Introduction and preliminaries

Let (X , �,μ) be a complete σ -finite measure space and letA be a sub-σ -finite algebra
of �. We use the notation L2(A) for L2(X ,A, μ|A) and henceforth we write μ in
place of μ|A . All comparisons between two functions or two sets are to be interpreted
as holding up to a μ-null set. We denote the linear space of all complex-valued �-
measurable functions on X by L0(�). The support of f ∈ L0(�) is defined by
σ( f ) = {x ∈ X : f (x) �= 0}. We say that S is a localizing set for A (see [13]) if S is
not a null set, andAS = �S , whereAS = {A∩S : A ∈ A}. Let EA : L2(�) → L2(A)

be the conditional expectation operator, so that for f ∈ L2(�), EA( f ) is the unique
A-measurable function such that

∫
A f dμ = ∫

A EA( f )dμ for all A ∈ A. As an
operator on L2(�), E = EA is an orthogonal projection of L2(�) onto L2(A). Note
thatD(E), the domain of E , contains L2(�)∪{ f ∈ L0(�) : f ≥ 0}. For more details
on the properties of E see ( [8, 13, 15]). Those properties of E used in our discussion
are summarized below. In all cases, we assume that f , g, f g ∈ D(E).

• χA f = f whenever σ( f ) ⊆ A ∈ �.
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• E(g) = g if and only if g is A-measurable.
• If g is A-measurable then E( f g) = E( f )g.
• If f ≥ g then E( f ) ≥ E(g) and σ( f − g) ⊆ σ(E( f − g)).
• |E( f g)|2 ≤ E(| f |2)E(|g|2) (conditonal Cauchy-Schwarz inequality).

For w, u ∈ D(E), the mapping T1 : L2(�) ⊇ D(T1) → L2(�) given by T1( f ) =
wE(u f ) for f ∈ D(T1) = { f ∈ L2(�) : T1( f ) ∈ L2(�)}, is well-defined and linear.
Such an operator is called a Lambert conditional type operator induced by the pair
(w, u). Let ϕ : X → X be a measurable transformation on X , that is, ϕ−1(A) ∈ � for
all A ∈ �. Define the measure μ ◦ ϕ−1 on � by (μ ◦ ϕ−1)(A) = μ(ϕ−1(A)) for all
A ∈ �. We say that ϕ is nonsingular, if μ ◦ ϕ−1 is absolutely continuous with respect
to μ. In this case we write μ ◦ ϕ−1 � μ, as usual. Let h be the Radon-Nikodym
derivative h = d(μ ◦ ϕ−1)/dμ and it is always assumed that h is almost everywhere
finite-valued. Equivalently, ϕ−1(�) is a sub-σ -finite algebra of �. By the change of
variables formula we observe that for each f ∈ L1(�) and A ∈ � we have

∫

A
f d(μ ◦ ϕ−1) =

∫

ϕ−1(A)

( f ◦ ϕ)dμ =
∫

A
h f dμ.

Let u and w be in D(E), the domain of E . The operator T : L2(�) → L0(�) that
induced by the triple (u, w, ϕ) is called substitution conditional type operator and
defined by T = MwEMuCϕ , where Mw and Mu are multiplication operators and Cϕ

is a composition operator. If we take ϕ = id, the identity map, then Cϕ = I and T is
a Lambert conditional type operator T1 = MwEMu . Also, ifA = �, then E = I and
T is a weighted composition operator T2 = MuwCϕ .

Let 1 < p < ∞.Moy in [14] showed that if T ∈ B(L p(�)), T (L∞(�)) ⊂ L∞(�)

and T ( f T (g)) = T ( f )T (g) for all f , g ∈ L∞(�). then T = EAMu for some
A ⊆ �. Substitution conditional type operators of the form T = T1Cϕ are closely
related to the multipication operators, weighted composition operators, integral and
averaging operators and to the operators called conditional expectation type which has
been studied in [5, 6, 8, 9, 15]. For example, let X = [0, 1] × [0, 1], dμ = dxdy, �
be the Lebesgue subsets of X and letA = {A×[0, 1] : A is a Lebesgue set in [0, 1]}.
Then, for each f ∈ L2(�), (E f )(x, y) = ∫ 1

0 f (x, t)dt , which is independent of the
second coordinate. In this case we have

T ( f ) = w(x, y)E(u. f ◦ ϕ)(x, y) = w(x, y)
∫ 1

0
u(x, t) f (ϕ(x, t))dt .

In [5, 11] we have studied substitution conditional type operator T = MwEMuCϕ

induced by the triple (w, u, ϕ) on L2(�). In the next section, we discuss measure
theoretic characterizations for substitution conditional type operators. Boundedness,
point spectrum, compactness, reducibility, generalized inverse and some weak normal
classes of a these type of operators will be investigated.
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2 Characterizations

Let A ⊆ � be a sub-σ -algebra and let ϕ be a nonsingular measurable transformation
for which the composition operator Cϕ is densely defined. For each u, w ∈ L0(�),
it is assumed that uR(Cϕ) ⊂ D(E). It follows that the substitution conditional type
operator T = MwEMuCϕ : L2(�) → L0(�) is well-defined. Now, we provide some
lemmas for later use.

Lemma 2.1 Letϕ−1(A)beaσ -finite subalgebraofAand letϕ−1(A) ⊆ A ⊆ ϕ−1(�).
Then Eϕ−1(�)EA = EAEϕ−1(�) = EA, Eϕ−1(A)EA = EAEϕ−1(A) = Eϕ−1(A).
Moreover, EA( f ◦ ϕ) = f ◦ ϕ = Eϕ−1(�)( f ◦ ϕ) and EA( f ) ◦ ϕ−1 is well-defined
for all f ∈ L0(A) ∩ D(E).

From now on, we take Eϕ = Eϕ−1(�), E = EA and assume that h < ∞.

Lemma 2.2 Let T = MwEMuCϕ : L2(�) → L0(�)beadensely defined substitution
conditional type operator. Then for each f ∈ D(T ∗), T ∗ f = hEϕ{ūE(w̄ f )} ◦ ϕ−1.

Proof Let f ∈ D(T ∗) and g ∈ D(T ). Then we have

〈g, T ∗ f 〉 = 〈Tg, f 〉 =
∫

X
wE(u(g ◦ ϕ)) f̄ dμ =

∫

X
u(g ◦ ϕ)E(w f̄ )dμ

=
∫

X
Eϕ

(
uE(w f̄ )

)
g ◦ ϕdμ =

∫

X
hEϕ

{
uE(w f̄ )

} ◦ ϕ−1gdμ

=
〈
g, hEϕ{ūE(w̄ f )} ◦ ϕ−1

〉
.

Thus, the desired conclusion holds. ��
We recall that, by assumption, h is finite-valued. Thus, Cϕ is densely defined and

hence C∗
ϕ is well-defined (see [1]). Then by Lemma 2.2, T ∗ = C∗

ϕMūEMw̄.
We write B(L2(�)) and K (L2(�)) for the space of bounded and compact linear

operators on L2(�), respectively. Boundedness of T has been proven in [5]. In the
following we improve it as follows.

Theorem 2.3 Let T : L2(�) → L0(�) be a substitution conditional type operator
T = MwEMuCϕ . If J1 = hEϕ{E(|u|2)E(|w|2)} ◦ϕ−1 ∈ L∞(�), then T is bounded
and ‖T ‖2 ≤ ‖J1‖∞. Moreover, if h ∈ L∞(�) and T ∈ B(L2(�)), then J2 =
E{|hEϕ(ū

√
E(|w|2) ◦ ϕ−1|2} ∈ L∞(A) with ‖J2‖∞ ≤ ‖h‖∞‖T ‖2.

Proof Let f ∈ L2(�). Then by Lemma 2.1 we have

‖T f ‖2 =
∫

X
E(|w|2)|E(u( f ◦ ϕ))|2dμ =

∫

X
|E(u

√
E(|w|2)( f ◦ ϕ))|2dμ

≤
∫

X
E(|u|2E(|w|2))E(| f |2 ◦ ϕ)dμ =

∫

X
E(|u|2)E(|w|2)(| f |2 ◦ ϕ)dμ

=
∫

X
Eϕ{E(|u|2)E(|w|2)}(| f |2 ◦ ϕ)dμ
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=
∫

X
hEϕ{E(|u|2)E(|w|2)} ◦ ϕ−1| f |2dμ

=
∫

X
J1| f |2dμ ≤ ‖J‖∞

∫

X
| f |2dμ = ‖J1‖∞‖ f ‖2.

Thus, T is bounded and ‖T ‖2 ≤ ‖J1‖∞. Conversely, let T is bounded. Set
v = u

√
E(|w|2). Then ‖T f ‖2 = ∫

X |EMvCϕ f |2dμ = ‖EMvCϕ f ‖2, for each
f ∈ L2(�). Consequently, EMvCϕ is bounded and ‖C∗

ϕMv̄E‖ = ‖EMvCϕ‖ = ‖T ‖.
Now, for A ∈ A with 0 < μ(A) < ∞ we have

∫

A
J2dμ =

∫

A
h2|Eϕ(v̄) ◦ ϕ−1|2dμ =

∫

A
h|Eϕ(v̄)|2 ◦ ϕ−1d(μ ◦ ϕ−1)

=
∫

ϕ−1(A)

(h ◦ ϕ)|Eϕ(v̄)|2dμ =
∫

X
(h ◦ ϕ)|Eϕ(v̄χϕ−1(A))|2dμ

=
∫

X
h2|Eϕ(v̄χϕ−1(A))|2 ◦ ϕ−1dμ =

∫

X
|hEϕ(v̄Eχϕ−1(A)) ◦ ϕ−1|2dμ

=
∫

X
|C∗

ϕMv̄E(χϕ−1(A))|2dμ = ‖C∗
ϕMv̄E(χϕ−1(A))‖2

≤ ‖C∗
ϕMv̄E‖2μ(ϕ−1(A)) = ‖T ‖2

∫

A
d(μ ◦ ϕ−1)

= ‖T ‖2
∫

A
hdμ ≤ ‖T ‖2‖h‖∞ μ(A).

Thus, ‖J2‖∞ = sup{ 1
μ(A)

∫
A J2dμ : 0 < μ(A) < ∞} ≤ ‖T ‖2‖h‖∞ < ∞, and

hence ‖J2‖∞ ≤ ‖h‖∞‖T ‖2. ��
Corollary 2.4 T1 = MwEMu ∈ B(L2(�)) if and only if E(|u|2)E(|w|2) ∈ L∞(A),
and in this case ‖T1‖2 = ‖E(|u|2)E(|w|2)‖∞.

Proof Put ϕ = id in Theorem 2.3. Then Eϕ = I = Cϕ = C∗
ϕ and h = 1. ��

Let v ∈ L0(�) and J = h(Eϕ(|v|2)◦ϕ−1).We recall that theweighted composition
operator (vCϕ)( f ) := v.( f ◦ ϕ) defines a bounded operator on L2(�) if and only if
J ∈ L∞(�) (see [3]).

Example 2.5 Let � be the Lebesgue subsets of X = [0, 1] × [0, 1], dμ = dxdy and
let ϕ : X → X be the baker transformation defined by

ϕ(x, y) =
(
2x,

y

2

)
χ[0, 12 )×[0,1] +

(

2x − 1,
y + 1

2

)

χ[ 12 ,1]×[0,1].

Then

ϕ−1(x, y) =
( x

2
, 2y

)
χ[0,1]×[0, 12 ) +

(
x + 1

2
, 2y − 1

)

χ[0,1]×[ 12 ,1].
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It follows that ϕ preserves the Lebesgue measure μ on X . Thus, h = 1 = ‖Cϕ‖,
Eϕ = I and hence hEϕ( f ) ◦ ϕ−1 = f ◦ ϕ−1 for all f ∈ L2(�). Let u, w ∈
L2(�), A = {∅, X} and let T = MwEMuCϕ . Then ϕ−1(A) = A and for each

f ∈ L2(�) we have E( f )(x, y) = ∫ 1
0

∫ 1
0 f (s, t)dsdt for all (x, y) ∈ X . Therefor

{E( f ) ◦ ϕ−1}(x, y) = E( f )(x, y). It follows that

T f = w

{∫ 1

0

∫ 1
2

0
u(s, t) f

(

2s,
t

2

)

dsdt +
∫ 1

0

∫ 1

1
2

u(s, t) f

(

2s − 1,
t + 1

2

)

dsdt

}

.

Moreover, J1 = hEϕ{E(|u|2)E(|w|2)}◦ϕ−1 = E(|u|2)E(|w|2) = ‖u‖22 ‖w‖22. Thus,
by Theorem 2.3, T ∈ B(L2(�)) with ‖T ‖ = ‖u‖2 ‖w‖2 = ‖T1‖. Also, by Lemma
2.2, we have

T ∗ f (x, y) = ū(ϕ−1(x, y))E(w̄ f )(x, y)

=
{

ū
( x

2
, 2y

)
χ[0,1]×[0, 12 )

+ ū

(
x + 1

2
, 2y − 1

)

χ[0,1]×[ 12 ,1]
}∫ 1

0

∫ 1

0
w̄(s, t) f (s, t)dsdt .

We write N (T ) and R(T ) for the null-space and the range of an operator T ∈
B(L2(�)), respectively. In the following we characterize the null-space of T .

Lemma 2.6 Let T = MwEMuCϕ be a weighted composition Lambert-type operator

on L2(�). Then N (T ) = {C∗
ϕ(ū

√
E(|w|2)L2(A))}⊥.

Proof Set v = ū
√
E(|w|2). Since ‖T f ‖ = ‖EMvCϕ f ‖ for all f ∈ L2(�), then

N (T ) = N (EMvCϕ). Let g ∈ L2(A) be an arbitrary. Then we have

〈 f ,C∗
ϕ(v̄g)〉 =

〈
f , hEϕ(v̄g) ◦ ϕ−1

〉
=

∫

X
f Eϕ(vḡ) ◦ ϕ−1d(μ ◦ ϕ−1)

=
∫

X
( f ◦ ϕ)Eϕ(vḡ)dμ =

∫

X
v( f ◦ ϕ)ḡdμ

=
∫

X
E(v( f ◦ ϕ))ḡdμ = 〈EMvCϕ( f ), g〉.

Consequently, f ∈ {C∗
ϕ(v̄L2(A))}⊥ if and only if f ∈ N (EMvCϕ) = N (T ). ��

Theorem 2.7 Let ϕ−1(A) be σ -finite, S = σ(E(u)E(w)), ϕ−1(A) ⊆ A ⊆ ϕ−1(�)

and let T = MwEMuCϕ ∈ B(L2(�)). If (ϕ−1(�))S = AS and

hEϕ

{
ūE(|w|2)E(u)

}
◦ ϕ−1 = wE

{
u(h ◦ ϕ)Eϕ(ūE(w̄))

}
, (2.1)

then T is normal on L2(ϕ−1(�)). Moreover, if T is normal, then (2.1) is holds.

Proof Let f ∈ L2(A). Then f ◦ϕ ∈ L0(ϕ−1(A)) ⊆ L0(ϕ−1(�)) and ( f ◦ϕ)◦ϕ−1 =
f on σ(h). It follows that

T ∗T f = hEϕ

{
ūE(|w|2)E(u)

}
◦ ϕ−1 f ,
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T T ∗ f = wE
{
u(h ◦ ϕ)Eϕ(ūE(w̄))

}
f .

Let (ϕ−1(�))S = AS and (2.1) is true. For A ∈ A with μ(A) < ∞, put
g = χA∩S . Since EEϕ = E and σ(hEϕ{ūE(|w|2)E(u)} ◦ ϕ−1) = σ(wE{u(h ◦
ϕ)Eϕ(ūE(w̄))}) = σ(w) ∩ σ(E(u)) ∩ σ(ūE(w̄)) ⊆ σ(E(u)E(w)) = S, then
T ∗Tg = T T ∗g. From (ϕ−1(�))S = AS , we obtain that T ∗Tg = T T ∗g holds for
any ϕ−1(�)-measurable subset A of S, as long as A has finite measure. Consequently,
T ∗TχA = T T ∗χA for all such A, implying T is normal on L2(ϕ−1(�)).

Now, let T ∈ B(L2(�)) is normal. Since ϕ−1(A) be σ -finite, there exists {An}n ⊆
A such that An ⊆ An+1, X = ∪n(ϕ

−1(An)) with μ(ϕ−1(An)) < ∞. Put fn =
χϕ−1(An)

. Since T ∗T fn = T T ∗ fn and fn ↗ χX , then we obtain (2.1). ��
Corollary 2.8 ( [3, 10]) Under assumptions of Theorem 2.7, if ϕ = id, then T1 =
MwEMu is normal if and only if T1 = Mgū EMu for some g ∈ L0(A). Moreover, if
A = � then the weighted composition operator T2 = MuwCϕ is normal whenever
hEϕ(|uw|2) ◦ ϕ−1 = uw(h ◦ ϕ)Eϕ(uw).

Theorem 2.9 Let T = MwEMuCϕ ∈ B(L2(�)) be self adjoint. Then
(i) hEϕ(ūE(w̄)) ◦ ϕ−1 = wE(u).
(ii) wE(u.(wE(u)) ◦ ϕ) = hEϕ(ūE(|w|2E(u))) ◦ ϕ−1.
(iii) ϕ2

D = id, where ϕD is a measurable self adjoint map on D =
σ(wE(u(wE(u)) ◦ ϕ) is a localising set for A.

Proof Let f ∈ L2(�). Since T ∗ = T , then

hEϕ{ūE(w̄ f )} ◦ ϕ−1 = wE(u. f ◦ ϕ). (2.2)

Since A is σ -finite, choose an increasing sequence of measurable set {Cn}, each of
finite measurable, whose union is all of X . Setting f = χCn in (2.2) and letting
n → ∞, we obtain hEϕ{ūE(w̄)} ◦ ϕ−1 = wE(u). Now, since T 2 = T ∗T then for
each f ∈ L2(A) we have

w(u(wE(w)) ◦ ϕ) f ◦ ϕ2 = hEϕ{ūE(|w|2)E(u)} ◦ ϕ−1 f . (2.3)

Put again f = χCn as above. Then we obtain (ii). Dividing both side of (2.3) by
wE(u(wE(w))◦ϕ) and using (ii), we have χD f ◦ϕ2 = χD f . Now, let f = χC , when
C ∈ A. Then χDχC ◦ ϕ2 = χD∩C , and so χD∩ϕ−2(C) = χD∩C . Since ϕ−2(A) ⊆ A,
then ϕ2

D = I on (D,AD, μ|AD ) = (D, �D, μ|�D ), because D is a localising set for
A. ��

If we take ϕ = id in Theorem 2.9, we get that (a) ūE(w̄) = wE(u) and (b)
wE(uw) = ūE(|w|2). Put A = σ(E(w)), B = σ(E(|w|2)) and C = σ(E(uw)).
Then

E(w)ū
(b)== E(w)wE(uw)

E(|w|2) χB = E(wE(uw))

E(|w|2) wχB
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(b)== E(ūE(|w|2))
E(|w|2) wχB = E(ū)wχB = wE(ū),

wE(|u|2) = wE(uū)
(a)== wE(

uwE(u)

E(w̄)
χA)

= wE(uw)E(u)

E(w̄)
χA

(a)== ūE(w̄)E(uw)

E(w̄)
χA = ūE(uw)χA.

Let T1 = MwEMu ∈ B(L2(�)) be self-adjoint. It is known that ( [10, Theorem 2.21])
ess range E(uw) =spec(T1) ⊆ R, the spectrum of T1, and so E(uw) is a real valued

function. Then, using (b), we get that T1 = Mgū EMu where g = E(|w|2)
E(uw)

χC ∈ L0(A)

with ḡ = g (see [10, Theorem 2.32(a)]).
Now, take A = � and v = uw in Theorem 2.9. Setting T ∗

2 = T2 = MvCϕ

yields v = hEϕ(v̄) ◦ ϕ−1, v(v ◦ ϕ) = hEϕ(|v|2) ◦ ϕ−1 and ϕ2
D = id, where D =

σ(v(v ◦ ϕ)) = σ(hEϕ(|v|2) ◦ ϕ−1) (see [2]).
We recall that an A-atom of the measure μ is an element A ∈ A with μ(A) > 0,

such that for each B ∈ A, if B ⊆ A, then either μ(B) = 0 or μ(B) = μ(A).
A measure space (X ,A, μ) with no atoms is called non-atomic measure space. It
is well-known fact that every σ -finite measure space (X ,A, μ) can be partitioned
uniquely as X = (∪n∈NAn) ∪ B, where {An}n∈N is a countable collection of pairwise
disjoint A-atoms and B ∈ A, being disjoint from each An , is non-atomic (see [17]).

It is known that every A-measurable function f is constant on each A-atom A,
namely f|A = c. Since f (x)χA(x) = cχA(x) = ( f χA)(x) for all x ∈ X , we take
f (A) = c when no confusion can arise. The cardinal number of a set A ∈ � is
represented as #(A). Set ϕ0(x) = x and put ϕk(x) = ϕ(ϕk−1(x)), for all x ∈ X . An
A-atom A in (X ,A, μ) is called a fixed atom of ϕ of order n ∈ N if ϕn(A) = A and
ϕk(A) �= A for 1 ≤ k ≤ n − 1.

For Lambert conditional operators and compact weighted composition operators
on L p some properties of their ra were described by Herron [8] and Takagi [16]. In
the following, we show that the point spectrum �0(T ) of a substitution conditional
type operator T on L2(�) contains some special numbers.

Theorem 2.10 Let (X ,A, μ) be partitioned as X = (∪n∈NAn) ∪ B, ϕ−1(A) ⊆ A,
W = E(u(w ◦ ϕ)) and let T = MwEMuCϕ ∈ B(L2(�)). Then � ⊆ spec(T ) where
� = {λ ∈ C : λn = W (A)W (ϕ(A)) · · ·W (ϕn−1(A)) for some fixed atom A of ϕ of
order n}.
Proof To prove the theorem, we adopt the method used by Kamowitz [12]. Let
W (ϕn(A)) = 0 for some N0 = N ∪ {0}. We claim that T is not onto and so
λ = 0 ∈ σp(T ). Suppose not, then T n+2 is onto. This yields a function f ∈ L2(�)

with T n+2 f = w{W (W ◦ϕ) · · · (W ◦ϕn)}E(u f ◦ϕ)◦ϕn−1 = χA. Thus, σ(T n+2 f ) ⊆
σ(W ◦ ϕn). Since σ(W ◦ ϕn) ∩ A = ∅, then (T n+2 f )|A = 0 whereas χA(A) = 1.
This shows that T is not onto.

Assume W (ϕk(A)) �= 0 for all k ∈ N0 and λn = W (A)W (ϕ(A)) · · ·W (ϕn−1(A)).
If n = 1, then λ = W (A) and ϕ(A) = A. Put g = wχA. We show that there exists no
f ∈ L2(�) such that λ f − T f = g. Indeed,
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λ f − T f = g
Cϕ=�⇒ λ f ◦ ϕ − (w ◦ ϕ)E(u. f ◦ ϕ) ◦ ϕ = g ◦ ϕ

×u=�⇒ λu f ◦ ϕ − u(w ◦ ϕ)E(u. f ◦ ϕ) ◦ ϕ = ug ◦ ϕ

E=�⇒ λE(u f ◦ ϕ) − E(u(w ◦ ϕ))E(u. f ◦ ϕ) ◦ ϕ = E(ug ◦ ϕ).

Since ϕ−1(A) ⊆ A, then 0 = (λ − W (A))E(u f ◦ ϕ)(A) = W (A)χA(ϕ(A)) =
W (A) �= 0. This shows that λI − T is not onto and hence λ ∈ spec(T ).

Now, let n ≥ 2, λn = W (A)W (ϕ(A)) · · ·W (ϕn−1(A)) and ϕn(A) = A. Put
F = E(u f ◦ ϕ) and G = E(ug ◦ ϕ) where f ∈ L2(�) and g = wχA. It fol-
lows that F(ϕn(A)) = F(A), G(ϕn−1(A)) = E(u(w ◦ ϕ))(ϕn−1(A))χA(ϕn(A)) =
W (ϕn−1(A)) and G(ϕk(A)) = 0 for 0 ≤ k ≤ n − 2. Again we claim that there exists
no f ∈ L2(�) which satisfies λ f − T f = g. For, if such a function f exists, then by
induction and using the same method in case n = 1, we have

λn F − W (W ◦ ϕ) · · · (W ◦ ϕn−1)F ◦ ϕn = λn−1G + λn−2WG ◦ ϕ + · · ·
+ W (W ◦ ϕ) · · · (W ◦ ϕn−2)G ◦ ϕn−1.

It follows that
{
λn − W (A) · · ·W (ϕn−1(A))

}
F(A) = W (A) · · ·W (ϕn−1(A)). (2.4)

Since W (ϕk(A)) �= 0 for all k ∈ N0, the right hand side of (2.4) is non-zero, whereas
the left hand side of (2.4) is zero. This contradiction shows that λI − T is not onto
and thus λ ∈ spec(T ). ��
Corollary 2.11 Under assumptions of Theorem 2.10, if T = MwEMuCϕ ∈ K (L2(�))

then � ∪ {0} ⊆ �0(MwEMu) ∪ {0}.
Corollary 2.12 Let {MwEMu, MuCϕ} ⊂ K (L2(�)). �1 = {λ ∈ C : λn =
u(A) · · · u(ϕn−1(A)), for some fixed �-atom A of ϕ of order n} and �2 = {λ ∈
C : λ = E(uw)(A), for some A-atom A}. Then �1 ∪ {0} ⊆ �0(MuCϕ) ∪ {0} and
�2 ∪ {0} ⊆ �0(MwEMu) ∪ {0}.

Recall that a linear operator T on a Hilbert space H is said to be compact if
for each bounded sequence { fn}n ⊆ H, there is a subsequence of {T fn}n that is
convergent. In the following theorem we give a sufficient and necessary conditions
for the compactness of T = MwEMuCϕ on L2(�).

Theorem 2.13 Let (X ,A, μ) be partitioned as X = (∪n∈NAn) ∪ B, ϕ−1(A) ⊆ A
and let T = MwEMuCϕ be a substitution conditional type operator on L2(�). If T
is compact, then for each ε > 0, μ(B ∩ Kε) = 0 and #{n ∈ N : Kε ⊇ An ∈ A} < ∞,
where Kε := {x ∈ X : h(x)Eϕ{E(|w|2)|E(u)|2} ◦ ϕ−1(x) ≥ ε}. Conversely, T is
compact whenever for each ε > 0, μ(B ∩ Gε) = 0 and #{n ∈ N : Gε ⊇ An ∈ A} <

∞, where Gε := {x ∈ X : h(x)Eϕ{E(|w|2)|E(|u|2)} ◦ ϕ−1(x) ≥ ε}.
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Proof Suppose T is a compact operator. We show that for each ε > 0 the set Kε

consists of finitely many A atoms. Assume the contrary. Then for some ε > 0 the set
Kε either contains a subset of nonatomic part B ∈ A or has infinitely manyA-atoms.
In both cases we can find a sequence {An}n of pairwise disjoint A-measurable sets
with 0 < μ(An) < ∞. Define fn = χAn√

μ(An)
. Then for each n ∈ N, { fn, fn ◦ ϕ} ⊂

L2(A) ∪ L2(ϕ−1(A)) = L2(A) with ‖ fn‖2 = 1 and

‖T fn‖22 =
∫

X
|wE(u( fn ◦ ϕ))|2dμ =

∫

X
|w|2|E(u)|2| fn|2 ◦ ϕdμ

=
∫

X
E(|w|2)|E(u)|2| fn|2 ◦ ϕdμ =

∫

X
hEϕ{E(|w|2)|E(u)|2} ◦ ϕ−1| fn|2dμ

= 1

μ(An)

∫

An

hEϕ{E(|w|2)|E(u)|2} ◦ ϕ−1dμ ≥ ε.

For n �= m, μ(σ(T fn) ∩ σ(T fm)) = 0 and hence ‖T fn − T fm‖22 = ‖T fn‖2 +
‖T fm‖2 ≥ 2ε. Thus, the sequence {T fn}does not contain any convergent subsequence,
and so T is not compact.

Conversely, suppose for each ε > 0, Gε ∩ {An}n = {A1
ε, · · · , Ak

ε}. Put Bε =
A1

ε ∪ · · · ∪ Ak
ε , v = uχBε and take Tε = MwEMvCϕ . Then for each f ∈ L2(�) we

have

Tε f = wE(uχBε ( f ◦ ϕ)) = (T f )χBε = w

k∑

i=1

(
E(u( f ◦ ϕ))(Ai

ε)
)
χAi

ε
.

Thus, Tε is a finite rank operator. Also, since u = v on Bε, then

∫

Bε

|(T − Tε) f |2dμ =
∫

Bε

|MwEM(u−v)Cϕ f |2dμ = 0.

It follows that

‖(T − Tε) f ‖22 =
∫

X\Bε

|T f − Tε f |2dμ =
∫

X\Bε

|T f |2dμ

=
∫

X\Bε

|w|2|E(u( f ◦ ϕ))|2dμ

=
∫

X\Bε

E(|w|2)E(u( f ◦ ϕ))|2dμ

≤
∫

X\Bε

E(|w|2)E(|u|2)E(| f |2 ◦ ϕ)dμ

=
∫

X\Bε

E(|w|2)E(|u|2)(| f |2 ◦ ϕ)dμ

=
∫

X\Bε

hEϕ

{
E(|w|2)E(|u|2)

}
◦ ϕ−1| f |2dμ
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≤ ε

∫

X
| f |2dμ = ε‖ f ‖22.

Consequently, T is compact on L2(�). ��
Corollary 2.14 Let T : L2(�) → L0(�) be a substitution conditional type operator
T = MwEMuCϕ . Then the followings hold.

(i) If T1 = MwEMu is a compact operator on L2(�), then for each ε > 0 the set
{E(|w|2)|E(u)|2 ≥ ε} consists of finitely manyA-atoms. Conversely, if for each ε > 0
the set {E(|w|2)E(|u|2) ≥ ε} consists of finitely many A-atoms, then T is compact
on L2(�).

(ii) The weighted composition operator T2 = MuwCϕ is compact on L2(�) if and
only if for each ε > 0 the set {hEϕ(|uw|2) ◦ ϕ−1 ≥ ε} consists of finitely many
�-atoms.

Proof Take ϕ = id and A = � in Theorem 2.13, respectively. ��
Let T ∈ B(H). We recall that the unique operator S ∈ B(H) satisfying

(1) T ST = T , (2) ST S = S, (3) (T S)∗ = T S, (4) (ST )∗ = ST

is called the Moore-Penrose inverse of T and is denoted by T †. Let T {i, ..., j} denote
the set of all operators S satisfying condition (k) for all labels k in the list {i, · · · , j}.
In this case S ∈ T {i, ..., j} is a {i, ..., j}-inverse of T and is denoted by T (i,..., j). Note
that T (1,2,3,4) = T †. For other important properties of T † (see [4, 7]).

Lemma 2.15 Letϕ−1(A) ⊆ A ⊆ ϕ−1(�), h ∈ L0(A), K = h{E(uEϕ(ū))E(|w|2)}◦
ϕ−1 and T = MwEMuCϕ ∈ B(L2(�)). Then K is bounded away from zero on σ(K )

whenever T has closed range.

Proof Suppose T has closed range, but K is not bounded away from zero on σ(K ).
Then for fixed ε > 0, there exists {An}n ∈ A with An ⊆ An+1 ⊆ σ(K ) and
0 < μ(An) < ∞ such that |K |χAn < 1/

√
n. Put fn = √

hEϕ(ū
√
E(|w|2))◦ϕ−1χAn .

Then by Theorem 2.3 we have

‖ fn‖22 =
∫

X
|Eϕ(ū

√
E(|w|2))|2(χAn ◦ ϕ)dμ ≤

∫

X
E(|u|2)E(|w|2)(χAn ◦ ϕ)dμ

=
∫

An

hEϕ{E(|u|2)E(|w|2)} ◦ ϕ−1dμ ≤ ‖J1‖∞μ(A1) < ∞.

Now, let g ∈ N (T ). Then we get that

|〈g, fn〉|2 = |
∫

X

χσ(h)√
h

gEϕ(u
√
E(|w|2)) ◦ ϕ−1χAnd(μ ◦ ϕ−1)|2

= |
∫

X

g ◦ ϕ√
h ◦ ϕ

(u
√
E(|w|2))(χAn ◦ ϕ)dμ|2
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= |
∫

X
E(u(g ◦ ϕ))

√
E(|w|2)
h ◦ ϕ

(χAn ◦ ϕ)dμ|2

≤
∫

X
|E(u(g ◦ ϕ))|2 E(|w|2)

h ◦ ϕ
(χAn ◦ ϕ)dμ

=
∫

X
|wE(u(g ◦ ϕ))|2 1

h ◦ ϕ
(χAn ◦ ϕ)dμ

=
∫

X
|Tg|2χAn ◦ ϕ

h ◦ ϕ
du = 0.

It follows that fn ∈ L2(�) ∩ N (T )⊥ and satisfies

‖T fn‖2 =
∫

ϕ−1(An)

|w|2|E(u(
√
h ◦ ϕ)Eϕ(ū))

√
E(|w|2) |2dμ

=
∫

ϕ−1(An)

(h ◦ ϕ)|E(uEϕ(ū))E(|w|2)|2dμ

=
∫

An

h2|E(uEϕ(ū))E(|w|2)|2 ◦ ϕ−1dμ

=
∫

An

|K |2χAndμ ≤ 1

n
μ(A1) → 0, as n → ∞.

But this is a contradiction. ��
In Theorem2.15, if we takeϕ = id orA = �, thenwe have the following corollary.

Corollary 2.16 (a) If T1 = MwEMu ∈ B(L2(�)) has closed range, then
K1 = E(|u|2)E(|w|2) is bounded away from zero on σ(K1).

(b) Let v = uw and ϕ−1(�) = �. Then K2 = h(|v|2 ◦ϕ−1) is bounded away from
zero on σ(K2) whenever the weighted composition operator T2 = MvCϕ has closed
range.

Lemma 2.17 Let ϕ−1(A) ⊆ A ⊆ ϕ−1(�), A = σ(hE{uEϕ(ū)E(|w|2)} ◦ ϕ−1),
h ∈ L0(A) and for each f ∈ L2(�),

S f = χA

hE{uEϕ(ū)E(|w|2)} ◦ ϕ−1 hEϕ{ūE(w̄ f )} ◦ ϕ−1.

Then S ∈ B(L2(�)) whenever T = MwEMuCϕ ∈ B(L2(�)) has closed range.

Proof Let f ∈ L2(�). By Lemma 2.15, |K |2 = h2|{E(uEϕ(ū))E(|w|2)}|2◦ϕ−1 ≥ α

on σ(K ) = σ(A) for some α > 0. Using Theorem 2.3 and the conditional Cauchy
inequality we have

‖S f ‖22 =
∫

X

χAh2|Eϕ{ūE(w̄ f )}|2 ◦ ϕ−1

h2|E{uEϕ(ū)E(|w|2)}|2 ◦ ϕ−1 dμ
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≤ 1

α

∫

X
hχA|Eϕ{ūE(w̄ f )}|2d(μ ◦ ϕ−1)

= 1

α

∫

X
(h ◦ ϕ)(χA ◦ ϕ)|Eϕ{ūE(w̄ f )}|2dμ

≤ 1

α

∫

X
(h ◦ ϕ)(χA ◦ ϕ)E(|u|2)E(|w|2)E(| f |2)dμ

= 1

α

∫

X
(h ◦ ϕ)(χA ◦ ϕ)E(|u|2)E(|w|2)| f |2dμ

= 1

α

∫

X
(h ◦ ϕ)(χA ◦ ϕ)Eϕ

{
E(|u|2)E(|w|2)

}
Eϕ(| f |2)dμ

≤ 1

α

∫

X

(
hEϕ

{
E(|u|2)E(|w|2)

}
◦ ϕ−1

)(
hEϕ(| f |2) ◦ ϕ−1

)
dμ

≤ ‖J1‖∞
α

∫

X
hEϕ(| f |2) ◦ ϕ−1dμ = ‖J1‖∞

α
‖ f ‖22.

��
Let σ(uEϕ(ū)) ⊇ σ(u). As the assumptions of Lemma 2.17 let h ∈ L0(A),ϕ−1(A) ⊆
A ⊆ ϕ−1(�) and A = σ(hE{uEϕ(ū)E(|w|2)} ◦ ϕ−1). Since σ(h ◦ ϕ) = X , then
ϕ−1(A) = σ((h ◦ ϕ)E{uEϕ(ū)E(|w|2)}) = σ(E{uEϕ(ū)E(|w|2)}) and so χA ◦ ϕ =
χϕ−1(A) = χσ(uEϕ(ū))χσ(E(|w|2)). Thus, for each f ∈ L2(�) we have

(χA ◦ ϕ)T f = wχσ(E(|w|2))E
(
χσ(uEϕ(ū))u( f ◦ ϕ)

)

= wE(u ◦ ϕ) = T f .

It follows that

ST f = χA

E{uEϕ(ū)E(|w|2)} ◦ ϕ−1 Eϕ

{
ūE(|w|2)E(u( f ◦ ϕ))

}
◦ ϕ−1

and

T ST f = wE

{
u(χA ◦ ϕ)

E{uEϕ(ū)E(|w|2)} Eϕ(ū)E(|w|2)E(u( f ◦ ϕ))

}

= (χA ◦ ϕ)wE( f ◦ ϕ) = (χA ◦ ϕ)T f = T f .

By Similar computations, we have

ST S = S

(

wE

(
u(χA ◦ ϕ)

E{uEϕ(ū)}E(|w|2) Eϕ{ūE(w̄ f )}
))

= S

(

w(χA ◦ ϕ)
E(w̄ f )

E(|w|2)
)

= χA

E{uEϕ(ū)E(|w|2)} ◦ ϕ−1 Eϕ

{

ūE

(

ww̄(χA ◦ ϕ)
E(w̄ f )

E(|w|2)
)}

◦ ϕ−1

= χA

E{uEϕ(ū)E(|w|2)} ◦ ϕ−1 Eϕ{ūE(w̄ f )} ◦ ϕ−1 = S f .
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These observations establish the following result.

Theorem 2.18 Let ϕ−1(A) ⊆ A ⊆ ϕ−1(�), A = σ(hE{uEϕ(ū)E(|w|2)} ◦ ϕ−1),
h ∈ L0(A) and let T = MwEMuCϕ ∈ B(L2(�)) has closed range and

S f = χA

E{uEϕ(ū)E(|w|2)} ◦ ϕ−1 Eϕ{ūE(w̄ f )} ◦ ϕ−1, f ∈ L2(�).

Then T (2) = S. Moreover, if σ(uEϕ(ū)) ⊇ σ(u) then T (1,2) = S.

Corollary 2.19 Let T1 = MwEMu and T2 = MvCϕ , where v = uw. If Ti ∈ B(L2(�))

has closed range, then for each f ∈ L2(�),

T †
1 ( f ) = χσ(E(|w|2)

E(|u|2)E(|w|2) ūE(w̄ f );

T †
2 ( f ) = χA2

|v|2 ◦ ϕ−1 ( f ◦ ϕ−1)

where A2 = σ(h(|v|2 ◦ ϕ−1)) and Eϕ = I .

Let f ∈ L2(�) and hEϕ( f ) ◦ ϕ−1 = 0. Then (h ◦ ϕ){Eϕ( f ) ◦ ϕ−1} ◦ ϕ =
(h◦ϕ)Eϕ( f ) = 0. Since h◦ϕ > 0, then Eϕ( f ) = 0. Conversely, suppose Eϕ( f ) = 0.
Then for each B ∈ � we have

∫

B
hEϕ( f ) ◦ ϕ−1dμ =

∫

ϕ−1(B)

Eϕ( f )dμ = 0.

and so hEϕ( f ) ◦ ϕ−1 = 0. Let ϕ−1(A) ⊆ A be a σ -finite subalgebra of A and
let Eϕ( f ) = 0 for all f ∈ L2(�). Then there is {Bn} ⊆ ϕ−1(A) ⊆ ϕ−1(�) with
Bn ⊆ Bn+1, 0 < μ(Bn) < ∞ and X = ∪n Bn . Take fn = χBn . Then Eϕ(u) =
lim Eϕ(u) fn = lim Eϕ(u fn) = 0.

Now, let ϕ−1(�) is a σ -finite. Then h = d(μ ◦ϕ−1)/dμ is finite-valued and hence
Cϕ is densely defined. It follows that (see [1])

R(Cϕ) = R(Eϕ) = L2(ϕ−1(�))

=
{

f ◦ ϕ :
∫

X
| f |2d(μ ◦ ϕ−1) < ∞

}

= { f ◦ ϕ : f ∈ L2(hdμ)}.

Hence we have the following lemma.

Lemma 2.20 Let u ∈ D(Eϕ) and ϕ−1(A) be a σ -finite subalgebra of ϕ−1(�). Then
the following assertions hold.

(a) hEϕ( f ) ◦ ϕ−1 = 0 if and only if Eϕ( f ) = 0, for all f ∈ L2(A).
(b) If Eϕ(u f ) = 0 for all f ∈ L2(A), then Eϕ(u) = 0.

(c)R(Cϕ |L2(A)) = R(CϕEϕ) = Cϕ(L2(A)) = L2(ϕ−1(A)) = { f ◦ ϕ :
∫
X | f |2d(μ ◦ ϕ−1) < ∞} = { f ◦ ϕ : f ∈ L2(hdμ)}.
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Let M be a closed subspace of H. If T ∈ B(H), then T can be written 2 × 2
matrix with operator entries [Ti j ]1≤i, j≤2, where T11 ∈ B(M), T12 ∈ B(M⊥,M),
T21 ∈ B(M,M⊥) and T22 ∈ B(M⊥). M is said to be a reducing subspace for T if
M is invariant subspace for T and T ∗, or equivalently, T12 = T ∗

12 = 0.
Relative to the direct sum decomposition L2(�) = R(E) ⊕ N2(E), any element

f of L2(�) can be written uniquely as f = f1 + f2 where f1 = E( f ) ∈ L2(A)

and f2 = f − E( f ) ∈ N2(E) = { f ∈ L2(�) : E( f ) = 0}. Now, let T =
MwEMuCϕ ∈ B(L2(�)). Then the matrix representation of T and T ∗ with respect
to the decomposition L2(�) = L2(A) ⊕ N2(E) are

T =
[
Mw1u1Cϕ EMw1u2Cϕ

Mw2u1Cϕ Mw2EMu2Cϕ

]

and T ∗ =
[
C∗

ϕMw1u1 EC∗
ϕMw2u1

C∗
ϕMw1u2 C∗

ϕMū2EMw̄2

]

.

Consequently, L2(A) is a reducing subspace for T if and only if Mw2u1Cϕ : L2(A) →
N2(E) and C∗

ϕMw1u2 : N2(E) → L2(A) are 0. Let ϕ−1(A) = A ⊆ ϕ−1(�). Then

by Lemma 2.20, R(Cϕ |L2(A)) = L2(A). In this case we have

Mw2u1Cϕ = 0 ⇐⇒ w2u1( f ◦ ϕ) = 0, ∀ f ∈ L2(A)

⇐⇒ w2u1 = 0 (by Lemma2.20)

⇐⇒ (w − w1)u1 = wu1 − w1u1 = 0

⇐⇒ wχσ(u1) = w1χσ(u1) ∈ L0(A)

and

C∗
ϕMw1u2 = 0 ⇐⇒ hEϕ(w1u2 f ) ◦ ϕ−1 = 0, ∀ f ∈ L2(A)

⇐⇒ Eϕ(w1u2 f ) = 0 (by Lemma2.20)

⇐⇒ Eϕ(w1(u − u1)) = Eϕ(w1u) − Eϕ(w1u1) = 0

⇐⇒ Eϕ(u)w1 = w1u1 (since A ⊆ ϕ−1(�))

⇐⇒ Eϕ(u)χσ(w1) = u1χσ(w1) ∈ L0(A).

These observations establish the following result.

Theorem 2.21 Let ϕ−1(A) = A be a σ -finite algebra of� and let T = MwEMuCϕ ∈
B(L2(�)). Then L2(A) is a reducing subspace of T if and only if

{
wχσ(u1), Eϕ(u)χσ(w1)

} ⊆ L0(A).

In Theorem 2.21 if we take ϕ = id, then we have the following corollary.

Corollary 2.22 Let T1 = MwEMu ∈ B(L2(�)). Then R(E) = L2(A) is a reducing
subspace of T1 if and only if wχσ(E(u)) and uχσ(E(w)) are A-measurable functions.
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